
Simple 6- and 7-designs on 19 to 33 pointsAnton Betten1, Reinhard Laue, Alfred WassermannUniversit�at Bayreuth, Lehrstuhl II f�ur Mathematik, Lehrstuhl f�ur Mathematikund ihre Didaktik, D-95440 BayreuthAbstractRecent results in the search for simple t-designs are reported. There are 31parameter sets of simple 7-designs and many parameter sets of new simple 6-designs on up to 33 points listed up. The tool used is a program DISCRETA,developed by the authors, which applies the method of Kramer-Mesner [6] wherean automorphism group of the desired designs is prescribed. If the automorphismgroup is large enough group theoretical arguments allow to determine the numberof isomorphism types of designs found. The search was successful with prescribedprojective linear groups and some extensions of cyclic groups. In several casesTran van Trung's construction [17] yields further results from those found bycomputer.AMS Subject Numbers: 05E15, 05E20, 05B05,Key words: Group actions, constructive combinatorics, isomorphism, auto-morphism groups, t-designs1 IntroductionA simple t-(v; k; �) design D is de�ned as a set of k-subsets, called blocks, of aset V of v points such that each t-subset of V is contained in the same number �of blocks. Since we only consider simple designs, we omit the word simple. Fora long time t-designs were known only for t � 5: Then, in 1984, S. Magliverasand D. W. Leavitt [10] constructed the �rst 6-designs using the method ofKramer-Mesner [6] and a computer. As a big sensation, L. Teirlinck [15] in 1989proved that t-(v; t + 1; �) designs exist for all t: The proof is constructive, butthe resulting designs, namely t� (v; t+1; �) designs, have astronomically largeparameters v and � like � = (t+ 1)!2t+1 and v � t mod �: Thus, small examplesand cases where k is greater than t+1 are still interesting. Some small 6-designsand even two in�nite series of 6-designs had been found. A recent review can befound in the Handbook of Combinatorial Designs [8]. Most designs with smallparameter sets and "large" t were found using Kramer-Mesner matrices. We alsofollow this approach and, like D. L. Kreher and S. P. Radziszowski [9], use anLLL-algorithm for solving systems of diophantine equations [18]. Our programsystem DISCRETA allows to choose a permutation group from several serieslike projective linear groups and make some group constructions. The groupthus determined is then prescribed as an automorphism group of the desireddesigns. Any such design is a collection of full orbits of that group on the set of1Supported by the Deutsche Forschungsgemeinschaft



k-subsets of V: Finding a collection which forms a t-design is equivalent to theproblem of solving a system of diophantine equations, as mentioned above.The most successful choices of permutation groups in our search are projec-tive linear groups. All groups PSL(2; q) for q a prime power between 19 and32 are admitted as automorphism groups of some 6-design. In particular thissearch completes the work started by [5] on PSL(2; 19) and 6 � t � 8 andk = 10: We remark that no 8-(20; 10; �) design with this automorphism groupexists. The case k = 9; t = 8 admits no feasible parameter set. In addition, a6-(19; 7; 4) design and a 6-(19; 7; 6) design have been found by prescribing thegroups Hol(C17) + +; and Hol(C19); respectively, where the + operator adds a�xed point to a permutation group. There are only two smaller 6-designs known,the parameters are 6-(14; 7; 4) [9] and their automorphism group is C13+. Thesegroups are large enough such that group theoretical arguments allow to deter-mine the number of isomorphism types of designs admitting one such groupas a group of automorphisms. This requires to �nd all 0=1-solutions of thediophantine equations which is done for the smaller cases.Of course, designs with even higher t would be a good challenge. Therefore,one tries to extend existing t-designs to (t + 1)-designs. This works only invery rare cases. It is easy to get t-designs from a (t + 1)-design, the threestandard constructions are to form the residual design, the derived design andto consider the (t + 1)-design as a t-design. The extension process would justreverse these three processes. We interpret a theorem by Tran van Trung [17]from this point of view and see that from two t-designs with the parameters ofa derived and a residual design one obtains the third design derivable from thepossibly existing (t + 1)-design. Thus, each parameter set for which a designhas been found gives rise to the question whether one of its buddies needed forTran van Trung's construction also has a design. The existence of such a designis necessary for the existence of an extended design, but it is not yet su�cient.Nevertheless it is su�cient to obtain the third partner with the same t: We tookthis observation as a guideline to enrich the catalogue of 7- and 6-designs withgood success. It is only a pity that we could not yet establish any 8-design inthis way. The parameter sets of designs found so far are listed below.2 MethodsWe shortly review some well known combinatorial properties of t-designs. LetD be a t-(v; k; �) design de�ned on a point set V: Then we can form some newdesigns from D: Let S be a s-subset of V , where s � t. Counting twice all pairs(T;B) such that S � T and B is a block of D yields�s = ��v � st� s�=�k � st� s�:



Thus, D is also a s-(v; k; �s) design for each such s: Usually, if we speak of theparameters of a design D the largest known value of t for which D is a t-designis meant. The special value s = t� 1 is a recursion formula�t�1 = �t v � t+ 1k � t+ 1 :Distinguishing a point x 2 V separates the blocks of D into those containingx and those not containing x: Removing x from V then turns both classes ofblocks into (t�1)-designs. The blocks which beforehand contained x afterwardshave size k� 1 and form a (t� 1)-(v� 1; k� 1; �) design, known as the deriveddesign derx(D): The other blocks form a (t � 1)-(v � 1; k; �(t�1) � �t) design,called the residual design resx(D): While the isomorphism types of the residualand derived designs of a design may depend on the special choice of the pointx taken from V; the parameter sets are independent of this choice.We consider parameter sets independently from the designs and de�ne thefollowing operations on them, which correspond to the above constructions ofdesigns:� red : t-(v; k; �) 7! (t� 1)-(v; k; �(t�1))� der : t-(v; k; �) 7! (t� 1)-(v � 1; k � 1; �)� res : t-(v; k; �) 7! (t� 1)-(v � 1; k; �(t�1) � �t):These operations all can be applied doing simple arithmetic. It is easy to seethat they commute pairwise. So, starting from one parameter set one obtainsseveral new parameter sets. Generally, there may result non-integer fractionsfor some �s: Such a parameter set cannot belong to a design. Clearly also allparameter sets are ruled out which led to this case. A parameter set is calledadmissible if all operations result in integer valued parameter sets when appliedin any combination.It is easy to compute preimages, but they also may contain rational non-integer values. The most interesting question is whether in case of an integervalued preimage parameter set a corresponding design exists. This is not easyto answer but a weaker result holds.Theorem (Tran van Trung's construction) [17]: Let PS = t-(v; k; �)be a set of admissible parameters such that there exist designs for the parametersets der(PS) and res(PS). Then there exists a design with the parameter setred(PS).The above process to obtain a residual design relies on the observation thatthere are exactly �(t�1) � �t blocks containing a given (t� 1)-set and not con-taining a �xed point x: Remarkably, this number is independent of the choiceof x: This can be generalized to the following result.



Theorem [12]: For a pair (S; J) such that S and J are disjoint and jSj+jJ j � t let �jJjjSj be the number of blocks containing S and disjoint from J: Thenthis number is independent of the choice of the pair.Proof The proof is by induction on j = jJ j: For j = 0 we have �0i = �ifor all i. Then the recursive formula�(j+1)i = �ji � �ji+1gives the values for larger j. Obviously these are independent of the choice of S:3 These intersection numbers appear as parameter values of � when Tran vanTrung's construction can be applied in more than one step, since derived designsof derived designs appear. We will show such cases below. A general formulationis contained in Tran van Trung's paper [17].To start the combinatorial machinery of design constructions we described sofar one clearly needs a substantial basic set of designs. We use prescribed auto-morphism groups to construct designs. This is the Kramer-Mesner method [6].We have built a software package DISCRETA with a graphical interface forthis method. We shortly list some features of the system.� A group can be chosen by pressing a button for a certain family of groupsand adding some special parameter values to pick a speci�c group outof this family. We mention the families PSL(n; q);PGL(n; q);P�L(n; q);P�L(n; q); of projective linear groups, cyclic groups and their holomorphs,induced actions of symmetric groups. In addition, one can read in permu-tations generating the desired group from a �le or give a set of generatorsand de�ning relations for the group and apply a module for low indexmethods to get the permutation representation needed.� One can manipulate these groups by forming sums, products, wreath prod-ucts, by adding �xed points or forming stabilizers. So, if a group is chosenthe point set together with the corresponding permutation representationis automatically determined.� Now the design parameters t and k can be set. A button allows to �ndout which values of � are allowed for a feasible parameter set.� If the set of parameters looks promising one can start the computation ofthe Kramer-Mesner matrix by pressing the appropriate button. Internally,double coset algorithms are used to construct that matrix. The programis a new implementation of Schmalz's Leiterspiel [14] by A. Betten whoalso wrote most of the code of the system.



� One may look at the result to see whether some nice properties are immedi-ate. So, one may detect a column which has constant entries. This columnthen corresponds to a design where the given group of automorphism istransitive on the set of blocks. Also, the existence or non-existence of de-signs with small � (small Steiner systems for instance) is easily recognized.� To get more complicated combinations of columns which together form at-design we have two special buttons. A program written by B. D. McKayperforms a clever backtrack search and is especially useful in showing thatno design with the prescribed parameter values and group exists. Also,at least for smaller values of � or matrices with only few rows and manycolumns this program is our best choice. Alternatively, a program by A.Wassermann with his version of the LLL-algorithm solves the systems ofequations even in cases of some hundred rows and columns [18]. Inter-estingly, this version sometimes �nds designs also for values of � di�erentfrom the one given as input to DISCRETA. This is remarkable because itmay occur that because of the computational complexity these solutionsare only very hard to obtain directly by giving as input these values of �which are found by chance.� A database is used for keeping the parameter sets found. This allowsto ask for all stored parameter sets where each parameter lies in a givenrange. Inserting a new parameter set PS automatically generates theparameter sets der(PS), red(PS), and res(PS) recursively and stores themin the database. This way, a lot of parameter sets are easily generatedfrom a few starting parameter sets. In this text only the original newparameter sets of the designs are included.We found that the graphical surface was very helpful for testing ideas im-mediately. Since the package is built from independent modules, it is not toodi�cult to integrate new features. So, further features are under development.In our experience, the LLL-module is very powerful and allows to get allsolutions when we are patient enough. In general, di�erent solutions may beisomorphic designs. We mention shortly, how we handle this problem withoutisomorphism testing in our cases. For a detailed exposition of this approach seeSchmalz [14] for the �rst part and furthermore [3]. If the prescribed group is amaximal subgroup of the symmetric group on the point set then all solutions arepairwise nonisomorphic. More generally, if the given group is the full automor-phism group then only the normalizer taken in the symmetric group may mapone solution onto another. In this case the index of the group in its normalizeris the number of solutions belonging to the same isomorphism type of designs.Since the full automorphism group is at least as big as the given group onehas to subtract from the solutions �rst all those which are also solutions of aproper overgroup. This is most easily done when there are only few overgroups



and only the number of solutions is desired. A di�erent method is applicableif the given group contains a Sylow subgroup of the symmetric group. Thenit su�ces to look at elements of the normalizer of that Sylow subgroup to �ndpermutations mapping one design admitting the given group onto another suchdesign [3]. This latter method especially applies to holomorphs of cyclic groupsof prime order. The number of isomorphism types given in the table below aredetermined in this way.3 ResultsWe searched for 6-designs and 7-designs on up to 33 points. A few parameter setsin this range were already known, see D. Kreher's contribution in the Handbookof Combinatorial Designs [8]. We include them into our report below, since insome cases we could add information on automorphisms and isomorphism types.We used the Tran van Trung construction several times to get new 6- and7-designs from existing ones. The most general scheme with an iterated appli-cation we found is as follows, using t0 = t � 1; t00 = t � 2 in the notation fromabove:
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PS4PS1 PS2t0-(v � 1; k � 1; �t) t0-(v � 1; k; �1t0) t0-(v � 1; k + 1; �2t00)

t0-(v; k; �t0) t0-(v; k + 1; �1t00)PS6t0-(v + 1; k + 1; �t00)In this scheme PS3 is obtained from PS1 and PS2; PS5 from PS2 and PS4;and PS6 from PS3 and PS5; by Tran van Trung's construction.This scheme appears for PS1 2 f7-(24; 8; 6); 7-(24; 8; 8)g:With PS4 missingthe scheme appears for PS1 2 f6-(29; 8; �)j� = 36; 42; 64; 85; 99; 105; 112; 126g:The smallest scheme with only PS1; PS2; PS3 appears for PS1 2 f7-(24; 8; 5); 7-(26; 8; 6); 6-(29; 8; 120)g:In addition there are several isolated results. The full list of parameter setsknown to us together with automorphism groups and number of isomorphismtypes in smaller cases is shown in the following table. In some cases an exact



number of isomorphism types is given. Then this is the number of isomor-phism types of designs with the prescribed automorphism group. If no numberis given only the existence of designs with that parameter set and, in somecases, the indicated automorphism group is asserted. Many isomorphism typesmeans hundreds and mostly thousands of isomorphism types which were notfully determined because of the amount of computer resources that would havebeen needed. The Tran van Trung construction is abbreviated as TvT. For thisconstruction no automorphism groups and no number of isomorphism types isgiven. The table does not list residual, derived, complementary, supplementarydesigns and s-designs for s � t: Details on the designs mentioned and not citedfrom the literature can be obtained from the authors, see also our WWW-page:http://www.mathe2.uni-bayreuth.de/betten/DESIGN/d1.htmlparameter set constructed by isomorphism types7-(33, 8, 10) P�L(2; 32) 4996426 [2], [18]7-(30, 9, 105) P�L(2; 27) + +7-(30, 9, 112) P�L(2; 27) + + many7-(28, 10, 630) P�L(2; 27) many7-(27, 9, 60) TvT: 7-(26,8,6) [ 7-(26,9,54) [4], [3]7-(27, 10, 240) P�L(2; 25)+ � 17-(27, 10, 540) P�L(2; 25)+ many7-(26, 8, 6) PGL(2,25) 7 [4], [3]7-(26, 9, 81) P�L(2; 25) many [4], [3]7-(26, 9, 63) P�L(2; 25) 37932 [4], [3]7-(26, 9, 54) P�L(2; 25) 3989 [4], [3]7-(26, 10, 342) TvT: 7-(25,9,54) [ 7-(25,10,288)7-(26, 10, 456) TvT: 7-(25,9,72) [ 7-(25,10,384)7-(25, 9, 45) TvT: 7-(24,8,5) [ 7-(24,9,40) [4], [3]7-(25, 9, 54) TvT: 7-(24,8,6) [ 7-(24,9,48) [4], [3]7-(25, 9, 72) TvT: 7-(24,8,8) [ 7-(24,9,64) [4], [3]7-(25, 10, 288) TvT: 7-(24,9,48) [ 7-(24,10,240)7-(25, 10, 384) TvT: 7-(24,9,64) [ 7-(24,10,320)7-(24, 8, 4) PSL(2,23) 1 [4], [3]7-(24, 8, 5) PSL(2,23) 138 [4], [3]7-(24, 8, 6) PSL(2,23) � 132 [4], [3]7-(24, 8, 7) PSL(2,23) � 126 [4], [3]7-(24, 8, 8) PSL(2,23) � 63[4], [3]7-(24, 8, 8) PGL(2,23) 47-(24, 9, 40) PGL(2,23) 113 [4], [3]7-(24, 9, 48) PGL(2,23) � 2827[4], [3]7-(24, 9, 64) PGL(2,23) � 15335 [4], [3]



parameter set constructed by isomorphism types7-(24, 10, 240) PGL(2,23)7-(24, 10, 320) PGL(2,23) � 27-(20, 10, 116) PSL(2,19) 37-(20, 10, 124) PSL(2,19) 17-(20, 10, 134) PSL(2,19) 106-(33, 8, 36) P�L(2; 32) 1179 [5], [14]6-(32, 7, 6) PSL(2; 31) � 186-(31, 10, 1800) TvT: 6-(30,9,288) [ 6-(30,10,1512)6-(31, 10, 2100) TvT: 6-(30,9,336) [ 6-(30,10,1764)6-(31, 10, 3200) TvT: 6-(30,9,512) [ 6-(30,10,2688)6-(31, 10, 4250) TvT: 6-(30,9,680) [ 6-(30,10,3570)6-(31, 10, 4950) TvT: 6-(30,9,792) [ 6-(30,10,4158)6-(31, 10, 5250) TvT: 6-(30,9,840) [ 6-(30,10,4410)6-(31, 10, 5600) TvT: 6-(30,9,896) [ 6-(30,10,4704)6-(31, 10, 6300) TvT: 6-(30,9,1008) [ 6-(30,10,5292)6-(30, 7, 12) PSL(2; 29), 6-(8m+6,7,4m) for m=3 [16] many6-(30, 9, 288) TvT: 6-(29,8,36) [ 6-(29,9,252)6-(30, 9, 336) TvT: 6-(29,8,42) [ 6-(29,9,294)6-(30, 9, 512) TvT: 6-(29,8,64) [ 6-(29,9,448)6-(30, 9, 680) TvT: 6-(29,8,85) [ 6-(29,9,595)6-(30, 9, 792) TvT: 6-(29,8,99) [ 6-(29,9,693)6-(30, 9, 840) TvT: 6-(29,8,105) [ 6-(29,9,735)6-(30, 9, 896) TvT: 6-(29,8,112) [ 6-(29,9,784)6-(30, 9, 960) TvT: 6-(29,8,120) [ 6-(29,9,840)6-(30, 9, 1008) TvT: 6-(29,8,126) [ 6-(29,9,882)6-(30, 10, 1512) P�L(2; 27) + + � 1686-(30, 10, 1764) P�L(2; 27) + + many6-(30, 10, 2688) P�L(2; 27) + + many6-(30, 10, 3570) P�L(2; 27) + + many6-(30, 10, 4158) P�L(2; 27) + + � 4046-(30, 10, 4410) P�L(2; 27) + + � 83006-(30, 10, 4704) P�L(2; 27) + + many6-(30, 10, 4914) P�L(2; 27) + +6-(30, 10, 4956) P�L(2; 27) + +6-(30, 10, 5082) P�L(2; 27) + +6-(30, 10, 5166) P�L(2; 27) + +6-(30, 10, 5292) P�L(2; 27) + + � 49706-(29, 8, 36) P�L(2; 27)+ 8



parameter set constructed by isomorphism types6-(29, 8, 42) P�L(2; 27)+ 316-(29, 8, 43) P�L(2; 27)+ 436-(29, 8, 49) P�L(2; 27)+ 4796-(29, 8, 57) P�L(2; 27)+ 51776-(29, 8, 63) P�L(2; 27)+ 171956-(29, 8, �), � =64,70,78,84,85,91,99,105,106,112,120,126 P�L(2; 27)+ many6-(29, 9, �), � =105,126,154,252,294,322,406,448,469,483,504,532,595,630,672,693,735,756,784,798,819,826,840,861,882 P�L(2; 27)+ many6-(29, 10, 4095) P�L(2; 27)+6-(29, 10, 4305) P�L(2; 27)+6-(28, 8, 42) P�L(2; 27) 2 [14]6-(28, 8, 63) P�L(2; 27) 367 [14]6-(28, 8, 84) P�L(2; 27) 21743 [14]6-(28, 8, 105) P�L(2; 27) 38277 [14]6-(26, 8, 60) P�L(2; 25) 236-(26, 8, 70) P�L(2; 25) 876-(25, 8, 36) PGL(2,23)+ 242 [4]6-(25, 8, 45) PGL(2,23)+ 10008 [4]6-(25, 8, 54) PGL(2,23)+ [4]6-(25, 8, 63) PGL(2,23)+ 1284 [4]6-(25, 8, 72) PGL(2,23)+ [4]6-(25, 8, 81) PGL(2,23)+ [4]6-(24, 8, 36) PGL(2,23) 9[4]6-(24, 8, 45) PGL(2,23) 49 [4]6-(24, 8, 54) PGL(2,23) 476[4]6-(24, 8, 63) PGL(2,23) 1284[4]6-(24, 8, 72) PGL(2,23) 3069 [4]6-(23, 8, 68) [7]6-(22, 8, 60) PSL(2,19)++ 1148 [7]6-(22, 7, 8) 6-(8m+6,7,4m) for m=2 [16]6-(20, 9, 112) PSL(2,19) 2 [5]6-(19, 7, 4) Hol(C17) + + 16-(19, 7, 6) Hol(C19) 36-(14, 7, 4) C13+ 2 [9]
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