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Abstract

Recent results in the search for simple ¢-designs and large sets of t-designs are
reported. Many new parameter sets of simple #-designs on up to 40 points and
t > 7 are given. The tool used is a program DISCRETA, developed by the authors,
which applies the method of Kramer-Mesner [15] where an automorphism group
of the desired designs is prescribed. In several cases Tran van Trung’s [28] and
Alltop’s [2] construction yield further results from those found by computer. By
computer search we also constructed new large sets of t-designs, which enable via
a theorem by Ajoodani-Namini [1] the construction of infinite families of large sets
of t-designs.
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1 Introduction

A simple t-(v, k, \) design D is defined as a set of k-subsets, called blocks, of a
set V' of v points such that each t-subset of V' is contained in exactly A blocks.
Since we only consider simple designs, we omit the word simple.

A large set of t-(v, k, \) designs, denoted by LS[n](t, k, v), is a partition of the
complete design, i.e. the set of all k-subsets of V, into n disjoint ¢-(v, k, \)
designs. Tt follows that A = (Z:i) /n.

Most designs with small parameter sets and “large” ¢ were found using Kramer-
Mesner matrices. We also follow this approach and, like D. L. Kreher and
S. P. Radziszowski [17], use an LLIL-algorithm for solving systems of linear
Diophantine equations [30]. Our program system DISCRETA allows to choose
a permutation group from several families like projective linear groups and
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make some group constructions. The resulting group is then prescribed as an
automorphism group of the desired designs. Any such design is a collection
of full orbits of that group on the set of k-subsets of V. Finding a collection
which forms a t¢-design is equivalent to the problem of solving a system of
linear Diophantine equations.

In some cases the constructed designs are part of a large set LS[n](t, k, v) of
t-designs. If n is prime the method of Ajoodani-Namini [1] can be applied and
an infinite family of large sets of ¢-designs can be constructed.

2 Combining designs and large sets of designs

There are several ways known on how to construct new parameter sets from
an existing set of designs or a large set of designs:

2.1 From t- to (t — 1)-designs

It is well known (see for example [16]) that a given ¢-design leads to 3 different
types of (¢ — 1)-designs. Their parameter sets can be deduced as follows:

(t—=1)-(v, k, Ag=1)), the reduced design,
t-(v, kb, N) = (t—1)-(v—=1,k—1,)\), derived designs,
(t—=1)-(v—1,k,Ay_1) — A¢), residual designs,

where for A € N, ); is defined through \; = )\(?jj)/(’:;), 0 <i<t,ie
)‘t = )\

2.2 From t- to t-designs

The complement of a ¢-(v, k, A) design is a t-(v, k, (Z:i) — )) design, which we
will not mention in the sequel. Tran van Trung constructs from two (¢ — 1)-
designs another (¢ — 1)-design:

Theorem 1 (Tran van Trung [28]) If there exist a (t—1)-(v—1,k—1,);)
and a (t—1)-(v—1,k, Ay_1)— ;) design, then also a (t—1)-(v, k, A1) design
ex1sts.

Even large sets can be combined to give new large sets: A construction like
Theorem 1 for large sets of designs is



Theorem 2 (Khosrovshahi, Ajoodani-Namini [12]) Ifa LS[n](t, k,v) and
a LSIn|(t, k + 1,v) exist, then a LSn](t,k + 1,v + 1) exists.

2.3 From t- to (t + 1)-designs

Alltop constructs (¢ + 1)-designs out of ¢-designs:
Theorem 3 (Alltop [2]) Let D be a t-(2k + 1,k, \) design.

(1) If t is even, then there exists a (t + 1)-(2k + 2,k + 1, ) design.
(2) If t is odd and \ = %(Z:i), then there exists a (t +1)-(2k + 2,k + 1, \)
design.

In 1996 an analogue of Theorem 3 for large sets of designs appeared:

Theorem 4 (Ajoodani-Namini [1]) Let p be a prime and v, k, n be pos-
itive integers such that np < k < (n + 1)p and v > n. If there exists a
LS[p)(t,n,v — 1), then also a LS[p](t + 1,k, pv) exists.

2.4 Infinite families

For a long time ¢-designs were only known for £ < 5. In 1984 Magliveras and
Leavitt [19] constructed the first 6-designs using the method of Kramer-Mesner
[15] and a computer search.

In 1987 Teirlinck proved that ¢-(v,t + 1, \) designs exist for all ¢:

Theorem 5 (Teirlinck [26]) Given integers t, v with v =t mod (¢ + 1)+
and 0 <t +1<w, then a simple t-(v,t + 1, (t + 1)!*'*1) design exist.

The proof is constructive, but the resulting designs have extremely large pa-
rameters. Thus, small examples and cases where k is greater than t+1 are still
interesting. A recent review can be found in the Handbook of Combinatorial
Designs [16].

In 1989, Teirlinck [27] showed the existence of large sets of t-designs for all
values of ¢ and n:

Theorem 6 For every natural number t let A(t) = lcm((;) m=1,2,...,1),
M (t) = lem(1,2,...,t + 1) and £(t) = [Ti_; A(@) - \*(3). Then for all n > 0,
there is a LS[n](t,t + 1,t+n - ((t)).

Ajoodani-Namini constructed another infinite family:



Theorem 7 (Ajoodani-Namini [1]) For integers t > 6 and m > 2 a
LS[2](¢,2173 — 1,m - 2173 — 2) exists.

The smallest parameter set of a 7-design one can get using Theorem 7 is a
7-(30, 15,245 157) design. The smallest parameter set of an 8-design based on
Theorem 7 is a 8-(62, 31,542 964 991 579 920) design.

For a large set LS[2](¢, k, v) of designs Theorem 4 can be used to produce the
following formula for an infinite family:

Proposition 8 If for s, k, v € N a LS[2|(s, k,v) exists, then for every t > s
also a LS[2](t,2%(k +1) — 1,2"%(v + 2) — 2) ewists.

PROQOF. Induction on ¢ together with Theorem 4 for p =2. O

3 Construction by computer

We have built a software package DISCRETA with a graphical user interface
for computational construction of ¢-designs and large sets of t-designs. The
program is very easy to use, most commands are supplied by pressing some
button or choosing menu entries. We briefly list some features of the system.

(1) The prescribed automorphism group can be chosen out of certain fami-
lies of groups. We mention the families PSL(n, q), PGL(n, ¢), PXL(n,q),
PT'L(n, q) of projective linear groups, cyclic groups and their holomorphs,
induced actions of symmetric groups. In addition, one can read in permu-
tations generating the desired group from a file or give a set of generators
and defining relations for the group and apply a module for low index
methods to get the permutation representation needed.

(2) These groups can be manipulated by forming sums, products, wreath
products, by adding fixed points or forming stabilizers. So, if a group is
chosen the point set together with the corresponding permutation repre-
sentation is automatically determined.

(3) Now the design parameters ¢ and k can be chosen. The program computes
values of A such that ¢-(v, k£, \) forms an admissible parameter set.

(4) If the set of parameters looks promising one can start the computation
of the Kramer-Mesner matrix. Internally, double coset algorithms are
used to construct that matrix. The program is a new implementation of
Schmalz’s Leiterspiel [23] (”snakes and ladders”) by A. Betten who also
wrote most of the code of the system. It is also possible to use orderly
generation to build the Kramer-Mesner matrix.



(5) In order to solve the resulting system of linear Diophantine equations two
algorithms are included:

A program written by B. D. McKay performs a clever backtrack search
and is especially useful in showing that no design with the prescribed
parameter values and group exists. Also, at least for smaller values of A
or matrices with only few rows and many columns this program is our
best choice.

Alternatively, a program by A. Wassermann [30] with his version of
the LLL-algorithm solves the systems of equations even in cases of some
hundred rows and columns. The algorithm consists of blockwise Korkine-
Zolotarev reduction [24] implemented with the Gaussian volume heuris-
tics [25]. It is based on lattice basis reduction [18] with “deep inser-
tions” [24]. After the lattice basis reduction an exhaustive search is done
by ls-enumeration [22,30].

Interestingly, in the lattice basis reduction phase this version sometimes
finds designs also for values of A different from the one given as input to
DISCRETA.

(6) A database is used for keeping the parameter sets found. This allows
to ask for all stored parameter sets where each parameter lies in a given
range. Inserting a new parameter set automatically generates the parame-
ter sets of the derived, reduced and residual designs recursively and stores
them in the database. Also it tries to apply the construction of Tran van
Trung [28]. This way, a lot of parameter sets are easily generated from a
few starting parameter sets.

(7) The program computes intersection numbers and generalized intersection
numbers of the designs, see Ray-Chaudhuri and Wilson [21], Mendel-
sohn [20], Kohler [13] and Tran van Trung, Qiu-rong Wu, Mesner [29].

(8) Finally a detailed XTEX-report of the computation can be produced.

With these algorithms the following new results for ¢ > 6 were achieved:

There exist 6-(25,12, A) designs for the following values of A:

7728, 7854, 8190, 8316, 8652, 8778, 9114, 9240,
A= 9702, 10164, 10500, 10626, 10962, 11088, 11424, 11550, (1)
11886, 12012, 12348, 12474, 12810, 12936, 13272, 13398.

The prescribed automorphism group is PSL(2, 23) together with one fixpoint.
The Kramer-Mesner matrix had 41 rows and 906 columns. Using Theorem 3
one gets for each value of A in (1) a 7-(26,13,\) design with automorphism
group PSL(2,23) together with two fixpoints.



On 20 points exist 7-(20, 10, 126) designs with automorphism group PSL(2, 8) X
Cs together with two fixpoints. The size of the Kramer-Mesner matrix is
111 x 244.

7-(22,11, \) designs with automorphism group PSL(2,19) + + exist for A\ =
315,630. 7-(26,11, \) designs exist with automorphism group PT'L(2,25) for
A = 1176, 1356, 1536, 1716, 1896, 1926. The size of the Kramer-Mesner matrix
is 70 x 252, respectively 34 x 293.

On 29 points exist a 7-(29,10,420) design with PT'L(2,27)+ as group of au-
tomorphisms and 7-(29, 11, A) designs with automorphism group PI'L(2,27)+
for A = 2130, 3465. The size of the Kramer Mesner matrix is 43 x 391, respec-
tively 43 x 647.

On 33 points we found 7-(33,9, ) designs with PI'L(2, 32) as automorphism
group for A = 65,80, 85,100, 105, 120, 125, 140, 145, 160 and 7-(33, 10, \) de-
signs with automorphism group PI'L(2, 32) for A = 600, 720, 840, 880. The size
of the Kramer-Mesner matrix is 32 x 248, respectively 45 x 345. 7-(34,10, \)
designs with automorphism group PT'L(2,32)+ exist for A = 135,171. The
size of the Kramer Mesner matrix is 32 x 596.

On 36 points there exist 7-(36, 11, A) designs for A = 3360, 4200, 4536, 4935,
5040, 5271, 5376, 5775, 5880, 6111, 6216, 6615, 6720, 7056, 7455, 7560, 7791,
7896, 8295, 8400, 8631, 8736, 9240, 9471, 9576, 9975, 10080, 10311, 10416,
10815, 10920, 11151, 11655, 11760 with the automorphism group Sp(6, 2)ss.
The size of the Kramer-Mesner matrix is 37 x 694.

There are 6-(24, 12, \) designs with automorphism group PSL(2, 23) for values
of A = 6510,7392, 7896, 8778, 8820, 8862, 9240, 9282. Most remarkable is the
last value A = 9282 because this design is a halving of the complete design and
therefore gives a LS[2](6,12,24). Applying Theorem 8 we have the following
infinite sequences:

Proposition 9

(1) If t > 6, then a LS[2](t, 207%-13 — 1, 217626 — 2) ewists.
(2) If t > 3, then a LS]2)(t, 2073 -6 — 1, 2!73 - 14 — 2) ewists.
t > 2, then a t, 22 7—1, 2"2.14 — 2) exists.
3) 1 2, th LS|2 20727 —1,2072.14 -2 '
t >4, then a t, 2.7 =1, 2% .22 — 2) exists.
4) 1 4, th LS|2 247 — 1, 24.22 -2 '

PROOF. Computer search with the program DISCRETA showed the exis-
tence of a

(1) LS[2](6, 12, 24),



(2) LS[2](3,5,12) with the symmetry group of the truncated cube as auto-
morphism group,

(3) LS[2](2,6,12) with the symmetry group of the icosahedron as automor-
phism group,

(4) LS[2](4, 6, 20) with the symmetry group of the dodecahedron as automor-
phism group.

Proposition 8 gives the result. For the parameter sets in (2), (3) and (4)
large sets of designs with different automorphism groups are already known,
see [10]. O

Large sets of ¢-designs which are listed in [16] give the following infinite fami-
lies:

Proposition 10

(1) For allt >4 a LS[2](t, 20"%-6 — 1, 2071 . 14 — 2) emists,

(2) For allt >4 a LS[2](t, 2t7*-6 — 1, 27% .30 — 2) emists,

(3) For allt >4 a LS]2)(t, 2t_4 6—1, 207146 — 2) exists,

(4) For allt >4 a LS[2](t, 2!~ 6 —1, 2071130 — 2) ewists,

(5) For all t > 5 a LS[2](t, 20°° -7 — 1, 222 . (7 + 8u) — 2) ewists for all
positive numbers u,

(6) For allt>6 a LS[2](t, 2°5-9—1, 2°6.24 — 2) emists,

(7) For allt > 6 a LS[2](t, 2!75-9 —1, 2¢6.25 — 2) emists,

(8) If t > 4 and az € {1,2}, 0 < i < t—5, then there exists a LS[3|(t, 6
34+ Y0 a3, (3131 - 3)).

(9) For every przme p and t > 1 there exists for a; € {1,2,...,p — 1},
0<i<t—2,aLSp|t, pt-2+X2ap’, (P +p'—pt=p)/(p—1)).

PROOF. As above we use Theorem 8 together with the following large sets
of t-designs which are listed in [16] as starting sets:

and Theorem 4,
+ 1) for every prime p and Theorem 4. O

P

1) LS[2](4,5, 1
2) LS[2](4,5,2
3) LS[2](4,5, 4
1) 1(4,5,1
5) LS[2](5,6,5 + 8u),
6) 1(6,8,2
7) LS[2)(6,8,2
8) LS[3](4,6,1
9) LS[p)(1,2,p



The infinite family (9) in the above theorem stems from the fact that there
is a LS[n|(1,k,v) and n = (Zj) holds if and only if k£ divides v, see [16]. It
is easy to see that for £ < 2v, n is prime if and only if £ = 2. It follows that
the infinite families (9) are the only infinite families which can be constructed
from this family of large sets of ¢-designs and the help of Theorem 4.

4 Results

The following table contains all presently known ¢-(v, k, \) designs with ¢ > 7
and v < 40. Beside the parameter sets of the designs in the first column,
the second column of the table lists the construction method. If there is only
the name of a group, it was found by computer search applying the Kramer-
Mesner method [15] with this group as prescribed automorphism group. Every
+-sign behind the name of a group means adding of one fixpoint. TvT means
construction with Theorem 1, Alltop means construction via Theorem 3 and
Ajoodani-Namini means use of Theorem 4. In the third column the number
of isomorphism types is listed whenever it is known. If there is no reference
then the designs have not yet been published elsewhere to the best of our
knowledge. The 7 and 8 designs with automorphism group Sp(6,2)35 have
been found in collaboration with I. Suleiman. The electronic version of the
Atlas of finite simple groups maintained by R. Wilson et al. [9] was of great
help getting generators for this group. Generators for this and many other
groups may also be obtained from [11].

Parameter construction method isom. types
7-(20,10,116) PSL(2,19) 3 6]
7-(20,10,124) PSL(2,19) 1 6]
7-(20,10,126) PSL(2,8) x Cy + + 4
7-(20,10,134) PSL(2,19) 10 6]
7-(22,11,315) PSL(2,19) +
7-(22,11,630) PSL(2,19) +
7-(24,8,4) PSL(2,23) 1 [5,7]
7-(24,8,5) PSL(2,23) 138 [5,7]
7-(24,8,6) PSL(2,23) > 132 [5,7]
7-(24,8,7) PSL(2,23) > 126 [5,7]
7-(24,8,8) PSL(2,23) > 63 [5,7]
7-(24,8.,8) PGL(2,23) >4 6]




Parameter

construction method

isom. types

7-(24,9,40) PGL(2,23) 113 [5,7]
7-(24,9,48) PGL(2,23) > 2827 [5.7]

7-(24,9,64) PGL(2,23) > 15335 [5,7]

7-(24,10,240) PGL(2,23) [6]

7-(24,10,320) PGL(2,23) > 2 6]

7-(25,9,45) TvT 7-(24,8,5) U 7-(24,9,40) [5,7]

7-(25,9,54) TvT 7-(24,8,6) U 7-(24,9,48) [5.,7]

7-(25,9,72) TvT 7-(24,8,8) U 7-(24,9,64) [5,7]

7-(25,10,288) TvT 7-(24,9,48) U 7-(24,10,240) [6]

7-(25,10,384) TvT 7-(24,9,64) U 7-(24,10,320) [6]

7-(26,8,6) PGL(2,25) 7 [5,7]

7-(26,9,54) PT'L(2,25) 3989 [5,7]

7-(26,9,63) PT'L(2,25) 37932 [5.7]

7-(26,9,81) PT'L(2,25) [5,7]

7-(26,10,342) TvT 7-(25,9,54) U 7-(25,10,288) [6]

7-(26,10,456) TvT 7-(25,9,72) U 7-(25,10,384) [6]

7-(26,11,1176) | PT'L(2, 25)

7-(26,11,1356) | PTL(2,25)

7-(26,11,1536) | PTL(2,25)

7-(26,11,1716) | PT'L(2, 25)

7-(26,11,1896) | PTL(2,25)

7-(26,11,1926) | PTL(2, 25)

7-(26,12,5796) | PTL(2,25)

7-(26,13,7728) | PSL(2,23) + + Alltop

7-(26,13,7854) | PSL(2,23) + + Alltop

7-(26,13,8190) | PSL(2,23) + + Alltop

7-(26,13,8316) | PSL(2,23) + + Alltop

7-(26,13,8652) | PSL(2,23) + + Alltop

7-(26,13,8778) | PSL(2,23) + + Alltop

7-(26,13,9114) | PSL(2,23) + + Alltop




Parameter

construction method

isom. types

7-(26,13,9240)

PSL(2,23) + + Alltop

7-(26,13,9702) | PSL(2,23) + + Alltop
7-(26,13,10164) | PSL(2,23) + + Alltop
7-(26,13,10500) | PSL(2,23) + + Alltop
7-(26,13,10626) | PSL(2,23) + + Alltop
7-(26,13,10962) | PSL(2,23) + + Alltop
7-(26,13,11088) | PSL(2,23) + + Alltop
7-(26,13,11424) | PSL(2,23) + + Alltop
7-(26,13,11550) | PSL(2,23) + + Alltop
7-(26,13,11886) | PSL(2,23) + + Alltop
7-(26,13,12012) | PSL(2,23) + + Alltop
7-(26,13,12348) | PSL(2,23) + + Alltop
7-(26,13,12474) | PSL(2,23) + + Alltop
7-(26,13,12810) | PSL(2,23) + + Alltop
7-(26,13,12936) | PSL(2,23) + + Alltop
7-(26,13,13272) | PSL(2,23) + + Alltop
7-(26,13,13398) | PSL(2,23) + + Alltop
7-(27,9,60) TvT 7-(26,8,6) U 7-(26,9,54) [5,7]
7-(27,10,240) PTL(2, 25)+ [5.,7]
7-(27,10,540) PTL(2, 25)+ [5.,7]
7-(28,10,630) PTL(2,27) > 100 6]
7-(29,10,420) PTL(2,27)+
7-(29,11,2130) | PT'L(2,27)+
7-(29,11,3465) | PTL(2,27)+
7-(30,9,93) derived 8-(31,10,93) 4]
7-(30,9,100) derived 8-(31,10,100) 4]
7-(30,9,105) PT'L(2,27) + 6]
7-(30,9,112) PT'L(2,27) + 6]
7-(30,10,651) residual 8-(31,10,93) 4]
7-(30,10,700) residual 8-(31,10,100) 4]

10




Parameter

construction method

isom. types

7-(30,15,245157)

6-(14,7.4) and Ajoodani-Namini

1]

7-(31,10,480) PSL(3, 5)
7-(31,10,744) reduced 8-(31,10,93) (4]
7-(31,10,800) reduced 8-(31,10,100) 4]
7-(33,8,10) PT'L(2, 32) 4996426 [3,30]
7-(33,9,65) PT'L(2,32)
7-(33,9,80) PT'L(2,32)
7-(33,9,85) PT'L(2,32)
7-(33,9,100) PT'L(2,32)
7-(33,9,105) PT'L(2,32)
7-(33,9,120) PT'L(2,32)
7-(33,9,125) PT'L(2, 32)
7-(33,9,140) PT'L(2, 32)
7-(33,9,145) PT'L(2,32)
7-(33,9,160) PT'L(2, 32)
7-(33,10,600) PT'L(2,32)
7-(33,10,720) PT'L(2,32)
7-(33,10,840) PT'L(2,32)
7-(33,10,880) PT'L(2, 32)
7-(34,9,135) PTL(2, 32)+
7-(34,9,171) PTL(2, 32)+
7-(34,10,945) TvT 7-(33,9,105) U 7-(33,10,840)
7-(35,10,1260) | derived 8-(36,11,1260)
7-(35,11,7875) | residual 8-(36,11,1260)
7-(36,11,3360) | Sp(6,2)36
7-(36,11,4200) | Sp(6,2)s36
7-(36,11,4536) | Sp(6,2)s6
7-(36,11,4935) | Sp(6,2)36
7-(36,11,5040) | Sp(6,2)s6
7-(36,11,5271) | Sp(6,2)s36

11




Parameter

construction method

isom. types

7-(36,11,5376) | Sp(6,2)36
7-(36,11,5775) Sp(6,2)36
7-(36,11,5880) | Sp(6,2)36
7-(36,11,6111) | Sp(6,2)36
7-(36,11,6216) | Sp(6,2)36
7-(36,11,6615) | Sp(6,2)36
7-(36,11,6720) | Sp(6,2)s6
7-(36,11,7056) | Sp(6,2)36
7-(36,11,7455) | Sp(6,2)36
7-(36,11,7560) | Sp(6,2)36
7-(36,11,7791) | Sp(6,2)36
7-(36,11,7896) | Sp(6,2)36
7-(36,11,8295) | Sp(6,2)s6
7-(36,11,8400) | Sp(6,2)36
7-(36,11,8631) | Sp(6,2)36
7-(36,11,8736) | Sp(6,2)36
7-(36,11,9135) | reduced 8-(36,11,1260)
7-(36,11,9240) | Sp(6,2)36
7-(36,11,9471) | Sp(6,2)36
7-(36,11,9576) | Sp(6,2)36
7-(36,11,9975) | Sp(6,2)36
7-(36,11,10080) | Sp(6,2)36
7-(36,11,10311) | Sp(6,2)36
7-(36,11,10416) | Sp(6,2)36
7-(36,11,10815) | Sp(6,2)36
7-(36,11,10920) | Sp(6,2)36
7-(36,11,11151) | Sp(6,2)36
7-(36,11,11655) | Sp(6,2)36
7-(36,11,11760) | Sp(6,2)36
7-(39,10,1440) | derived 8-(40,11,1440) 8]

12




Parameter construction method isom. types

7-(39,11,10440) | residual 8-(40,11,1440) 8]
7-(40,10,560) PSL(4, 3)

7-(40,10,1008) PSL(4, 3)

7-(40,10,1208) PSL(4, 3)

7-(40,10,1296) PSL(4, 3)

7-(40,10,1568) PSL(4, 3)

7-(40,10,1656) PSL(4, 3)

7-(40,10,2304) PSL(4, 3)

7-(40,10,2504) PSL(4, 3)

7-(40,11,11880) | reduced 8-(40,11,1440) 8]

8-(31,10,93) PSL(3,5) 138 [4]

8-(31,10,100) PSL(3,5) 1658 [4]

8-(36,11,1260) Sp(6,2)36

8-(40,11,1440) PSL(4, 3) > 100000 [8]

The latest results on t-designs constructed by DISCRETA and the program
itself are located at

http://www.mathe2.uni-bayreuth.de/betten/DESIGN/d1.html .
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