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Abstract:

The topic of this paper is to determine the isomorphism tyfeesigns which
are invariant under a given group. As an example, we conSIQ&(20) invariant
under a subgroup of the symmetric gragig isomorphic to the alternating group
As.
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1 Introduction

In order to construct &design, one can prescribe an automorphism gréudpr
the design; then the incidence matrix between the orbitssabsets of the point
set (as rows) and the orbits dnsubsets (as columnﬁ)[tf‘k is calculated. The
entry in row: and columry indicates the number df-subsets in orbif contain-
ing the representative of theth orbit ont-subsets. We receive designs omitting
the prescribed group as an automorphism group as solutioried diophantine
system of equations



according to the lemma of Kramer and Mesner [10]. The mdt{'g& is called
Kramer-Mesner matrixMore information on this method is collected in [1], [15]
and [16].

After the construction of designs with certain fixed paramet — (v, k, \)
there arises very naturally the following question:

Which designs have an identical structure, i.e. which asenigrphic?

This problem will be the main topic of this paper. A methodngssome
group theory is developed in section 3. As an example, weidenshe case
of Steiner quadruple systems 3-(20, 4, 1) on 20 points wiffierdint prescribed
automorphism groups. These quadruple systems are intgresta step towards
the search for 5-(22, 6, 1) designs. Since all known Steirdggigns are derived
from Steiner 5-designs, it makes sense not to try to condtracSteiner 4-designs
4-(21, 5, 1) in the direct way.

Besides the package DISCRETA [2] for the constructiort-désigns with
prescribed automorphism group we also use the package GAHoflthe group
theoretical computations. More exactly, we wrote an isiesfbetween DISC-
RETA and GAP.

2 Notation and basic definitions

The problem of finding isomorphisms between designs andisherivhether two
designs are isomorphic or not, can be regarded with the liglgpap actions. Let
G be afinite group acting on a finite Set

Gx0—Q(g,w)— w?

For group actions the following notations turn out to bevatsd:

Gw:={w9:g € G} orbit of w under the action off
Fizq(g) .= {we Q:w =w} set of fixed points of in Q
Fizq(U):={weQ:w? =wVg e G} setoffixed pointsot/ < GinQ
Stabg(w) := {9 € G :w? =w} stabilizer ofw in G

Return to the designs: & (v, k, \) designis a collection ofk-subsets (called
block9 of awv-point setV, such that every-subset of) is contained in exactly
blocks. It is called simple, if every block occurs only ontrethis paper, we only
consider simple designs. We usually identify the point $ataesign without loss
of generality withV = {1,...,v}. Every design is uniquely caracterized by its
block setB and therefore identified witB.



2.1 Definition Twot — (v, k, \) designs3 and B’ are isomorphic, if there exists
m € Sy, such that

7n(B) =B’

wherer is applied to the elements of each blocksof

The isomorphism types of the— (v, k, \) designs arise as the orbits of the
following action of S, on the set of designs for fixed parametéers, £ and A
Dy_(v,i,n) = {t = (v, k, X) designg:

Sv X 2)tf(v,lc,/\) — th(v,k,)\) (ﬂ-aB) = B”

The full automorphism group of a design is exactly the sizdilof its block se3
in the symmetric grougs, on v points. That meansdut(B) = Stabs, (B). The
designs with automorphism groupthus are the fixed point8izp,_, , ,,(A) of
A of this action.

3 Group theoretical background

Let us recall basic facts about group actions. In this sedéb a groupG act
on a sef(). In the theory of group actions, we have a basic Lemma, which i
combinatorics is mostly called Burnside’s Lemma. But adetg to Neumann
[13] (see also [9]), it was already known to Cauchy [5] anddémius [6]. Thus,
we call this fundamental lemma

3.1 Lemma of Cauchy-FrobeniusLetG act on a sef). Then

#orbits of G onQ = é > |Fiza(g)]
9geG

The lemma yields a connection between orbits and fixed poBusit is not
constructive and in case of large groupsot feasible. In case of designs, this
would mean that for every permutatianc S, all designs fixed byr would have
to be determined. So better methods to find the orbits shoelldeveloped. It
turns out, that the immediate equation

Stab(w?) = Stab(w)? 1)

is very helpful: orbits can be caracterized by stabilizexssl Therefore, for a
given representative of an orbit with stabilizeil := Stab(w), the orbit ofw is
called arnorbit of typeU.

Then one question arises very naturally:



How many orbits of each type do exist?

In this paper we want to give some partial answers to thif/faomplex problem.
The method is developed in two sequel steps:

Step 1: Burnside’s Lemma

Step 2: Jordan’s Theorem

3.1 Burnside’s Lemma

Consider the lattice (G) of subgroups of7. In particular,£(G) is a poset with
respect to inclusion, denoted &s Thezeta-functiorof £(G) is defined as

0 otherwise

(V) = {1 ifU<vV, )

forallU,V € L£(G). Theinclusion relations of the elementsi{i) are collected
in the so calledeta-matrix

¢(G) = (C(Ui, Uj)), ; -

Assume that the subgroups of G are numbered in such a way that

U <Uj =i <j. (3)

Then the zeta-matrix is upper triangular with 1's on the dizaj, so it is in-
vertible over the ring of integers. Its inverse is called Maebius-matrix.(G) of
G [14]. In order to calculate the orbits of typeon the sef) for U < G, consider
the set of fixed pointizq(U) of U on). The ordel Fizq(U)| was called the
markof U on {2 by Burnside in [4]. Similar to the Lemma of Cauchy-Frobenius
one has

|Fizo(U)= > (U, V)|Ng(V)/V|- #orbits of typeV.
V:ULV<LG

By Moebius-inversion, this equation is equivalent to:

#orbits of typel/ = > wUV)|Fizg(V)|.  (4)

1
|NG(U)/U| V.U<V<@



Expression (4) can be simplified by considering the set ofiugaty classes
L(G) = {Uy,...,U,} of G instead of the latticeL(G), where eacllU; is a
representative of conjugacy claSs. It can be reformulated with the help of the
matrix B(G) of G defined by

1
bij = AGAYAR > uUi, V). ()

VeuU;

Burnside [4] introduced the table of marks and remarked tthiatmatrix is
invertible matrix. The inverted matrix now is call&lrnside matrixB(G). So
reformulate equation (4) as

3.2 Burnside’s Lemma Let G act on), £(G) := {Ui,...,U,} the set of
conjugacy classes of subgroupg@flet B(G) be the Burnside matrix @ w.r.t.
the ordering inL. Then

B(G)- | |Fiza(U;)| | = | #orbits of typeU;

Since B(@G) is upper triangular, the evaluation can be restricted toesbaot-
tom rows. This lemma can be helpful for the classification-désigns with pre-
scribed automorphism group, when the prescribed grouppteslarge. “Large”
means that the partial subgroup lattice between the pbestgroupd ands, is
known. In the lattice, only the overgroups dfin S, have to be considered and
therefore, the relevant Burnside matrix is only a part offtiieBurnside matrix
B(S,). As an example tak&S L, (27) with degree 28, and consider the parame-
ter quadruplel — (28, 6,45):

3.3 Example

Fig. 1 shows a partial subgroup lattice dhg with several automorphism
groups of 4-(28, 6, 45) designs. The isomorphism problenbeasolved with the
equation according to Burnside’s Lemma 3.2

L _% -1 % 13,078, 960 2,179,701
0 L 0 -3 704 _ 232
o o 4 -1 58 25
0o 0 0 1 8 8

where we left out the groupd, andS,, because no nontrivial design exists
with these automorphism groups. Therefore we obtain ttoermdtions of Tab. 1.



Figure 1: Relevant Partial Subgroup Lattice Abd¥8L,(27) and Isomorphism
Types of 4-(28, 6, 45). The Numbers Between two Subgroupsfedhe Indices.

Group Group order| # solutions| # isom. types
PSL,(27) 9,828 | 13,078,960 2,179,701
PGL,(27) 19,656 704 232
PYLy(27) 29,484 58 25
PT'Ly(27) 58,968 8 8
in total: 13,079,730 2,179,966

Table 1: Isomorphism Types of 4-(28, 6, 45) with Certain Aatwphism Groups

In general cases, the relevant partial subgroup latticetiskmown. A good
example is a question, which was posed by Earl S. Kramer atel\daMesner
in 1976 in the seminal paper [10]:

“No systematic attempt was made to determine the isomarphis
types of our designs. For example, in searching for (45; 2,3%s
[i.e. 2-(13, 5, 45) designs in our notation], using a 2 by 19rira
we failed to specify an upper bound on the number of solutans
the computer run was cut short only because it has printeea-sp
fied quota of lines but had in the meantime produced 324 solisiti
(each using column 1) and would likely have found many momyH
many of these are nonisomorphic is a question we might bédafra
consider.”



Kramer and Mesner had used a subgroupief (C,3) of order 78, which is
isomorphic taUs := Cy3 x C. We show that we need not know the whole partial
subgroup lattice of;3 with respect td/; to solve the isomorphism problem with
the help of alemma due to C. Jordan [8], see also [7] and [18]:

3.4 Jordan's Lemma Let P be ap-subgroup of7 for fixed primep, A < G and
A := Fizg(A). LetA’ be a subset oA such thatP € Syl,, (Stab(d)) for all
JeA.

If for 61,02 € A’ there exists somg € G with 47 = 4, then

3 neNg(P): =6

3.5 Example

This method applies to all subgrougssuch thatP = C3 < A < Hol(C13),
in particular the case considered by Kramer and Mesner. WeehagrouplU;
isomorphic toCi3 x Cy with 13-Sylow subgrou® = Cy3. According to 3.4,
we can reduce the search for isomorphisms between the 188@Fdesigns with
automorphism grouf/; to Ns,,(P) = Hol(Cy3).

Figure 2: Partial Subgroup Lattice 8f; Relevant for 2-(13, 5, 72). The Numbers
Between two Subgroups Denote the Indices.

Formally the computation for the partial subgroup latticegF 2 of S;5 be-
tweend and Hol(C43) is as in Burnsides Lemma 3.2, but not all overgroups need
to be considered.



% —% -3 % 136,876,801 22,825,216
0 &+ 0 -3 24,643 | _ 8,205
0 0 3 -3 890 | — 431
0o 0 0 1 28 28

Therefore we receive the informations collected in Tab. 2.

Group Group order| # solutions| # isom. types
Ui 26 | 136,876,801 22,825,216
Us 52 24,643 8,205
Us 78 890 431
Hol(C3) 156 28 28
in total: 136,902,362] 22,833,880

Table 2: Isomorphism Types of Certain 2-(13, 5, 72)

Recall that the group considered by Kramer and Mesner isgféy In each
case we need not know whether the prescribed group is thadtdimorphism
group of the designs counted.

Also in cases, where it can be shown that no design existsrippayroup
Q,P < @, this lemma is applicable. Nevertheless, the approactoisi@matic,
whenA £ Ng(P): thenFizq(A) in general is not closed under the action of
N¢(P) and it is not appropriate to just form the orbits/g§ (P). But the follow-
ing remark gives us a hint to the solution:

3.6 Remark LetA < G, P € Syl,(A) andd,,dz € Fizg(A) =: A. If there
exists somg € Ng(P),9 & Ny, (p)(A) such that] = 4,, then

A < (A, A% < Stab(s,).

Proof: A < Stab(d;) and sincey ¢ Ng(A), we haved # A9 < (Stab(6,))? =
Stab(d2). AsA is also subgroup aftab(d-), this yields the claim.

This is a slightly more general version of [3]. The biggercamorphism
groups that have to be tested now can be directly constractédeed not to be
known from some catalogue. So the following algorithm caaybglied:

3.7 Algorithm Given a groupd < G andA := Fizq(A).
i) Fix a primep dividing | A| and compute & € Syl,(A).
i) ComputeNg(P), No(P) andl := Ny p)(A).



i) Consider a transversal T of in Ng(P):
For all B := (A, A9), whereg € T', removeF'izq(B) from A.

iv) If for the remaining part ofA P is known to be a Sylow subgroup of the
stabilizers of the elements ik, then determine the orbits dfon this set.

v) Determine and output the orbits 8f; (A) on this set.
vi) Apply i) - v) on the groups constructed in iii) and theirdikpoints.

3.8 Remark Recall that step iii) can be improved by noticing, th&t and S,
can arise only as automorphism groups of trivial designs.

4 Isomorphism classification of 3-(20, 4, 1) designs

There exists exactly ong— (22, {6, 7,8}, 1) design withM,, as automorphism
group. This tBD is “derived” from the famous — (24, 8, 1) Witt-design with
automorphism group/», in the following way: first skip the point 24 and con-
sider its stabilizer (which i9/,3) and then once again skip point 23 and take its
stabilizerM,, as automorphism group with generators

(1,22,8,19,14)(2, 16,5, 13, 3)(4, 11,20, 21, 17)(6, 18,7, 12, 15)
(1,14)(2,5,17,3)(4,15,7,9, 18,6, 20, 19)(8, 21, 16, 13, 22, 10, 11, 12)

The blocks of the Witt design form one orbit undek,. During this procedure,
the blocks containing the points 23 and/or 24 are shorterted 8-subsets to 6-
resp. 7-subsets of the point set.

This design can be constructed with the Kramer-Mesner ndethamllect
the three KM-matrices ofA := M5, between5 — /6—subsets resp.5 —
/7—subsets and — /8—subsets into one big Kramer-Mesner matfik?! =
(M| M| MZs) shown in Tab. 3.

The arrows indicate, that every element of the first orbit esubsets (canon-
ical representative{1, 2, 3,4, 5}) is contained in exactly one element of the last
orbit O, on 8-subsets, every element of the second orbit on 5-sufiseisni-
cal representativef1,2,3,4,6}) in exactly one element of the seventh ortit
on 7-subsets, every element of the third orbit on 5-subsatsofical represen-
tative: {1,2,3,4,7}) in exactly one element of the last orlit; on 7-subsets
and finally every element of the last orbit on 5-subsets (naab representative:
{1,2,3,5,14}) in exactly one element of the last orld}, on 6-subsets. So, the
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O O OF

12 3 2 0 0 0/60 48 12 12 3 1 0 Q15 60 108 156 8 84 21 4 4

15 0 0 2 0O 0/60 30 30 15 0 O 1 Q140 60 150 180 60 60 10 15 5

15 0 0 0 2 0O0/60 30 15 30 0 O O 24180 60 150 140 60 60 10 5 15

0 0 16 0 0 1] 0 120 O O O 16 0 0160 O 0O 160 80 160 120 O O
T Tt

Table 3: Combined Kramer-Mesner matfix™z2 = (M| M.?* | M2'¢?)
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Orbit | k£ | canonical representativeorbit length | stabilizer order
O, | 8]1{1,2,3,4,58,11,13} 330 1,344
Oy | 71{1,2,3,4,6,15,18} 176 2,520
Os | 71{1,2,3,4,7,10,12} 176 2,520
Oy | 61|{1,2,3,5 14,17} 77 5,760

Table 4: Orbits ofA/55 on 6-, 7- and 8-Subsets

collection of these four orbits in fact gives a 5-design with= 1. Detailed in-
formation gives Tab. 4. This recipe can generally be usedtain tBD’s from
t-designs.

The main challenge is to findl— (22, k, 1) designs with only one valuke, for
examplek = 6. A 3-(20, 4, 1) design still is the best known approximatiéao
5 — (22, k,1) design.3 — (20,4, 1) designs with various automorphism groups
can be considered, even with fairly small automorphism gsoas for example
the symmetry group of the dodecahedron of order 60, whickoisiorphic ta4s.
But too small groups lead to isomorphism problems that atél inaccessible by
our methods. If the holomorph of the cyclic grofig induced on the 3-subsets of
6 points is prescribed (this group has order 12), we recdMe976 designs. Fur-
thermore we know from [12], that there exist altogetheras$t€0'” isomorphism
types of SQS on 20 points.

4.1 The symmetry group of the dodecahedron
When looking at the dodecahedron of Fig. 3, notice that itaragtry groupA

Figure 3: Labeled Dodecahedron

can be generated by the 5-cycles
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01 :{1,2,3,4}60 Osg : {1,2,4,17}60 Os1:{1,2,10,13}s0 O : {1,3,9,20}60
05 : {1,2,3,6}60 Oar : {1,2,4,18} 20 Oss : {1,2,10,15}30  O77: {1,3,10,11}¢0
O3 : {1,2,3,7}60 Oasg : {1,2,4,19}60 Oss : {1,2,10,16}60  O7s : {1,3,10,12}30
O4 H {1,2,3,8}50 029 H {1,2,4,20}30 054 H {1,2, 10720}60 079 H {1,3,10, 14}30
05 H {1,2,3,9}50 030 H {1,2,8,9}60 055 H {1,2, 11,12}30 Ogo H {1,3,10, 15}60
Os : {1,2,3,10}60 Ogs1 : {1,2,8,10}20 Ose : {1,2,11,13}60  Ogi1 : {1,3,10,16}¢0
07 : {1,2,3,11}g Oss : {1,2,8,11}s0 Os7 : {1,2,11,15}g0  Ogs : {1,3,10,19}3¢
Os : {1,2,3,12}¢0 Osz : {1,2,8,12}2 Osg : {1,2,11,16}¢0  Ossz : {1,3,11,13}¢0
Og H {1,2,3, 13}60 034 H {1,2,8, 13}60 059 H {1,2, 11717}60 084 H {1,3,11, 14}60
010 H {1,2,3, 14}60 035 H {1,2,8, 14}60 OGO H {1,2, 13,15}30 085 H {1,3,11, 17}30
O11: {1,2,3,15}60 Oss : {1,2,8,15}60 Og1 :{1,2,13,16}30  Ose : {1,3,11,18}3¢
O1s: {1,2,3,16}60 Og7 : {1,2,8,16}60 Ogs : {1,2,13,17}0  Os7 : {1,3,12,14}¢0
013 H {1,2,3, 17}60 038 H {1,2 8 17}60 063 H {1,2, 15717}60 Ogg H {1,3,12, 15}30
014 H {1,2,3, 18}60 039 H {1,2 8 18}20 064 H {1,3,7,9}30 Ogg H {1,3,12, 16}30
015 H {1,2,3, 19}30 040 H {1,2 9 10}60 065 H {1 3 7 10}60 Ogo H {1,3,13, 15}60
O16 : {1,2,3,20}60 Oar : {172,9,11}60 Ogs : {1,3,7,11}60 Oo1 : {1,3,13,17}30
O17 : {1,2,4,8}¢0 Oas : {1,2,9,12}60 Og7 : {1,3,7,12}60 Ogs : {1,3,14,16}5
Olg H {1,2,4,9}30 043 H {1,2,9, 13}60 Osg H {1,3 9 10}30 Ogg H {1,3,14, 17}30
019 H {1,2,4, 10}60 044 H {1,2,9, 14}60 069 H {1,3 9 11}60 094 H {1,3,15, 17}30
Os0 : {1,2,4,11}s0 Oas : {1,2,9,15}60 O70 : {1,3,9,12}60 Ogs : {1,8,14,17}5
Os1 : {1,2,4,12}60 Oag : {1,2,9,16}60 O71 :{1,3,9,13}s0 Ooge : {1,9,13,20}12
Oas : {1,2,4,13}60 Oa7 : {1,2,9,17}60 Ozs : {1,3,9,14}60

023 H {1,2,4, 14}60 048 H {1,2,9,20}30 073 H {1,3 9 15}60

024 H {1,2,4, 15}60 049 H {1,2, 10711}60 074 H {1,3 9 18}30

Oss @ {1,2,4,16}60 Oso : {1,2,10,12}60  Ozs : {1,3,9,19}60

Table 5: Orbits of the Symmetry Group of the Dodecahedron-8uHsets of the

Vertices
(1,2 , 4,5)(6, 7 8,9,10)(11,12,13,14,15)(16,17, 18,19, 20),
(1,2,7,19,6)(3, ,1 18,5)(4,8,15,13,10)(9,16,11,12,17).

Thus, a group of order 60 and degree 20 is obtained, whiclomsasphic to the
alternating groupds, embedded int67 := Syg. This group acts on the 4-subsets
of the vertices of the dodecahedron. They fall into the 96tedhown in Tab. 5
with their canonical representatives (the index shows thi length).

The Kramer-Mesner-matr'uit/lé‘}4 is of size21 x 96. The 0/1-vectors solving the
diophantine system of equations

represen8 — (20, 4, 1) designs. We obtain the 152 solutions of Tab. 6 and Tab. 7.
In this notation, the numbers represent the chosen 4-abiiab. 5.
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By : {3,23,37,55,70,79, 95,96} Byap @ {13, 28, 31, 44, 55, 67, 69, 95,96}

Bo : {3, 23,37, 55,73, 78, 95, 96} By : {13, 28, 31, 44, 55, 67, 75, 95, 96}
Bz : {3, 23,37, 55,72, 81, 95, 96} Byas : {13, 28, 31, 44, 55, 67, 68, 83, 95, 96}
By : {3, 23,37, 55,74, 80, 95, 96} Bag : {4,28,47,51, 55, 67, 79, 83, 95, 96}
By : {15, 40, 55, 60, 67, 86, 95, 96} Bag : {3,28, 30,51, 55, 63, 83,87, 95, 96}
Bg : {16, 30, 55, 60, 67, 86, 95, 96} Bas : {2, 25, 36, 44, 55, 67, 85, 90, 95, 96}
By : {6, 27,55, 60, 67, 86, 95, 96} Bag : {3, 25, 36, 44, 54, 55, 85, 88, 95, 96}
Bg : {5, 29, 55, 60, 67, 86, 95, 96} Bya7 : {4, 28, 44, 54, 55, 60, 67, 68, 85, 95, 96}
Bg : {12, 23, 36, 55, 67, 73, 95, 96} Bag : {3, 28,37, 44, 55, 68, 85, 87, 90, 95, 96}
Big : {3, 22, 36, 40, 55, 86, 95, 96} Bag : {12, 21, 30, 63, 67, 76, 90, 95}

Biy : {14, 23,51, 55, 67, 79, 95, 96} Bsg : {12, 20, 30, 63, 67, 76, 84, 95}

Bio : {3, 24,30, 51, 55, 86, 95, 96} Bs1 : {10, 29, 32, 63, 67, 76, 90, 95}

Big : {3, 18, 55, 62, 69, 92, 95, 96} Bss : {3, 22, 30, 50, 63, 76, 84, 95}

Big4 : {3, 18,55, 62, 75, 92, 95, 96} Bsg : {9, 18, 63, 67, 76, 81, 84, 95}

Bis : {3, 18, 55, 62, 68, 83, 92, 95, 96} Bsg4 : {3, 18, 56, 63, 76, 81, 84,95}

Big : {13, 18,55, 67, 69, 92, 95, 96} Bss : {12, 20, 39, 47, 67, 76, 79, 95}

Bi7 : {13, 18,55, 67, 75, 92, 95, 96} Bsg : {3, 22, 32, 47, 54, 76, 79, 95}

Big : {13, 18,55, 67, 68, 83, 92, 95, 96} Bs7 : {3,22, 39,47, 50, 76, 79, 95}

Big : {3, 26, 34, 40, 55, 84, 90, 95, 96} Bsg : {3,21, 34, 47, 54, 76, 81, 95}

Bag : {10, 26, 39, 54, 55, 67, 73, 95, 96} Bsg : {3, 29, 39, 47, 56, 76, 92, 95}

Ba1 : {3, 25, 30, 52, 55, 84, 90, 95, 96} Bgo : {9, 29, 39, 47, 67, 76, 92,95}

Bao : {2, 25, 30, 55, 63, 67, 84, 90, 95, 96} Bgy : {4, 21, 46, 54, 63, 67, 76, 81, 95}
Bag : {3, 25, 30, 54, 55, 63, 84, 88, 95, 96} Bga : {4, 29, 46, 57, 67, 76, 83, 92, 95}
Bog : {11, 25, 39, 54, 55, 67, 79, 95, 96} Bgg : {4, 21, 47, 54, 61, 67, 76, 81, 95}
Bos : {3, 25, 39, 47, 54, 55, 79, 88, 95, 96} Bgy : {4,29, 47, 58, 67, 76, 83,92, 95}
Bog : {2, 25, 39, 47, 55, 67, 79, 90, 95, 96} Bgs : {14, 29, 44, 58, 67, 76, 84, 90, 95}
Boy : {4, 26, 46, 54, 55, 67, 73, 84, 95, 96} Bgg : {3, 24, 39, 44, 54, 58, 76, 81, 95}
Bog : {4, 26, 40, 55, 61, 67, 84, 90, 95, 96} Bg7 : {3, 29, 32,47, 61, 76, 87,90, 95}
Bag : {4, 26, 44, 51, 55, 67, 84, 91, 95, 96} Bgg : {3, 18, 57,61, 76, 81, 83,87, 95}
B3p : {3, 26, 39, 40, 55, 61, 87, 90, 95, 96} Bgg : {3, 29, 32, 46, 63, 76, 87,90, 95}
B31 : {3, 26, 39, 46, 54, 55, 73, 87, 95, 96} By : {3, 18, 58, 63, 76, 81, 83,87, 95}
Bgo : {3, 26, 39, 44, 51, 55, 87, 91, 95, 96} Br1 : {3, 28, 36, 46, 49, 76, 88,91, 95}
Bg3 : {2, 28, 36, 46, 55, 67, 73, 83, 95, 96} Bro : {2,28, 39, 46, 57, 67, 76, 79, 90, 95}
By : {3, 28, 36, 40, 55, 61, 83, 88, 95, 96} Brg : {3, 28, 39, 46, 54, 57, 76, 79, 88, 95}
Bss : {3, 28,37, 44, 55, 68, 84, 88, 91, 95, 96} Brg : {2, 28, 36,42, 61, 67, 76,91, 95}
Bsg : {2, 28, 39, 44, 55, 60, 67, 68, 91, 95, 96} By7s : {3, 28, 30, 54, 57, 61, 76, 84, 88, 95}
Bz : {3, 28,31, 44, 55, 62, 69, 95, 96} Brg : {2, 28, 30,57, 61, 67, 76, 84, 90, 95}

Bag : {3, 28, 31, 44, 55, 62, 75, 95, 96}
B3g : {3, 28, 31, 44, 55, 62, 68, 83, 95, 96}

Table 6: Designs Invariant Under the Symmetry Group of thddaahedron (Part
1)

We discuss how our methods can be used to solve the isomorinéblem
for these designs considering a 5-Sylow subgrupf A. It can be verified that
no overgroup ofP of order 25 is admitted as an automorphism group of a 3-(20,
4, 1). So apply the algorithm: Compute the transvefsaf H := Ny, 1) (P)
in Ng(P) of length 1,500. Fronf, the groups(A4, A9) with ¢ € T can be
constructed. There are 13 groups withas Sylow subgroup (which aret A,
or S»p = G) falling into 7 conjugacy classes under the actioVef( P). Actually,
two of the overgroups (and of course their conjugates) tutmabe automorphism
groups of some designs, as the partial subgroup latticewssho
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By
Brg :
Brg ¢
Bgp
Bg1 :
Bgo :
Bgs :
Bgy :
Bgs :
Bgg :
Bgr ¢
Bgg :
: {12, 20, 36, 44, 67, 76, 85, 95}

Bgg

Bgg :
Bgy :
Bgs :
Bgg :
By :
Bgs :
Bog :
Bg7 :
Bog :
Bgg :
Bioo :
B1o1 :
Bio2 :
Biog :
Bioa :
Bios ¢
Bioe :
Bio7 :
Bios :
Biog :
B11p :
Bi11 ¢
Bii2 ¢
B113 :
Biia :
Biis ¢

Table 7: Designs Invariant Under the Symmetry Group of thddaahedron (Part

It

{3, 28, 30, 52, 58, 76, 84, 90, 95}
{2, 28, 30, 58, 63, 67, 76, 84, 90, 95}
{3, 28, 30, 54, 58, 63, 76, 84, 88, 95}
{11, 28, 39, 54, 58, 67, 76, 79, 95}
{3, 28,39, 47, 54, 58, 76, 79, 88, 95}
{2, 28, 39, 47, 58, 67, 76, 79, 90, 95}
{15, 46, 54, 57, 67, 76, 85, 92, 95}
{3, 18,57, 61, 76, 78, 85, 90, 95}
{3, 18, 58, 63, 76, 78, 85, 90, 95}
{15, 47, 54, 58, 67, 76, 85, 92, 95}
{3, 20,37, 44, 76, 78, 85, 95}

{15, 44, 50, 60, 67, 76, 85, 95}

{3, 22, 36, 44, 50, 76, 85, 95}

{3, 26, 31, 44, 56, 76, 85, 95}

{9, 26,31, 44, 67, 76, 85, 95}

{3, 28,37, 41, 76, 80, 85, 95}

{6, 28,33, 60, 67, 76, 85, 95}

{2, 28, 36, 44, 58, 67, 76, 85, 90, 95}

{3, 28, 36, 44, 54, 58, 76, 85, 88, 95}

{3, 18, 55, 62, 76, 82, 83, 92}

{13, 18,55, 67, 76, 82, 83, 92}

{3, 28,37, 44, 55, 76, 82, 84, 88, 91}
{2, 28,39, 44, 55, 60, 67, 76, 82, 91}
{3,28,31, 44, 55, 62, 76, 82, 83}
{13, 28, 31, 44, 55, 67, 76, 82, 83}
{4, 28, 44, 54, 55, 60, 67, 76, 82, 85}
{3, 28, 37, 44, 55, 76, 82, 85, 87, 90}
{3, 27, 46, 54, 59, 82, 92, 96}

{7, 27, 46, 54, 67, 82, 92, 96}
{14, 21, 46, 54, 67, 73, 82, 96}
{3, 24,39, 46, 50, 73, 82, 96}
{3, 24,32, 46, 54, 73, 82, 96}
{3, 20, 39, 46, 52, 74, 82, 96}
{2, 20, 39, 46, 63, 67, 74, 82, 96}
{2,27,46, 57, 67, 82, 83, 92, 96}
{16, 39, 46,57, 67, 82, 91, 92, 96}
{3, 27, 46, 50, 63, 82, 84, 88, 96}
{7,18,61, 67, 74, 82, 90, 96}

Biig :
Bii7 ¢
Biig :
Bi1g :
B12g :
Biay :
Biga :
Biag :
Biog :
Bias :
B12g :
Bia7 :
. {16, 39, 47, 58, 67, 82, 91, 92, 96}

B12g

Biag :
Bi3p :
Bigy ¢
Biga :
Bigg :
Bigg :
Bigs :
Bige :
Byt :
Bi3g :
Bi3g :
B140 :
Bi41 ¢
Bigo :
Biag :
Biag :
Bigs :
Biae :
Big7 ¢
B14g :
B14g :
Biso ¢
Bis1 ¢
Bis2 :
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{3, 18,59, 61, 74, 82, 90, 96}
{14, 20, 40, 61, 67, 82, 84, 96}
{14, 21, 40, 61, 67, 82, 90, 96}
{11, 27,50, 61, 67,82, 84, 96}
{3, 24, 32, 40, 61, 82, 90, 96}
{3, 27,47, 50, 61, 82, 84, 88,96}
{3, 18,57, 61, 74, 82, 83, 88,96}
{3, 18,57, 61, 70, 82, 84, 91, 96}
{2, 20, 39, 47, 61, 67, 74, 82,96}
{3, 18, 58, 63, 74, 82, 83, 88,96}
{3, 18, 58, 63, 70, 82, 84, 91, 96}
{2,27, 47, 58, 67, 82, 83, 92, 96}

{3,21, 37, 44, 70, 82, 91, 96}

{16, 32, 44, 60, 67, 82, 91, 96}

{14, 21, 44, 51, 67, 82, 91, 96}

{3, 24, 32, 44, 51, 82, 91, 96}

{7, 25, 31, 44, 67, 82, 91, 96}

{3, 25, 31, 44, 59, 82, 91, 96}

{12, 27, 44, 57, 67, 82, 84, 90, 96}
{3, 22, 39, 44, 54, 57, 74, 82, 96}
{3,28, 34, 40, 57, 82, 84, 90, 96}
{10, 28, 39, 54, 57, 67, 73, 82, 96}
{3,28,37, 42, 72,82, 91, 96}
{5,28, 49, 60, 67, 82, 91, 96}
{4,28, 46, 54, 57, 67, 73, 82, 84, 96}
{4, 28, 40, 57, 61, 67, 82, 84, 90, 96}
{4, 28,47, 54, 58, 67, 73, 82, 84, 96}
{4, 28, 40, 58, 63, 67, 82, 84, 90, 96}
{4, 28, 44, 51, 57, 67, 82, 84,91, 96}
{3, 28, 39, 40, 57, 61, 82, 87, 90, 96}
{3, 28, 39, 46, 54, 57, 73, 82, 87, 96}
{3, 28, 39, 40, 58, 63, 82, 87,90, 96}
{3, 28, 39, 47, 54, 58, 73, 82, 87, 96}
{3,28, 39, 44, 51, 57, 82, 87,91, 96}
{4,28, 41, 51, 63, 67, 82, 85, 96}
{3, 28, 33,47, 51, 82, 85, 87,96}



G (2147483647):0

Figure 4: Partial Subgroup Lattice 6§, Relevant for Certain SQS(20)
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The notatiord x B (3420) : 2 indicates that the conjugacy class of graBpof
order 3,420 has length 4, and each of them is automorphisopgrb2 designs.
So let us have a look at the overgroups.

4.1.1 GroupB;

Group B is generated by

(1,2,3,4,5)(6,7,8,9,10)(11, 12,13, 14, 15)(16, 17, 18, 19, 20)
(1,2,7,19,6)(3,20, 14, 18,5)(4, 8, 15,13, 10)(9, 16, 11,12, 17)
(12,13, 19, 17)(3, 4, 11, 14, 20)(5,7, 9, 8, 10)(6, 18, 12, 16, 15)
(1,2,15,4,16)(3,17,13,11,8)(5, 7,20, 18, 14)(6, 10,9, 12, 19)

and is perfect of order 3.420. The orbits.4fon 4-sets are fused to orbits Bf .
We describe the fusion by a mapping:

{1,2,6,9,15,18,24, 25,30, 32, 33, 38, 41,42, 45, 51,52, 53, 57, 61,
62,65, 66,69,73,74,75,84,88,89,94} — 1
{3,21,34,47,54,76,81,95} s 2
{4,7,12,19, 23,26, 31, 35, 43, 55, 56, 63, 68, 70,79, 85,87, 90} — 3
{5,28,49,60,67,82,91,96} — 4
{8,10,11,13,14,16, 17, 20,22, 27, 29, 36, 37, 39, 40, 44, 46, 48, 50, 58,
59,64,71,72,77,78, 80, 83,86,92,93} — 5

A solution admits an overgroup as automorphism group, ifghleition vector
calculated above under the grodgs constant (either O or 1) on the preimage of
each orbit of the overgroup under the fusion mapping.

This condition is fulfilled for the solutions 58 and 140. Taexist 4 conjugate
groups under the action df;(P): the other three groups are admitted by the
designs 51 and 139, designs 94 and 110 and designs 93 andspegtieely.

4.1.2 GroupB,

GroupBs; is a perfect group of order 960 with the generators

(1,2,3,4,5)(6,7,8,9,10)(11, 12,13, 14, 15)(16, 17, 18, 19, 20)
(1,2,7,19,6)(3,20, 14, 18, 5)(4, 8, 15, 13, 10)(9, 16, 11, 12, 17)
(1,2,13,6,11)(3,17,18,5,4)(7,20, 10,8,9)(12, 19, 14, 15, 16)
(1,2,12,3,16)(4,11,13,17,9)(5, 14, 18,20, 10)(6, 19, 7,8, 15)

The fusion mapping is the following:
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{1,8,9,12,16, 19, 20, 22, 50, 51, 53, 56, 64, 70, 71,89} > 1
{2,67,90} s 2

{3,54,88} -+ 3

{4,6,11, 31,52, 66,80,83,87,91} — 4
{5,13,15,23,24,34,37,40,41,49,59,65,75,81,92,94} — 5
{7,10,14,17,18,29, 33, 42, 48, 60, 62, 69,72, 73, 78,86} > 6
{21, 26,27, 32,43,46,57,61, 68,74} > 7

{25,55,96} — 8

{28,58,76} — 9

{30,63,84} — 10

{35,38,45,77,82,93} — 11

{36,44,85} — 12

{39,47,79} — 13

{95} — 14

Twelve solutions are invariant under the action®f, namely 22, 23, 25, 26, 45,
46, 78, 79, 81, 82, 95 and 96. The conjugatdefis automorphism group of the
designs 27, 28, 29, 30, 31, 32, 141, 142, 145, 146, 147 and 150.

4.1.3 Summary

To summarize, in total 32 designs have bigger automorphismpsg. When ap-
plying the same method to the overgroups, no bigger grogp®and. Therefore,
N, (a)(P) acts on the designs of these resp. automorphism groups. \Weaem
size that the isomorphism problem has been solved withauwladge of the full
automorphism groups of the designs.

In case of group3; 3 orbits of designs are obtained, each of length 4. The
numbers of the representatives in Tab. 6 and 7 are 22, 23 andhtbdesigns
with the conjugate group as automorphism group are isonotphthem. We
visualize in Tab. 8 the 3 isomorphism types with the help ef dodecahedron.
The coloured points are the elements of the representdtthe dlock orbit.

The two designs witlB; as automorphism group are isomorphic as well as all
the designs with the conjugate groups as automorphism gildngprepresentative
of this isomorphism class is the design number 58 in Tab. &g 5).

The other 120 designs not invariant under one of the biggemaarphism

groups fall into 32 orbits. Each representative can be limetwith the help of
the dodecahedron, but we only show the first one in Fig. 6.
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ERIER R R 5
A
JERIER R R 5
2R S
R IR R R 5
kAL

Table 8: Visualisation of the 3 Isomorphism Types Under GrBy

0
)

Figure 5: Visualisation of the Isomorphism Type of 3-(201#Under GroupB;

s uke
s uts
Gt
s ks
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Figure 6: Visualisation of one Isomorphism Type of 3-(201.3Under Groupd

In total, 36 isomorphism types of designs are obtained gpethe symme-
try group of the dodecahedron as prescribed automorphisapgiThey are listed
in Tab. 9.

Group || group order| nb. solutions| isom. types
A 60 120 32
4 x By 3,420 2 1
2 x By 960 12 3
in total: 152 36

Table 9: Isomorphism Types of SQS(20) with Symmetry Grdupf the Dodec-
ahedron

On the Webpage

http://www.mathe2.uni-bayreuth.de/"discreta/
SOLIDS/dodetypes.htm

all of them can be found visualized with the dodecahedron.

4.1.4 Results for other groups of 3-(20, 4, 1) designs

We have tested some other groups as automorphism group@®o8 20 points.
The results of the isomorphism program of DISCRETA for thggsrips are listed
in Tab. 10.

To explain the notation: If acts on(?; andH acts onf),, the groupG x H
acts on(); x 2, componentwise+ indicates that a fixed point has been added
to the permutation representation@f Finally, G/ means the induced action of
G onl-sets.
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Prescribed groupt group order KM-size # designs # isomorphism types

(order of (B;'s are overgroups)
overgroups)

Aut(Dode) = Aj 60 (960; 3,420) | 21x 96 152 32xA+3xB; +1xB3

Aut((Dode, cent.inv.)) 120 15 x 58 8 4xA

S % 1d, 120 (720; 1,440) | 24 x 75 8 3xB; +3xBs

S s oy 240 (1,440; 1,440)| 12 x 43 8 3 xB; +3xBs

S twist C 120 (720; 1,440) | 15 x 57 16 3 x By +3 xBs

PTL3(9) X Ca 2,880 3x 10 2 2xA

PI'Ly(9) x Idsy 1,440 6 x 15 2 2xA

PXL4(9) x Cs 1,440 5x 16 4 3xA

PX15(9) x Ids 720 10 x 26 4 3xA

PGIL3(9) x Ca 1,440 3x 11 2 2xA

PGL3(9) x Idy 720 6 x 16 2 2xA

PSLy(9) x Cy 720 5x 17 4 3xA

PSLy(9) x Idy 360 10 x 27 4 3xA

As+131 60 (360; 360) 30 x 104 16 4xA+3xB; +3%xB>

S5+ 120 (720; 1,440) | 24 x 75 8 4 xB1 +3xBs

AL 360 9x 27 4 3xA

sl 720 (1,440) 7x21 4 3 xB;

3
(s¥) @l 24 63 x 236 336 130x A

Table 10: Isomorphism Classification of SQS(20) with SelvArgomorphism

Groups
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