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Abstract:

The topic of this paper is to determine the isomorphism typesof designs which
are invariant under a given group. As an example, we considerSQS(20) invariant
under a subgroup of the symmetric groupS20 isomorphic to the alternating groupA5.
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1 Introduction

In order to construct at-design, one can prescribe an automorphism groupA for
the design; then the incidence matrix between the orbits ont-subsets of the point
set (as rows) and the orbits onk-subsets (as columns)MAt;k is calculated. The
entry in rowi and columnj indicates the number ofk-subsets in orbitj contain-
ing the representative of thei-th orbit ont-subsets. We receive designs omitting
the prescribed group as an automorphism group as solutions for the diophantine
system of equations MAt;k � x = (�; : : : ; �)T
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according to the lemma of Kramer and Mesner [10]. The matrixMAt;k is called
Kramer-Mesner matrix. More information on this method is collected in [1], [15]
and [16].

After the construction of designs with certain fixed parameterst � (v; k; �)
there arises very naturally the following question:

Which designs have an identical structure, i.e. which are isomorphic?

This problem will be the main topic of this paper. A method using some
group theory is developed in section 3. As an example, we consider the case
of Steiner quadruple systems 3-(20, 4, 1) on 20 points with different prescribed
automorphism groups. These quadruple systems are interesting as a step towards
the search for 5-(22, 6, 1) designs. Since all known Steiner 4-designs are derived
from Steiner 5-designs, it makes sense not to try to construct the Steiner 4-designs
4-(21, 5, 1) in the direct way.

Besides the package DISCRETA [2] for the construction oft-designs with
prescribed automorphism group we also use the package GAP [17] for the group
theoretical computations. More exactly, we wrote an interface between DISC-
RETA and GAP.

2 Notation and basic definitions

The problem of finding isomorphisms between designs and deciding whether two
designs are isomorphic or not, can be regarded with the help of group actions. LetG be a finite group acting on a finite set
:G�
! 
; (g; !) 7! !g
For group actions the following notations turn out to be relevant:G! := f!g : g 2 Gg orbit of! under the action ofGFix
(g) := f! 2 
 : !g = !g set of fixed points ofg in 
Fix
(U) := f! 2 
 : !g = ! 8g 2 Gg set of fixed points ofU � G in 
StabG(!) := fg 2 G : !g = !g stabilizer of! in G

Return to the designs: At�(v; k; �) designis a collection ofk-subsets (called
blocks) of a v-point setV , such that everyt-subset ofV is contained in exactly�
blocks. It is called simple, if every block occurs only once.In this paper, we only
consider simple designs. We usually identify the point set of a design without loss
of generality withV = f1; : : : ; vg. Every design is uniquely caracterized by its
block setB and therefore identified withB.
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2.1 Definition Twot � (v; k; �) designsB andB0 are isomorphic, if there exists� 2 Sv, such that �(B) = B0
where� is applied to the elements of each block ofB.

The isomorphism types of thet � (v; k; �) designs arise as the orbits of the
following action ofSv on the set of designs for fixed parameterst, v, k and�Dt�(v;k;�) := ft� (v; k; �) designsg:Sv �Dt�(v;k;�) ! Dt�(v;k;�); (�;B) 7! B�
The full automorphism group of a design is exactly the stabilizer of its block setB
in the symmetric groupSv on v points. That means:Aut(B) = StabSv(B). The
designs with automorphism groupA thus are the fixed pointsFixDt�(v;k;�) (A) ofA of this action.

3 Group theoretical background

Let us recall basic facts about group actions. In this section let a groupG act
on a set
. In the theory of group actions, we have a basic Lemma, which in
combinatorics is mostly called Burnside’s Lemma. But according to Neumann
[13] (see also [9]), it was already known to Cauchy [5] and Frobenius [6]. Thus,
we call this fundamental lemma

3.1 Lemma of Cauchy-FrobeniusLetG act on a set
. Then#orbits ofG on
 = 1jGj �Xg2G jFix
(g)j
The lemma yields a connection between orbits and fixed points. But it is not

constructive and in case of large groupsG not feasible. In case of designs, this
would mean that for every permutation� 2 Sv all designs fixed by� would have
to be determined. So better methods to find the orbits should be developed. It
turns out, that the immediate equationStab(!g) = Stab(!)g (1)

is very helpful: orbits can be caracterized by stabilizer class. Therefore, for a
given representative! of an orbit with stabilizerU := Stab(!), the orbit of! is
called anorbit of typeU .

Then one question arises very naturally:
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How many orbits of each type do exist?

In this paper we want to give some partial answers to this fairly complex problem.
The method is developed in two sequel steps:

Step 1: Burnside’s Lemma

Step 2: Jordan’s Theorem

3.1 Burnside’s Lemma

Consider the latticeL(G) of subgroups ofG. In particular,L(G) is a poset with
respect to inclusion, denoted as�. Thezeta-functionof L(G) is defined as�(U; V ) := (1 if U � V ,0 otherwise

(2)

for allU; V 2 L(G). The inclusion relations of the elements ofL(G) are collected
in the so calledzeta-matrix �(G) := (�(Ui; Uj))i;j :
Assume that the subgroupsUi of G are numbered in such a way thatUi � Uj =) i � j: (3)

Then the zeta-matrix is upper triangular with 1’s on the diagonal, so it is in-
vertible over the ring of integers. Its inverse is called theMoebius-matrix�(G) ofG [14]. In order to calculate the orbits of typeU on the set
 for U � G, consider
the set of fixed pointsFix
(U) of U on
. The orderjFix
(U)j was called the
markof U on
 by Burnside in [4]. Similar to the Lemma of Cauchy-Frobenius,
one hasjFix
(U)j = XV :U�V�G �(U; V )jNG(V )=V j �#orbits of typeV:
By Moebius-inversion, this equation is equivalent to:#orbits of typeU = 1jNG(U)=U j XV :U�V�G�(U; V ) � jFix
(V )j: (4)

4



Expression (4) can be simplified by considering the set of conjugacy classeseL(G) := feU1; : : : ; eUrg of G instead of the latticeL(G), where eachUi is a
representative of conjugacy classeUi. It can be reformulated with the help of the
matrixB(G) of G defined bybij := 1jNG(Ui)=Uij � XV 2eUj �(Ui; V ): (5)

Burnside [4] introduced the table of marks and remarked thatthis matrix is
invertible matrix. The inverted matrix now is calledBurnside matrixB(G). So
reformulate equation (4) as

3.2 Burnside’s Lemma Let G act on
, eL(G) := feU1; : : : ; eUrg the set of
conjugacy classes of subgroups ofG; let B(G) be the Burnside matrix ofG w.r.t.
the ordering ineL. ThenB(G) �0BB� ...jFix
(Uj)j

...

1CCA = 0BB� ...#orbits of typeUi
...

1CCA :
SinceB(G) is upper triangular, the evaluation can be restricted to some bot-

tom rows. This lemma can be helpful for the classification oft-designs with pre-
scribed automorphism group, when the prescribed groups arequite large. “Large”
means that the partial subgroup lattice between the prescribed groupA andSv is
known. In the lattice, only the overgroups ofA in Sv have to be considered and
therefore, the relevant Burnside matrix is only a part of thefull Burnside matrixB(Sv). As an example takePSL2(27) with degree 28, and consider the parame-
ter quadruple4� (28; 6; 45):
3.3 Example

Fig. 1 shows a partial subgroup lattice ofS28 with several automorphism
groups of 4-(28, 6, 45) designs. The isomorphism problem canbe solved with the
equation according to Burnside’s Lemma 3.20BB� 16 � 16 � 16 160 13 0 � 130 0 12 � 120 0 0 1 1CCA �0BB� 13; 078; 960704588 1CCA = 0BB� 2; 179; 701232258 1CCA

where we left out the groupsAv andSv, because no nontrivial design exists
with these automorphism groups. Therefore we obtain the informations of Tab. 1.
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PSL2(27)3P�L2(27)
A28

2 PGL2(27)P�L2(27)
S28

Figure 1: Relevant Partial Subgroup Lattice AbovePSL2(27) and Isomorphism
Types of 4-(28, 6, 45). The Numbers Between two Subgroups Denote the Indices.

Group Group order # solutions # isom. typesPSL2(27) 9,828 13,078,960 2,179,701PGL2(27) 19,656 704 232P�L2(27) 29,484 58 25P�L2(27) 58,968 8 8
in total: 13,079,730 2,179,966

Table 1: Isomorphism Types of 4-(28, 6, 45) with Certain Automorphism Groups

In general cases, the relevant partial subgroup lattice is not known. A good
example is a question, which was posed by Earl S. Kramer and Dale M. Mesner
in 1976 in the seminal paper [10]:

“No systematic attempt was made to determine the isomorphism
types of our designs. For example, in searching for (45; 2, 5,13)’s
[i.e. 2-(13, 5, 45) designs in our notation], using a 2 by 19 matrix,
we failed to specify an upper bound on the number of solutionsand
the computer run was cut short only because it has printed a speci-
fied quota of lines but had in the meantime produced 324 solutions
(each using column 1) and would likely have found many more. How
many of these are nonisomorphic is a question we might be afraid to
consider.”
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Kramer and Mesner had used a subgroup ofHol(C13) of order 78, which is
isomorphic toU3 := C13nC6. We show that we need not know the whole partial
subgroup lattice ofS13 with respect toU3 to solve the isomorphism problem with
the help of a lemma due to C. Jordan [8], see also [7] and [18]:

3.4 Jordan’s Lemma LetP be ap-subgroup ofG for fixed primep, A � G and� := Fix
(A). Let�0 be a subset of� such thatP 2 Sylp (Stab(Æ)) for allÆ 2 �0.
If for Æ1; Æ2 2 �0 there exists someg 2 G with Æg1 = Æ2, then9 n 2 NG(P ) : Æn1 = Æ2

3.5 Example
This method applies to all subgroupsA, such thatP = C13 � A � Hol(C13),

in particular the case considered by Kramer and Mesner. We have a groupU1
isomorphic toC13 n C2 with 13-Sylow subgroupP = C13. According to 3.4,
we can reduce the search for isomorphisms between the 136.976.801 designs with
automorphism groupU1 toNS13(P ) = Hol(C13).

13C13 2U12U2
A13

3 U3Hol(C13)
S13

Figure 2: Partial Subgroup Lattice ofS13 Relevant for 2-(13, 5, 72). The Numbers
Between two Subgroups Denote the Indices.

Formally the computation for the partial subgroup lattice Fig. 2 of S13 be-
tweenA andHol(C13) is as in Burnsides Lemma 3.2, but not all overgroups need
to be considered.
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0BB� 16 � 16 � 16 160 13 0 � 130 0 12 � 120 0 0 1 1CCA �0BB� 136; 876; 80124; 64389028 1CCA = 0BB� 22; 825; 2168; 20543128 1CCA
Therefore we receive the informations collected in Tab. 2.

Group Group order # solutions # isom. typesU1 26 136,876,801 22,825,216U2 52 24,643 8,205U3 78 890 431Hol(C13) 156 28 28
in total: 136,902,362 22,833,880

Table 2: Isomorphism Types of Certain 2-(13, 5, 72)

Recall that the group considered by Kramer and Mesner is groupU3. In each
case we need not know whether the prescribed group is the fullautomorphism
group of the designs counted.

Also in cases, where it can be shown that no design exists for any p-groupQ;P < Q, this lemma is applicable. Nevertheless, the approach is problematic,
whenA 6� NG(P ): thenFix
(A) in general is not closed under the action ofNG(P ) and it is not appropriate to just form the orbits ofNG(P ). But the follow-
ing remark gives us a hint to the solution:

3.6 Remark LetA � G, P 2 Sylp(A) andÆ1; Æ2 2 Fix
(A) =: �. If there
exists someg 2 NG(P ); g 62 NNG(P )(A) such thatÆg1 = Æ2, thenA < hA;Agi � Stab(Æ2):
Proof: A � Stab(Æ1) and sinceg 62 NG(A), we haveA 6= Ag � (Stab(Æ1))g =Stab(Æ2). AsA is also subgroup ofStab(Æ2), this yields the claim.

This is a slightly more general version of [3]. The bigger automorphism
groups that have to be tested now can be directly constructedand need not to be
known from some catalogue. So the following algorithm can beapplied:

3.7 Algorithm Given a groupA � G and� := Fix
(A).
i) Fix a primep dividing jAj and compute aP 2 Sylp(A).
ii) ComputeNG(P ); NA(P ) andI := NNG(P )(A).
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iii) Consider a transversal T ofI in NG(P ):
For all B := hA;Agi, whereg 2 T , removeFix
(B) from�.

iv) If for the remaining part of� P is known to be a Sylow subgroup of the
stabilizers of the elements in�, then determine the orbits ofI on this set.

v) Determine and output the orbits ofNG(A) on this set.

vi) Apply i) - v) on the groups constructed in iii) and their fixed points.

3.8 Remark Recall that step iii) can be improved by noticing, thatAv andSv
can arise only as automorphism groups of trivial designs.

4 Isomorphism classification of 3-(20, 4, 1) designs

There exists exactly one5 � (22; f6; 7; 8g; 1) design withM22 as automorphism
group. This tBD is “derived” from the famous5 � (24; 8; 1) Witt-design with
automorphism groupM24 in the following way: first skip the point 24 and con-
sider its stabilizer (which isM23) and then once again skip point 23 and take its
stabilizerM22 as automorphism group with generators(1; 22; 8; 19; 14)(2; 16; 5; 13; 3)(4; 11; 20; 21; 17)(6; 18; 7; 12; 15)(1; 14)(2; 5; 17; 3)(4; 15; 7; 9; 18; 6; 20; 19)(8; 21; 16; 13; 22; 10; 11; 12)
The blocks of the Witt design form one orbit underM24. During this procedure,
the blocks containing the points 23 and/or 24 are shortened from 8-subsets to 6-
resp. 7-subsets of the point set.

This design can be constructed with the Kramer-Mesner method: collect
the three KM-matrices ofA := M22 between5 � =6�subsets resp.5 �=7�subsets and5 � =8�subsets into one big Kramer-Mesner matrixMA =(MA5;6jMA5;7jMA5;8) shown in Tab. 3.

The arrows indicate, that every element of the first orbit on 5-subsets (canon-
ical representative:f1; 2; 3; 4; 5g) is contained in exactly one element of the last
orbit O1 on 8-subsets, every element of the second orbit on 5-subsets(canoni-
cal representative:f1; 2; 3; 4; 6g) in exactly one element of the seventh orbitO2
on 7-subsets, every element of the third orbit on 5-subsets (canonical represen-
tative: f1; 2; 3; 4; 7g) in exactly one element of the last orbitO3 on 7-subsets
and finally every element of the last orbit on 5-subsets (canonical representative:f1; 2; 3; 5; 14g) in exactly one element of the last orbitO4 on 6-subsets. So, the
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12 3 2 0 0 0 60 48 12 12 3 1 0 0 156 60 108 156 86 84 21 4 4 1
15 0 0 2 0 0 60 30 30 15 0 0 1 0 140 60 150 180 60 60 10 15 5 0
15 0 0 0 2 0 60 30 15 30 0 0 0 1 180 60 150 140 60 60 10 5 15 0
0 0 16 0 0 1 0 120 0 0 0 16 0 0 160 0 0 160 80 160 120 0 0 0" " " "

Table 3: Combined Kramer-Mesner matrixMM22 = (MM225;6 jMM225;7 jMM225;8 )1
0



Orbit k canonical representativeorbit length stabilizer orderO1 8 f1; 2; 3; 4; 5; 8; 11; 13g 330 1,344O2 7 f1; 2; 3; 4; 6; 15; 18g 176 2,520O3 7 f1; 2; 3; 4; 7; 10; 12g 176 2,520O4 6 f1; 2; 3; 5; 14; 17g 77 5,760

Table 4: Orbits ofM22 on 6-, 7- and 8-Subsets

collection of these four orbits in fact gives a 5-design with� = 1. Detailed in-
formation gives Tab. 4. This recipe can generally be used to obtain tBD’s fromt-designs.

The main challenge is to find5� (22; k; 1) designs with only one valuek, for
examplek = 6. A 3-(20, 4, 1) design still is the best known approximation of a5 � (22; k; 1) design.3 � (20; 4; 1) designs with various automorphism groups
can be considered, even with fairly small automorphism groups as for example
the symmetry group of the dodecahedron of order 60, which is isomorphic toA5.
But too small groups lead to isomorphism problems that stillare inaccessible by
our methods. If the holomorph of the cyclic groupC6, induced on the 3-subsets of
6 points is prescribed (this group has order 12), we receive 704,976 designs. Fur-
thermore we know from [12], that there exist altogether at least1017 isomorphism
types of SQS on 20 points.

4.1 The symmetry group of the dodecahedron

When looking at the dodecahedron of Fig. 3, notice that its symmetry groupA
1234 5 6789 10

11 12 13141516 17 181920

Figure 3: Labeled Dodecahedron

can be generated by the 5-cycles

11



O1 : f1; 2; 3; 4g60O2 : f1; 2; 3; 6g60O3 : f1; 2; 3; 7g60O4 : f1; 2; 3; 8g60O5 : f1; 2; 3; 9g60O6 : f1; 2; 3; 10g60O7 : f1; 2; 3; 11g60O8 : f1; 2; 3; 12g60O9 : f1; 2; 3; 13g60O10 : f1; 2; 3; 14g60O11 : f1; 2; 3; 15g60O12 : f1; 2; 3; 16g60O13 : f1; 2; 3; 17g60O14 : f1; 2; 3; 18g60O15 : f1; 2; 3; 19g30O16 : f1; 2; 3; 20g60O17 : f1; 2; 4; 8g60O18 : f1; 2; 4; 9g30O19 : f1; 2; 4; 10g60O20 : f1; 2; 4; 11g60O21 : f1; 2; 4; 12g60O22 : f1; 2; 4; 13g60O23 : f1; 2; 4; 14g60O24 : f1; 2; 4; 15g60O25 : f1; 2; 4; 16g60

O26 : f1; 2; 4; 17g60O27 : f1; 2; 4; 18g20O28 : f1; 2; 4; 19g60O29 : f1; 2; 4; 20g60O30 : f1; 2; 8; 9g60O31 : f1; 2; 8; 10g20O32 : f1; 2; 8; 11g60O33 : f1; 2; 8; 12g20O34 : f1; 2; 8; 13g60O35 : f1; 2; 8; 14g60O36 : f1; 2; 8; 15g60O37 : f1; 2; 8; 16g60O38 : f1; 2; 8; 17g60O39 : f1; 2; 8; 18g20O40 : f1; 2; 9; 10g60O41 : f1; 2; 9; 11g60O42 : f1; 2; 9; 12g60O43 : f1; 2; 9; 13g60O44 : f1; 2; 9; 14g60O45 : f1; 2; 9; 15g60O46 : f1; 2; 9; 16g60O47 : f1; 2; 9; 17g60O48 : f1; 2; 9; 20g30O49 : f1; 2; 10; 11g60O50 : f1; 2; 10; 12g60

O51 : f1; 2; 10; 13g60O52 : f1; 2; 10; 15g30O53 : f1; 2; 10; 16g60O54 : f1; 2; 10; 20g60O55 : f1; 2; 11; 12g30O56 : f1; 2; 11; 13g60O57 : f1; 2; 11; 15g60O58 : f1; 2; 11; 16g60O59 : f1; 2; 11; 17g60O60 : f1; 2; 13; 15g30O61 : f1; 2; 13; 16g30O62 : f1; 2; 13; 17g60O63 : f1; 2; 15; 17g60O64 : f1; 3; 7; 9g30O65 : f1; 3; 7; 10g60O66 : f1; 3; 7; 11g60O67 : f1; 3; 7; 12g60O68 : f1; 3; 9; 10g30O69 : f1; 3; 9; 11g60O70 : f1; 3; 9; 12g60O71 : f1; 3; 9; 13g60O72 : f1; 3; 9; 14g60O73 : f1; 3; 9; 15g60O74 : f1; 3; 9; 18g30O75 : f1; 3; 9; 19g60

O76 : f1; 3; 9; 20g60O77 : f1; 3; 10; 11g60O78 : f1; 3; 10; 12g30O79 : f1; 3; 10; 14g30O80 : f1; 3; 10; 15g60O81 : f1; 3; 10; 16g60O82 : f1; 3; 10; 19g30O83 : f1; 3; 11; 13g60O84 : f1; 3; 11; 14g60O85 : f1; 3; 11; 17g30O86 : f1; 3; 11; 18g30O87 : f1; 3; 12; 14g60O88 : f1; 3; 12; 15g30O89 : f1; 3; 12; 16g30O90 : f1; 3; 13; 15g60O91 : f1; 3; 13; 17g30O92 : f1; 3; 14; 16g5O93 : f1; 3; 14; 17g30O94 : f1; 3; 15; 17g30O95 : f1; 8; 14; 17g5O96 : f1; 9; 13; 20g12
Table 5: Orbits of the Symmetry Group of the Dodecahedron on 4-Subsets of the
Vertices(1; 2; 3; 4; 5)(6; 7; 8; 9; 10)(11; 12; 13; 14; 15)(16; 17; 18; 19; 20),(1; 2; 7; 19; 6)(3; 20; 14; 18; 5)(4; 8; 15; 13; 10)(9; 16; 11; 12; 17).
Thus, a group of order 60 and degree 20 is obtained, which is isomorphic to the
alternating groupA5, embedded intoG := S20. This group acts on the 4-subsets
of the vertices of the dodecahedron. They fall into the 96 orbits shown in Tab. 5
with their canonical representatives (the index shows the orbit length).

The Kramer-Mesner-matrixMA3;4 is of size21� 96. The 0/1-vectors solving the
diophantine system of equationsMA3;4 � x = (1; : : : ; 1)T
represent3� (20; 4; 1) designs. We obtain the 152 solutions of Tab. 6 and Tab. 7.
In this notation, the numbers represent the chosen 4-orbitsof Tab. 5.
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B1 : f3; 23; 37; 55; 70; 79; 95; 96gB2 : f3; 23; 37; 55; 73; 78; 95; 96gB3 : f3; 23; 37; 55; 72; 81; 95; 96gB4 : f3; 23; 37; 55; 74; 80; 95; 96gB5 : f15; 40; 55; 60; 67; 86; 95; 96gB6 : f16; 30; 55; 60; 67; 86; 95; 96gB7 : f6; 27; 55; 60; 67; 86; 95; 96gB8 : f5; 29; 55; 60; 67; 86; 95; 96gB9 : f12; 23; 36; 55; 67; 73; 95; 96gB10 : f3; 22; 36; 40; 55; 86; 95; 96gB11 : f14; 23; 51; 55; 67; 79; 95; 96gB12 : f3; 24; 30; 51; 55; 86; 95; 96gB13 : f3; 18; 55; 62; 69; 92; 95; 96gB14 : f3; 18; 55; 62; 75; 92; 95; 96gB15 : f3; 18; 55; 62; 68; 83; 92; 95; 96gB16 : f13; 18; 55; 67; 69; 92; 95; 96gB17 : f13; 18; 55; 67; 75; 92; 95; 96gB18 : f13; 18; 55; 67; 68; 83; 92; 95; 96gB19 : f3; 26; 34; 40; 55; 84; 90; 95; 96gB20 : f10; 26; 39; 54; 55; 67; 73; 95; 96gB21 : f3; 25; 30; 52; 55; 84; 90; 95; 96gB22 : f2; 25; 30; 55; 63; 67; 84; 90; 95; 96gB23 : f3; 25; 30; 54; 55; 63; 84; 88; 95; 96gB24 : f11; 25; 39; 54; 55; 67; 79; 95; 96gB25 : f3; 25; 39; 47; 54; 55; 79; 88; 95; 96gB26 : f2; 25; 39; 47; 55; 67; 79; 90; 95; 96gB27 : f4; 26; 46; 54; 55; 67; 73; 84; 95; 96gB28 : f4; 26; 40; 55; 61; 67; 84; 90; 95; 96gB29 : f4; 26; 44; 51; 55; 67; 84; 91; 95; 96gB30 : f3; 26; 39; 40; 55; 61; 87; 90; 95; 96gB31 : f3; 26; 39; 46; 54; 55; 73; 87; 95; 96gB32 : f3; 26; 39; 44; 51; 55; 87; 91; 95; 96gB33 : f2; 28; 36; 46; 55; 67; 73; 83; 95; 96gB34 : f3; 28; 36; 40; 55; 61; 83; 88; 95; 96gB35 : f3; 28; 37; 44; 55; 68; 84; 88; 91; 95; 96gB36 : f2; 28; 39; 44; 55; 60; 67; 68; 91; 95; 96gB37 : f3; 28; 31; 44; 55; 62; 69; 95; 96gB38 : f3; 28; 31; 44; 55; 62; 75; 95; 96gB39 : f3; 28; 31; 44; 55; 62; 68; 83; 95; 96g

B40 : f13; 28; 31; 44; 55; 67; 69; 95; 96gB41 : f13; 28; 31; 44; 55; 67; 75; 95; 96gB42 : f13; 28; 31; 44; 55; 67; 68; 83; 95; 96gB43 : f4; 28; 47; 51; 55; 67; 79; 83; 95; 96gB44 : f3; 28; 30; 51; 55; 63; 83; 87; 95; 96gB45 : f2; 25; 36; 44; 55; 67; 85; 90; 95; 96gB46 : f3; 25; 36; 44; 54; 55; 85; 88; 95; 96gB47 : f4; 28; 44; 54; 55; 60; 67; 68; 85; 95; 96gB48 : f3; 28; 37; 44; 55; 68; 85; 87; 90; 95; 96gB49 : f12; 21; 30; 63; 67; 76; 90; 95gB50 : f12; 20; 30; 63; 67; 76; 84; 95gB51 : f10; 29; 32; 63; 67; 76; 90; 95gB52 : f3; 22; 30; 50; 63; 76; 84; 95gB53 : f9; 18; 63; 67; 76; 81; 84; 95gB54 : f3; 18; 56; 63; 76; 81; 84; 95gB55 : f12; 20; 39; 47; 67; 76; 79; 95gB56 : f3; 22; 32; 47; 54; 76; 79; 95gB57 : f3; 22; 39; 47; 50; 76; 79; 95gB58 : f3; 21; 34; 47; 54; 76; 81; 95gB59 : f3; 29; 39; 47; 56; 76; 92; 95gB60 : f9; 29; 39; 47; 67; 76; 92; 95gB61 : f4; 21; 46; 54; 63; 67; 76; 81; 95gB62 : f4; 29; 46; 57; 67; 76; 83; 92; 95gB63 : f4; 21; 47; 54; 61; 67; 76; 81; 95gB64 : f4; 29; 47; 58; 67; 76; 83; 92; 95gB65 : f14; 29; 44; 58; 67; 76; 84; 90; 95gB66 : f3; 24; 39; 44; 54; 58; 76; 81; 95gB67 : f3; 29; 32; 47; 61; 76; 87; 90; 95gB68 : f3; 18; 57; 61; 76; 81; 83; 87; 95gB69 : f3; 29; 32; 46; 63; 76; 87; 90; 95gB70 : f3; 18; 58; 63; 76; 81; 83; 87; 95gB71 : f3; 28; 36; 46; 49; 76; 88; 91; 95gB72 : f2; 28; 39; 46; 57; 67; 76; 79; 90; 95gB73 : f3; 28; 39; 46; 54; 57; 76; 79; 88; 95gB74 : f2; 28; 36; 42; 61; 67; 76; 91; 95gB75 : f3; 28; 30; 54; 57; 61; 76; 84; 88; 95gB76 : f2; 28; 30; 57; 61; 67; 76; 84; 90; 95g
Table 6: Designs Invariant Under the Symmetry Group of the Dodecahedron (Part
I)

We discuss how our methods can be used to solve the isomorphism problem
for these designs considering a 5-Sylow subgroupP of A. It can be verified that
no overgroup ofP of order 25 is admitted as an automorphism group of a 3-(20,
4, 1). So apply the algorithm: Compute the transversalT of H := NNG(A)(P )
in NG(P ) of length 1,500. FromT , the groupshA;Agi with g 2 T can be
constructed. There are 13 groups withP as Sylow subgroup (which arenot A20
orS20 = G) falling into 7 conjugacy classes under the action ofNG(P ). Actually,
two of the overgroups (and of course their conjugates) turn out to be automorphism
groups of some designs, as the partial subgroup lattice 4 shows.
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B77 : f3; 28; 30; 52; 58; 76; 84; 90; 95gB78 : f2; 28; 30; 58; 63; 67; 76; 84; 90; 95gB79 : f3; 28; 30; 54; 58; 63; 76; 84; 88; 95gB80 : f11; 28; 39; 54; 58; 67; 76; 79; 95gB81 : f3; 28; 39; 47; 54; 58; 76; 79; 88; 95gB82 : f2; 28; 39; 47; 58; 67; 76; 79; 90; 95gB83 : f15; 46; 54; 57; 67; 76; 85; 92; 95gB84 : f3; 18; 57; 61; 76; 78; 85; 90; 95gB85 : f3; 18; 58; 63; 76; 78; 85; 90; 95gB86 : f15; 47; 54; 58; 67; 76; 85; 92; 95gB87 : f3; 20; 37; 44; 76; 78; 85; 95gB88 : f15; 44; 50; 60; 67; 76; 85; 95gB89 : f12; 20; 36; 44; 67; 76; 85; 95gB90 : f3; 22; 36; 44; 50; 76; 85; 95gB91 : f3; 26; 31; 44; 56; 76; 85; 95gB92 : f9; 26; 31; 44; 67; 76; 85; 95gB93 : f3; 28; 37; 41; 76; 80; 85; 95gB94 : f6; 28; 33; 60; 67; 76; 85; 95gB95 : f2; 28; 36; 44; 58; 67; 76; 85; 90; 95gB96 : f3; 28; 36; 44; 54; 58; 76; 85; 88; 95gB97 : f3; 18; 55; 62; 76; 82; 83; 92gB98 : f13; 18; 55; 67; 76; 82; 83; 92gB99 : f3; 28; 37; 44; 55; 76; 82; 84; 88; 91gB100 : f2; 28; 39; 44; 55; 60; 67; 76; 82; 91gB101 : f3; 28; 31; 44; 55; 62; 76; 82; 83gB102 : f13; 28; 31; 44; 55; 67; 76; 82; 83gB103 : f4; 28; 44; 54; 55; 60; 67; 76; 82; 85gB104 : f3; 28; 37; 44; 55; 76; 82; 85; 87; 90gB105 : f3; 27; 46; 54; 59; 82; 92; 96gB106 : f7; 27; 46; 54; 67; 82; 92; 96gB107 : f14; 21; 46; 54; 67; 73; 82; 96gB108 : f3; 24; 39; 46; 50; 73; 82; 96gB109 : f3; 24; 32; 46; 54; 73; 82; 96gB110 : f3; 20; 39; 46; 52; 74; 82; 96gB111 : f2; 20; 39; 46; 63; 67; 74; 82; 96gB112 : f2; 27; 46; 57; 67; 82; 83; 92; 96gB113 : f16; 39; 46; 57; 67; 82; 91; 92; 96gB114 : f3; 27; 46; 50; 63; 82; 84; 88; 96gB115 : f7; 18; 61; 67; 74; 82; 90; 96g

B116 : f3; 18; 59; 61; 74; 82; 90; 96gB117 : f14; 20; 40; 61; 67; 82; 84; 96gB118 : f14; 21; 40; 61; 67; 82; 90; 96gB119 : f11; 27; 50; 61; 67; 82; 84; 96gB120 : f3; 24; 32; 40; 61; 82; 90; 96gB121 : f3; 27; 47; 50; 61; 82; 84; 88; 96gB122 : f3; 18; 57; 61; 74; 82; 83; 88; 96gB123 : f3; 18; 57; 61; 70; 82; 84; 91; 96gB124 : f2; 20; 39; 47; 61; 67; 74; 82; 96gB125 : f3; 18; 58; 63; 74; 82; 83; 88; 96gB126 : f3; 18; 58; 63; 70; 82; 84; 91; 96gB127 : f2; 27; 47; 58; 67; 82; 83; 92; 96gB128 : f16; 39; 47; 58; 67; 82; 91; 92; 96gB129 : f3; 21; 37; 44; 70; 82; 91; 96gB130 : f16; 32; 44; 60; 67; 82; 91; 96gB131 : f14; 21; 44; 51; 67; 82; 91; 96gB132 : f3; 24; 32; 44; 51; 82; 91; 96gB133 : f7; 25; 31; 44; 67; 82; 91; 96gB134 : f3; 25; 31; 44; 59; 82; 91; 96gB135 : f12; 27; 44; 57; 67; 82; 84; 90; 96gB136 : f3; 22; 39; 44; 54; 57; 74; 82; 96gB137 : f3; 28; 34; 40; 57; 82; 84; 90; 96gB138 : f10; 28; 39; 54; 57; 67; 73; 82; 96gB139 : f3; 28; 37; 42; 72; 82; 91; 96gB140 : f5; 28; 49; 60; 67; 82; 91; 96gB141 : f4; 28; 46; 54; 57; 67; 73; 82; 84; 96gB142 : f4; 28; 40; 57; 61; 67; 82; 84; 90; 96gB143 : f4; 28; 47; 54; 58; 67; 73; 82; 84; 96gB144 : f4; 28; 40; 58; 63; 67; 82; 84; 90; 96gB145 : f4; 28; 44; 51; 57; 67; 82; 84; 91; 96gB146 : f3; 28; 39; 40; 57; 61; 82; 87; 90; 96gB147 : f3; 28; 39; 46; 54; 57; 73; 82; 87; 96gB148 : f3; 28; 39; 40; 58; 63; 82; 87; 90; 96gB149 : f3; 28; 39; 47; 54; 58; 73; 82; 87; 96gB150 : f3; 28; 39; 44; 51; 57; 82; 87; 91; 96gB151 : f4; 28; 41; 51; 63; 67; 82; 85; 96gB152 : f3; 28; 33; 47; 51; 82; 85; 87; 96g
Table 7: Designs Invariant Under the Symmetry Group of the Dodecahedron (Part
II)
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1
P
NA(P )

NNG(A)(P )
NG(A)NG(P ) 4�B1 (3420): 2 2�B2 (960): 12

A (60):152

G (2147483647):0

4�B1 (3420): 2 2�B2 (960): 12

Figure 4: Partial Subgroup Lattice ofS20 Relevant for Certain SQS(20)
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The notation4� B1(3420) : 2 indicates that the conjugacy class of groupB1 of
order 3,420 has length 4, and each of them is automorphism group of 2 designs.
So let us have a look at the overgroups.

4.1.1 GroupB1
GroupB1 is generated by(1; 2; 3; 4; 5)(6; 7; 8; 9; 10)(11; 12; 13; 14; 15)(16; 17; 18; 19; 20)(1; 2; 7; 19; 6)(3; 20; 14; 18; 5)(4; 8; 15; 13; 10)(9; 16; 11; 12; 17)(1; 2; 13; 19; 17)(3; 4; 11; 14; 20)(5; 7; 9; 8; 10)(6; 18; 12; 16; 15)(1; 2; 15; 4; 16)(3; 17; 13; 11; 8)(5; 7; 20; 18; 14)(6; 10; 9; 12; 19)
and is perfect of order 3.420. The orbits ofA on 4-sets are fused to orbits ofB1.
We describe the fusion by a mapping:f1; 2; 6; 9; 15; 18; 24; 25; 30; 32; 33; 38; 41; 42; 45; 51; 52; 53; 57; 61;62; 65; 66; 69; 73; 74; 75; 84; 88; 89; 94g 7! 1f3; 21; 34; 47; 54; 76; 81; 95g 7! 2f4; 7; 12; 19; 23; 26; 31; 35; 43; 55; 56; 63; 68; 70; 79; 85; 87; 90g 7! 3f5; 28; 49; 60; 67; 82; 91; 96g 7! 4f8; 10; 11; 13; 14; 16; 17; 20; 22; 27; 29; 36; 37; 39; 40; 44; 46; 48; 50; 58;59; 64; 71; 72; 77; 78; 80; 83; 86; 92; 93g 7! 5
A solution admits an overgroup as automorphism group, if thesolution vector
calculated above under the groupA is constant (either 0 or 1) on the preimage of
each orbit of the overgroup under the fusion mapping.

This condition is fulfilled for the solutions 58 and 140. There exist 4 conjugate
groups under the action ofNG(P ): the other three groups are admitted by the
designs 51 and 139, designs 94 and 110 and designs 93 and 119 respectively.

4.1.2 GroupB2
GroupB2 is a perfect group of order 960 with the generators(1; 2; 3; 4; 5)(6; 7; 8; 9; 10)(11; 12; 13; 14; 15)(16; 17; 18; 19; 20)(1; 2; 7; 19; 6)(3; 20; 14; 18; 5)(4; 8; 15; 13; 10)(9; 16; 11; 12; 17)(1; 2; 13; 6; 11)(3; 17; 18; 5; 4)(7; 20; 10; 8; 9)(12; 19; 14; 15; 16)(1; 2; 12; 3; 16)(4; 11; 13; 17; 9)(5; 14; 18; 20; 10)(6; 19; 7; 8; 15)
The fusion mapping is the following:
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f1; 8; 9; 12; 16; 19; 20; 22; 50; 51; 53; 56; 64; 70; 71; 89g 7! 1f2; 67; 90g 7! 2f3; 54; 88g 7! 3f4; 6; 11; 31; 52; 66; 80; 83; 87; 91g 7! 4f5; 13; 15; 23; 24; 34; 37; 40; 41; 49; 59; 65; 75; 81; 92; 94g 7! 5f7; 10; 14; 17; 18; 29; 33; 42; 48; 60; 62; 69; 72; 73; 78; 86g 7! 6f21; 26; 27; 32; 43; 46; 57; 61; 68; 74g 7! 7f25; 55; 96g 7! 8f28; 58; 76g 7! 9f30; 63; 84g 7! 10f35; 38; 45; 77; 82; 93g 7! 11f36; 44; 85g 7! 12f39; 47; 79g 7! 13f95g 7! 14
Twelve solutions are invariant under the action ofB2, namely 22, 23, 25, 26, 45,
46, 78, 79, 81, 82, 95 and 96. The conjugate ofB2 is automorphism group of the
designs 27, 28, 29, 30, 31, 32, 141, 142, 145, 146, 147 and 150.

4.1.3 Summary

To summarize, in total 32 designs have bigger automorphism groups. When ap-
plying the same method to the overgroups, no bigger groups are found. Therefore,NNG(A)(P ) acts on the designs of these resp. automorphism groups. We empha-
size that the isomorphism problem has been solved without knowledge of the full
automorphism groups of the designs.

In case of groupB1 3 orbits of designs are obtained, each of length 4. The
numbers of the representatives in Tab. 6 and 7 are 22, 23 and 45. The designs
with the conjugate group as automorphism group are isomorphic to them. We
visualize in Tab. 8 the 3 isomorphism types with the help of the dodecahedron.
The coloured points are the elements of the representative of the block orbit.

The two designs withB2 as automorphism group are isomorphic as well as all
the designs with the conjugate groups as automorphism group. The representative
of this isomorphism class is the design number 58 in Tab. 6 (see Fig. 5).

The other 120 designs not invariant under one of the bigger automorphism
groups fall into 32 orbits. Each representative can be visualized with the help of
the dodecahedron, but we only show the first one in Fig. 6.
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nb. orbit representatives on 4-sets

22

23

45

Table 8: Visualisation of the 3 Isomorphism Types Under GroupB1

Figure 5: Visualisation of the Isomorphism Type of 3-(20, 4,1) Under GroupB2
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Figure 6: Visualisation of one Isomorphism Type of 3-(20, 4,1) Under GroupA
In total, 36 isomorphism types of designs are obtained respecting the symme-

try group of the dodecahedron as prescribed automorphism group. They are listed
in Tab. 9.

Group group order nb. solutions isom. typesA 60 120 324�B1 3,420 2 12�B2 960 12 3
in total: 152 36

Table 9: Isomorphism Types of SQS(20) with Symmetry GroupA of the Dodec-
ahedron

On the Webpage

http://www.mathe2.uni-bayreuth.de/˜discreta/
SOLIDS/dodetypes.htm

all of them can be found visualized with the dodecahedron.

4.1.4 Results for other groups of 3-(20, 4, 1) designs

We have tested some other groups as automorphism groups for SQS on 20 points.
The results of the isomorphism program of DISCRETA for thesegroups are listed
in Tab. 10.

To explain the notation: IfG acts on
1 andH acts on
2, the groupG�H
acts on
1 �
2 componentwise.G+ indicates that a fixed point has been added
to the permutation representation ofG. Finally,G[l℄ means the induced action ofG on l-sets.
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Prescribed groupA group order KM-size # designs # isomorphism types
(order of (Bi ’s are overgroups)

overgroups)Aut(Dode) �= A5 60 (960; 3,420) 21� 96 152 32�A + 3�B1 + 1�B2Aut(hDode; 
ent:inv:i) 120 15� 58 8 4�AS[2℄5 � Id2 120 (720; 1,440) 24� 75 8 3�B1 + 3�B2S[2℄5 � C2 240 (1,440; 1,440) 12� 43 8 3�B1 + 3�B2S[2℄5 twistC2 120 (720; 1,440) 15� 57 16 3�B1 + 3�B2P�L2(9)� C2 2,880 3� 10 2 2�AP�L2(9)� Id2 1,440 6� 15 2 2�AP�L2(9)� C2 1,440 5� 16 4 3�AP�L2(9)� Id2 720 10� 26 4 3�APGL2(9)� C2 1,440 3� 11 2 2�APGL2(9)� Id2 720 6� 16 2 2�APSL2(9)� C2 720 5� 17 4 3�APSL2(9)� Id2 360 10� 27 4 3�AA5+[3℄ 60 (360; 360) 30� 104 16 4�A + 3�B1 + 3�B2S5+[3℄ 120 (720; 1,440) 24� 75 8 4�B1 + 3�B2A[3℄6 360 9� 27 4 3�AS[3℄6 720 (1,440) 7� 21 4 3�B1�S[2℄4 �[3℄
24 63� 236 336 130�A

Table 10: Isomorphism Classification of SQS(20) with Several Automorphism
Groups
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