design clan: 9_31_10
9-(31,10,m*2), 1 <= m <= 5; (5/63) lambda_max=22, lambda_max_half=11
the clan contains 5 families:
- family 0, lambda = 2 containing 2 designs:
minpath=(0, 0, 1) minimal_t=5- 
8-(30,10,21) 
 - 
7-(30,10,161) 7-(29,10,140) 
7-(29,9,21)
 - 
6-(30,10,966) 6-(29,10,805) 6-(28,10,665) 
6-(29,9,161) 6-(28,9,140)
6-(28,8,21)
 - 
5-(30,10,4830) 5-(29,10,3864) 5-(28,10,3059)  5-(27,10,2394) (#7679) 
5-(29,9,966) 5-(28,9,805) 5-(27,9,665)
5-(28,8,161) (#7784) 5-(27,8,140)
5-(27,7,21)
 
 - 
8-(30,10,21) 
 - family 1, lambda = 4 containing 17 designs:
minpath=(0, 0, 0) minimal_t=4- 
9-(31,10,4) 
 - 
8-(31,10,46) 8-(30,10,42) 
8-(30,9,4)
 - 
7-(31,10,368) 7-(30,10,322) 7-(29,10,280) 
7-(30,9,46) 7-(29,9,42)
7-(29,8,4)
 - 
6-(31,10,2300)  6-(30,10,1932) (#11972)  6-(29,10,1610) (#11971)  6-(28,10,1330) (#11654) 
6-(30,9,368) 6-(29,9,322) (#11970) 6-(28,9,280) (#11969)
6-(29,8,46) 6-(28,8,42) (#11944)
6-(28,7,4)
 - 
5-(31,10,11960)  5-(30,10,9660) (#11661)  5-(29,10,7728) (#11660)  5-(28,10,6118) (#11655)  5-(27,10,4788) (#11656) 
5-(30,9,2300) 5-(29,9,1932) (#7997) 5-(28,9,1610) (#7996) 5-(27,9,1330) (#7615)
5-(29,8,368) 5-(28,8,322) (#7819) 5-(27,8,280) (#11946)
5-(28,7,46) 5-(27,7,42) (#11945)
5-(27,6,4)
 - 
4-(31,10,53820) 4-(30,10,41860) 4-(29,10,32200) 4-(28,10,24472) 4-(27,10,18354) 4-(26,10,13566) 
4-(30,9,11960) 4-(29,9,9660) 4-(28,9,7728) 4-(27,9,6118) 4-(26,9,4788)
4-(29,8,2300) 4-(28,8,1932) 4-(27,8,1610) 4-(26,8,1330)
4-(28,7,368) 4-(27,7,322) 4-(26,7,280)
4-(27,6,46) 4-(26,6,42)
4-(26,5,4) (#396)
 
 - 
9-(31,10,4) 
 - family 2, lambda = 6 containing 26 designs:
minpath=(0, 0, 0) minimal_t=5- 
9-(31,10,6) 
 - 
8-(31,10,69) 8-(30,10,63) 
8-(30,9,6)
 - 
7-(31,10,552) 7-(30,10,483)  7-(29,10,420) (#15826) 
7-(30,9,69) 7-(29,9,63)
7-(29,8,6)
 - 
 6-(31,10,3450) (#12218)  6-(30,10,2898) (#12213)  6-(29,10,2415) (#15827)  6-(28,10,1995) (#15829) 
6-(30,9,552) (#12115) 6-(29,9,483) (#12112) 6-(28,9,420) (#15828)
6-(29,8,69) (#11958) 6-(28,8,63) (#11954)
6-(28,7,6) (#11930)
 - 
 5-(31,10,17940) (#12219)  5-(30,10,14490) (#12214)  5-(29,10,11592) (#12215)  5-(28,10,9177) (#15833)  5-(27,10,7182) (#15836) 
5-(30,9,3450) (#11938) 5-(29,9,2898) (#8032) 5-(28,9,2415) (#8031) 5-(27,9,1995) (#7632)
5-(29,8,552) (#11937) 5-(28,8,483) (#7851) 5-(27,8,420) (#11955)
5-(28,7,69) (#11931) 5-(27,7,63) (#11933)
5-(27,6,6) (#11932)
 
 - 
9-(31,10,6) 
 - family 3, lambda = 8 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5- 
8-(30,9,8) 
 - 
7-(30,9,92) 7-(29,9,84) 
7-(29,8,8)
 - 
6-(30,9,736) 6-(29,9,644) 6-(28,9,560) 
6-(29,8,92) 6-(28,8,84) (#11960)
6-(28,7,8)
 - 
 5-(30,9,4600) (#11968)  5-(29,9,3864) (#11967)  5-(28,9,3220) (#11966)  5-(27,9,2660) (#7650) 
5-(29,8,736) (#7892) 5-(28,8,644) (#7891) 5-(27,8,560) (#11962)
5-(28,7,92) (#7767) 5-(27,7,84) (#11961)
5-(27,6,8)
 
 - 
8-(30,9,8) 
 - family 4, lambda = 10 containing 8 designs:
minpath=(0, 1, 0) minimal_t=4- 
8-(30,9,10) 
 - 
7-(30,9,115) 7-(29,9,105) 
7-(29,8,10)
 - 
6-(30,9,920) 6-(29,9,805) 6-(28,9,700) 
6-(29,8,115) 6-(28,8,105) (#11939)
6-(28,7,10)
 - 
5-(30,9,5750)  5-(29,9,4830) (#8113)  5-(28,9,4025) (#8112)  5-(27,9,3325) (#7667) 
5-(29,8,920) 5-(28,8,805) (#7927) 5-(27,8,700) (#11941)
5-(28,7,115) 5-(27,7,105) (#11940)
5-(27,6,10)
 - 
4-(30,9,29900) 4-(29,9,24150) 4-(28,9,19320) 4-(27,9,15295) 4-(26,9,11970) 
4-(29,8,5750) 4-(28,8,4830) 4-(27,8,4025) 4-(26,8,3325)
4-(28,7,920) 4-(27,7,805) 4-(26,7,700)
4-(27,6,115) 4-(26,6,105)
4-(26,5,10) (#394)
 
 - 
8-(30,9,10) 
 
created: Fri Oct 23 11:20:57 CEST 2009