´

# design clan: 9_20_10

9-(20,10,m*1), 1 <= m <= 5; (5/49) lambda_max=11, lambda_max_half=5
the clan contains 5 families:
• family 0, lambda = 1 containing 4 designs:

minpath=(0, 0, 0) minimal_t=3
• 9-(20,10,1)

• 8-(20,10,6) 8-(19,10,5)
8-(19,9,1)

• 7-(20,10,26) 7-(19,10,20) 7-(18,10,15)
7-(19,9,6) 7-(18,9,5)
7-(18,8,1)

• 6-(20,10,91) 6-(19,10,65) 6-(18,10,45) 6-(17,10,30)
6-(19,9,26) 6-(18,9,20) 6-(17,9,15)
6-(18,8,6) 6-(17,8,5)
6-(17,7,1)

• 5-(20,10,273) (#930) 5-(19,10,182) 5-(18,10,117) 5-(17,10,72) 5-(16,10,42)
5-(19,9,91) 5-(18,9,65) (#748) 5-(17,9,45) 5-(16,9,30)
5-(18,8,26) 5-(17,8,20) 5-(16,8,15)
5-(17,7,6) 5-(16,7,5)
5-(16,6,1)

• 4-(20,10,728) 4-(19,10,455) 4-(18,10,273) 4-(17,10,156) 4-(16,10,84) 4-(15,10,42)
4-(19,9,273) 4-(18,9,182) 4-(17,9,117) 4-(16,9,72) 4-(15,9,42)
4-(18,8,91) 4-(17,8,65) 4-(16,8,45) 4-(15,8,30)
4-(17,7,26) 4-(16,7,20) 4-(15,7,15)
4-(16,6,6) (#50) 4-(15,6,5)
4-(15,5,1)

• 3-(20,10,1768) 3-(19,10,1040) 3-(18,10,585) 3-(17,10,312) 3-(16,10,156) 3-(15,10,72) 3-(14,10,30)
3-(19,9,728) 3-(18,9,455) 3-(17,9,273) 3-(16,9,156) 3-(15,9,84) 3-(14,9,42)
3-(18,8,273) 3-(17,8,182) 3-(16,8,117) 3-(15,8,72) 3-(14,8,42)
3-(17,7,91) 3-(16,7,65) 3-(15,7,45) 3-(14,7,30)
3-(16,6,26) 3-(15,6,20) 3-(14,6,15)
3-(15,5,6) 3-(14,5,5) (#1)
3-(14,4,1)

• family 1, lambda = 2 containing 9 designs:

minpath=(0, 0, 0) minimal_t=4
• family 2, lambda = 3 containing 12 designs:

minpath=(0, 0, 0) minimal_t=4
• family 3, lambda = 4 containing 12 designs:

minpath=(0, 0, 0) minimal_t=4
• family 4, lambda = 5 containing 12 designs:

minpath=(0, 0, 0) minimal_t=4

created: Fri Oct 23 11:20:56 CEST 2009

University of Bayreuth -