design clan: 8_37_12
8-(37,12,m*21), 1 <= m <= 565; (33/321) lambda_max=23751, lambda_max_half=11875
the clan contains 33 families: 
- family 0, lambda = 3360 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,3360) (#16786) 
 - 
 6-(36,11,20160) (#16787)  6-(35,11,16800) (#16789) 
 6-(35,10,3360) (#16788) 
 - 
 5-(36,11,104160) (#16793)  5-(35,11,84000) (#16795)  5-(34,11,67200) (#16803) 
 5-(35,10,20160) (#16794)  5-(34,10,16800) (#16800) 
 5-(34,9,3360) (#16799) 
 
 - family 1, lambda = 4200 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,4200) (#16805) 
 - 
 6-(36,11,25200) (#16806)  6-(35,11,21000) (#16808) 
 6-(35,10,4200) (#16807) 
 - 
 5-(36,11,130200) (#16812)  5-(35,11,105000) (#16814)  5-(34,11,84000) (#16822) 
 5-(35,10,25200) (#16813)  5-(34,10,21000) (#16819) 
 5-(34,9,4200) (#16818) 
 
 - family 2, lambda = 4536 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,4536) (#16824) 
 - 
 6-(36,11,27216) (#16825)  6-(35,11,22680) (#16827) 
 6-(35,10,4536) (#16826) 
 - 
 5-(36,11,140616) (#16831)  5-(35,11,113400) (#16833)  5-(34,11,90720) (#16841) 
 5-(35,10,27216) (#16832)  5-(34,10,22680) (#16838) 
 5-(34,9,4536) (#16837) 
 
 - family 3, lambda = 4935 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,4935) (#16843) 
 - 
 6-(36,11,29610) (#16844)  6-(35,11,24675) (#16846) 
 6-(35,10,4935) (#16845) 
 - 
 5-(36,11,152985) (#16850)  5-(35,11,123375) (#16852)  5-(34,11,98700) (#16860) 
 5-(35,10,29610) (#16851)  5-(34,10,24675) (#16857) 
 5-(34,9,4935) (#16856) 
 
 - family 4, lambda = 5040 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,5040) (#16862) 
 - 
 6-(36,11,30240) (#16863)  6-(35,11,25200) (#16865) 
 6-(35,10,5040) (#16864) 
 - 
 5-(36,11,156240) (#16869)  5-(35,11,126000) (#16871)  5-(34,11,100800) (#16879) 
 5-(35,10,30240) (#16870)  5-(34,10,25200) (#16876) 
 5-(34,9,5040) (#16875) 
 
 - family 5, lambda = 5271 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,5271) (#16881) 
 - 
 6-(36,11,31626) (#16882)  6-(35,11,26355) (#16884) 
 6-(35,10,5271) (#16883) 
 - 
 5-(36,11,163401) (#16888)  5-(35,11,131775) (#16890)  5-(34,11,105420) (#16898) 
 5-(35,10,31626) (#16889)  5-(34,10,26355) (#16895) 
 5-(34,9,5271) (#16894) 
 
 - family 6, lambda = 5376 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,5376) (#16900) 
 - 
 6-(36,11,32256) (#16901)  6-(35,11,26880) (#16903) 
 6-(35,10,5376) (#16902) 
 - 
 5-(36,11,166656) (#16907)  5-(35,11,134400) (#16909)  5-(34,11,107520) (#16917) 
 5-(35,10,32256) (#16908)  5-(34,10,26880) (#16914) 
 5-(34,9,5376) (#16913) 
 
 - family 7, lambda = 5775 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,5775) (#16919) 
 - 
 6-(36,11,34650) (#16920)  6-(35,11,28875) (#16922) 
 6-(35,10,5775) (#16921) 
 - 
 5-(36,11,179025) (#16926)  5-(35,11,144375) (#16928)  5-(34,11,115500) (#16936) 
 5-(35,10,34650) (#16927)  5-(34,10,28875) (#16933) 
 5-(34,9,5775) (#16932) 
 
 - family 8, lambda = 5880 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,5880) (#16938) 
 - 
 6-(36,11,35280) (#16939)  6-(35,11,29400) (#16941) 
 6-(35,10,5880) (#16940) 
 - 
 5-(36,11,182280) (#16945)  5-(35,11,147000) (#16947)  5-(34,11,117600) (#16955) 
 5-(35,10,35280) (#16946)  5-(34,10,29400) (#16952) 
 5-(34,9,5880) (#16951) 
 
 - family 9, lambda = 6111 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,6111) (#16957) 
 - 
 6-(36,11,36666) (#16958)  6-(35,11,30555) (#16960) 
 6-(35,10,6111) (#16959) 
 - 
 5-(36,11,189441) (#16964)  5-(35,11,152775) (#16966)  5-(34,11,122220) (#16974) 
 5-(35,10,36666) (#16965)  5-(34,10,30555) (#16971) 
 5-(34,9,6111) (#16970) 
 
 - family 10, lambda = 6216 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,6216) (#16976) 
 - 
 6-(36,11,37296) (#16977)  6-(35,11,31080) (#16979) 
 6-(35,10,6216) (#16978) 
 - 
 5-(36,11,192696) (#16983)  5-(35,11,155400) (#16985)  5-(34,11,124320) (#16993) 
 5-(35,10,37296) (#16984)  5-(34,10,31080) (#16990) 
 5-(34,9,6216) (#16989) 
 
 - family 11, lambda = 6615 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,6615) (#16995) 
 - 
 6-(36,11,39690) (#16996)  6-(35,11,33075) (#16998) 
 6-(35,10,6615) (#16997) 
 - 
 5-(36,11,205065) (#17002)  5-(35,11,165375) (#17004)  5-(34,11,132300) (#17012) 
 5-(35,10,39690) (#17003)  5-(34,10,33075) (#17009) 
 5-(34,9,6615) (#17008) 
 
 - family 12, lambda = 6720 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,6720) (#17014) 
 - 
 6-(36,11,40320) (#17015)  6-(35,11,33600) (#17017) 
 6-(35,10,6720) (#17016) 
 - 
 5-(36,11,208320) (#17021)  5-(35,11,168000) (#17023)  5-(34,11,134400) (#17031) 
 5-(35,10,40320) (#17022)  5-(34,10,33600) (#17028) 
 5-(34,9,6720) (#17027) 
 
 - family 13, lambda = 7056 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,7056) (#17033) 
 - 
 6-(36,11,42336) (#17034)  6-(35,11,35280) (#17036) 
 6-(35,10,7056) (#17035) 
 - 
 5-(36,11,218736) (#17040)  5-(35,11,176400) (#17042)  5-(34,11,141120) (#17050) 
 5-(35,10,42336) (#17041)  5-(34,10,35280) (#17047) 
 5-(34,9,7056) (#17046) 
 
 - family 14, lambda = 7455 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,7455) (#17052) 
 - 
 6-(36,11,44730) (#17053)  6-(35,11,37275) (#17055) 
 6-(35,10,7455) (#17054) 
 - 
 5-(36,11,231105) (#17059)  5-(35,11,186375) (#17061)  5-(34,11,149100) (#17069) 
 5-(35,10,44730) (#17060)  5-(34,10,37275) (#17066) 
 5-(34,9,7455) (#17065) 
 
 - family 15, lambda = 7560 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,7560) (#17071) 
 - 
 6-(36,11,45360) (#17072)  6-(35,11,37800) (#17074) 
 6-(35,10,7560) (#17073) 
 - 
 5-(36,11,234360) (#17078)  5-(35,11,189000) (#17080)  5-(34,11,151200) (#17088) 
 5-(35,10,45360) (#17079)  5-(34,10,37800) (#17085) 
 5-(34,9,7560) (#17084) 
 
 - family 16, lambda = 7791 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,7791) (#17090) 
 - 
 6-(36,11,46746) (#17091)  6-(35,11,38955) (#17093) 
 6-(35,10,7791) (#17092) 
 - 
 5-(36,11,241521) (#17097)  5-(35,11,194775) (#17099)  5-(34,11,155820) (#17107) 
 5-(35,10,46746) (#17098)  5-(34,10,38955) (#17104) 
 5-(34,9,7791) (#17103) 
 
 - family 17, lambda = 7896 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,7896) (#17109) 
 - 
 6-(36,11,47376) (#17110)  6-(35,11,39480) (#17112) 
 6-(35,10,7896) (#17111) 
 - 
 5-(36,11,244776) (#17116)  5-(35,11,197400) (#17118)  5-(34,11,157920) (#17126) 
 5-(35,10,47376) (#17117)  5-(34,10,39480) (#17123) 
 5-(34,9,7896) (#17122) 
 
 - family 18, lambda = 8295 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,8295) (#17128) 
 - 
 6-(36,11,49770) (#17129)  6-(35,11,41475) (#17131) 
 6-(35,10,8295) (#17130) 
 - 
 5-(36,11,257145) (#17135)  5-(35,11,207375) (#17137)  5-(34,11,165900) (#17145) 
 5-(35,10,49770) (#17136)  5-(34,10,41475) (#17142) 
 5-(34,9,8295) (#17141) 
 
 - family 19, lambda = 8400 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,8400) (#17147) 
 - 
 6-(36,11,50400) (#17148)  6-(35,11,42000) (#17150) 
 6-(35,10,8400) (#17149) 
 - 
 5-(36,11,260400) (#17154)  5-(35,11,210000) (#17156)  5-(34,11,168000) (#17164) 
 5-(35,10,50400) (#17155)  5-(34,10,42000) (#17161) 
 5-(34,9,8400) (#17160) 
 
 - family 20, lambda = 8631 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,8631) (#17166) 
 - 
 6-(36,11,51786) (#17167)  6-(35,11,43155) (#17169) 
 6-(35,10,8631) (#17168) 
 - 
 5-(36,11,267561) (#17173)  5-(35,11,215775) (#17175)  5-(34,11,172620) (#17183) 
 5-(35,10,51786) (#17174)  5-(34,10,43155) (#17180) 
 5-(34,9,8631) (#17179) 
 
 - family 21, lambda = 9240 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,9240) (#17215) 
 - 
 6-(36,11,55440) (#17216)  6-(35,11,46200) (#17218) 
 6-(35,10,9240) (#17217) 
 - 
 5-(36,11,286440) (#17222)  5-(35,11,231000) (#17224)  5-(34,11,184800) (#17232) 
 5-(35,10,55440) (#17223)  5-(34,10,46200) (#17229) 
 5-(34,9,9240) (#17228) 
 
 - family 22, lambda = 9471 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,9471) (#17234) 
 - 
 6-(36,11,56826) (#17235)  6-(35,11,47355) (#17237) 
 6-(35,10,9471) (#17236) 
 - 
 5-(36,11,293601) (#17241)  5-(35,11,236775) (#17243)  5-(34,11,189420) (#17251) 
 5-(35,10,56826) (#17242)  5-(34,10,47355) (#17248) 
 5-(34,9,9471) (#17247) 
 
 - family 23, lambda = 9576 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,9576) (#17253) 
 - 
 6-(36,11,57456) (#17254)  6-(35,11,47880) (#17256) 
 6-(35,10,9576) (#17255) 
 - 
 5-(36,11,296856) (#17260)  5-(35,11,239400) (#17262)  5-(34,11,191520) (#17270) 
 5-(35,10,57456) (#17261)  5-(34,10,47880) (#17267) 
 5-(34,9,9576) (#17266) 
 
 - family 24, lambda = 9975 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,9975) (#17272) 
 - 
 6-(36,11,59850) (#17273)  6-(35,11,49875) (#17275) 
 6-(35,10,9975) (#17274) 
 - 
 5-(36,11,309225) (#17279)  5-(35,11,249375) (#17281)  5-(34,11,199500) (#17289) 
 5-(35,10,59850) (#17280)  5-(34,10,49875) (#17286) 
 5-(34,9,9975) (#17285) 
 
 - family 25, lambda = 10080 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,10080) (#16634) 
 - 
 6-(36,11,60480) (#16635)  6-(35,11,50400) (#16637) 
 6-(35,10,10080) (#16636) 
 - 
 5-(36,11,312480) (#16641)  5-(35,11,252000) (#16643)  5-(34,11,201600) (#16651) 
 5-(35,10,60480) (#16642)  5-(34,10,50400) (#16648) 
 5-(34,9,10080) (#16647) 
 
 - family 26, lambda = 10311 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,10311) (#16653) 
 - 
 6-(36,11,61866) (#16654)  6-(35,11,51555) (#16656) 
 6-(35,10,10311) (#16655) 
 - 
 5-(36,11,319641) (#16660)  5-(35,11,257775) (#16662)  5-(34,11,206220) (#16670) 
 5-(35,10,61866) (#16661)  5-(34,10,51555) (#16667) 
 5-(34,9,10311) (#16666) 
 
 - family 27, lambda = 10416 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,10416) (#16672) 
 - 
 6-(36,11,62496) (#16673)  6-(35,11,52080) (#16675) 
 6-(35,10,10416) (#16674) 
 - 
 5-(36,11,322896) (#16679)  5-(35,11,260400) (#16681)  5-(34,11,208320) (#16689) 
 5-(35,10,62496) (#16680)  5-(34,10,52080) (#16686) 
 5-(34,9,10416) (#16685) 
 
 - family 28, lambda = 10500 containing 1 designs:
minpath=(0, 4, 0) minimal_t=4
 - family 29, lambda = 10815 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,10815) (#16691) 
 - 
 6-(36,11,64890) (#16692)  6-(35,11,54075) (#16694) 
 6-(35,10,10815) (#16693) 
 - 
 5-(36,11,335265) (#16698)  5-(35,11,270375) (#16700)  5-(34,11,216300) (#16708) 
 5-(35,10,64890) (#16699)  5-(34,10,54075) (#16705) 
 5-(34,9,10815) (#16704) 
 
 - family 30, lambda = 11151 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,11151) (#16729) 
 - 
 6-(36,11,66906) (#16730)  6-(35,11,55755) (#16732) 
 6-(35,10,11151) (#16731) 
 - 
 5-(36,11,345681) (#16736)  5-(35,11,278775) (#16738)  5-(34,11,223020) (#16746) 
 5-(35,10,66906) (#16737)  5-(34,10,55755) (#16743) 
 5-(34,9,11151) (#16742) 
 
 - family 31, lambda = 11655 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,11655) (#16748) 
 - 
 6-(36,11,69930) (#16749)  6-(35,11,58275) (#16751) 
 6-(35,10,11655) (#16750) 
 - 
 5-(36,11,361305) (#16755)  5-(35,11,291375) (#16757)  5-(34,11,233100) (#16765) 
 5-(35,10,69930) (#16756)  5-(34,10,58275) (#16762) 
 5-(34,9,11655) (#16761) 
 
 - family 32, lambda = 11760 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
- 
 7-(36,11,11760) (#16767) 
 - 
 6-(36,11,70560) (#16768)  6-(35,11,58800) (#16770) 
 6-(35,10,11760) (#16769) 
 - 
 5-(36,11,364560) (#16774)  5-(35,11,294000) (#16776)  5-(34,11,235200) (#16784) 
 5-(35,10,70560) (#16775)  5-(34,10,58800) (#16781) 
 5-(34,9,11760) (#16780) 
 
 
created: Fri Oct 23 11:20:54 CEST 2009