design clan: 6_24_8
6-(24,8,m*3), 1 <= m <= 25; (16/22) lambda_max=153, lambda_max_half=76
the clan contains 16 families:
- family 0, lambda = 3 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 - family 1, lambda = 6 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 - family 2, lambda = 12 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 - family 3, lambda = 15 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 - family 4, lambda = 21 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 - family 5, lambda = 24 containing 2 designs:
minpath=(0, 0, 0) minimal_t=4- 
6-(24,8,24) 
 - 
 5-(24,8,152) (#5329) 5-(23,8,128) 
5-(23,7,24)
 - 
4-(24,8,760) 4-(23,8,608) 4-(22,8,480) 
4-(23,7,152) 4-(22,7,128)
4-(22,6,24) (#378)
 
 - 
6-(24,8,24) 
 - family 6, lambda = 30 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 - family 7, lambda = 33 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 - family 8, lambda = 39 containing 2 designs:
minpath=(0, 0, 0) minimal_t=4- 
6-(24,8,39) 
 - 
 5-(24,8,247) (#5443) 5-(23,8,208) 
5-(23,7,39)
 - 
4-(24,8,1235) 4-(23,8,988) 4-(22,8,780) 
4-(23,7,247) 4-(22,7,208)
4-(22,6,39) (#381)
 
 - 
6-(24,8,39) 
 - family 9, lambda = 42 containing 2 designs:
minpath=(0, 0, 0) minimal_t=4- 
6-(24,8,42) 
 - 
 5-(24,8,266) (#5466) 5-(23,8,224) 
5-(23,7,42)
 - 
4-(24,8,1330) 4-(23,8,1064) 4-(22,8,840) 
4-(23,7,266) 4-(22,7,224)
4-(22,6,42) (#382)
 
 - 
6-(24,8,42) 
 - family 10, lambda = 48 containing 2 designs:
minpath=(0, 0, 0) minimal_t=4- 
6-(24,8,48) 
 - 
 5-(24,8,304) (#5513) 5-(23,8,256) 
5-(23,7,48)
 - 
4-(24,8,1520) 4-(23,8,1216) 4-(22,8,960) 
4-(23,7,304) 4-(22,7,256)
4-(22,6,48) (#384)
 
 - 
6-(24,8,48) 
 - family 11, lambda = 57 containing 2 designs:
minpath=(0, 0, 0) minimal_t=4- 
6-(24,8,57) 
 - 
 5-(24,8,361) (#5583) 5-(23,8,304) 
5-(23,7,57)
 - 
4-(24,8,1805) 4-(23,8,1444) 4-(22,8,1140) 
4-(23,7,361) 4-(22,7,304)
4-(22,6,57) (#386)
 
 - 
6-(24,8,57) 
 - family 12, lambda = 60 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 - family 13, lambda = 66 containing 2 designs:
minpath=(0, 0, 0) minimal_t=4- 
6-(24,8,66) 
 - 
 5-(24,8,418) (#5650) 5-(23,8,352) 
5-(23,7,66)
 - 
4-(24,8,2090) 4-(23,8,1672) 4-(22,8,1320) 
4-(23,7,418) 4-(22,7,352)
4-(22,6,66) (#388)
 
 - 
6-(24,8,66) 
 - family 14, lambda = 69 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 - family 15, lambda = 75 containing 1 designs:
minpath=(1, 0, 0) minimal_t=5 
created: Fri Oct 23 11:20:42 CEST 2009