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LINEAR CODES

q = prime number,
Prime fields: Fq = {1, . . . , q} (mod q),
Finite fields (Galois fields): Fq: q prime power,
Linear [n, k , d ]-code C over Fq is:

k -dimensional subspace of V (n, q),
minimum distance d = minimal number of positions in which
two distinct codewords differ.
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LINEAR CODES

Generator matrix of [n, k , d ]-code C

G = (g1 · · ·gn)

G = (k × n) matrix of rank k ,
rows of G form basis of C,
codeword of C = linear combination of rows of G.
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LINEAR CODES

Parity check matrix H for C

(n − k)× n matrix of rank n − k ,
c ∈ C ⇔ c · HT = 0̄.
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REMARK

Remark: For linear [n, k , d ]-code C, n, k , d do not change
when column gi in generator matrix

G = (g1 · · ·gn)

is replaced by non-zero scalar multiple.
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FROM VECTOR SPACE TO PROJECTIVE SPACE
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THE FANO PLANE PG(2, 2)

From V (3, 2) to PG(2, 2)
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PG(3, 2)

From V (4, 2) to PG(3, 2)
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GRIESMER BOUND AND MINIHYPERS

Question: Given

dimension k ,
minimal distance d ,

find minimal length n of [n, k , d ]-code over Fq.
Result: Griesmer (lower) bound

n ≥
k−1∑
i=0

⌈
d
qi

⌉
= gq(k , d).
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MINIHYPERS AND GRIESMER BOUND

Equivalence: (Hamada and Helleseth)

Griesmer (lower) bound
equivalent with

minihypers in finite projective spaces
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DEFINITION

DEFINITION

{f , m; k − 1, q}-minihyper F is:

set of f points in PG(k − 1, q),
F intersects every (k − 2)-dimensional space in at least m
points.

(m-fold blocking sets with respect to the hyperplanes of
PG(k − 1, q))
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MINIHYPERS AND GRIESMER BOUND

Let C = [gq(k , d), k , d ]-code over Fq.
If generator matrix

G = (g1 · · ·gn),

minihyper = PG(k − 1, q) \ {g1, . . . , gn}.
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MINIHYPERS AND GRIESMER BOUND
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EXAMPLE

Example: Griesmer [8,4,4]-code over F2

G =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0


minihyper = PG(3, 2)\ {columns of G} = plane (X0 = 0).
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CORRESPONDING MINIHYPER
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OTHER EXAMPLES

Example 1. Subspace PG(µ, q) in PG(k − 1, q) = minihyper of
[n = (qk − qµ+1)/(q − 1), k , qk−1 − qµ]-code (McDonald code).
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BOSE-BURTON THEOREM

THEOREM (BOSE-BURTON)

A minihyper consisting of |PG(µ, q)| points intersecting every
hyperplane in at least |PG(µ− 1, q)| points is equal to a
µ-dimensional space PG(µ, q).
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RAJ CHANDRA BOSE

R.C. Bose and R.C. Burton, A characterization of flat spaces in
a finite geometry and the uniqueness of the Hamming and the
McDonald codes. J. Combin. Theory, 1:96-104, 1966.
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OTHER EXAMPLES

Example 2. t < q pairwise disjoint subspaces PG(µ, q)i ,
i = 1, . . . , t , in PG(k − 1, q) = minihyper of
[n = (qk − 1)/(q− 1)− t(qµ+1 − 1)/(q− 1), k , qk−1 − tqµ]-code.
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CHARACTERIZATION RESULT

THEOREM (GOVAERTS AND STORME)

For q odd prime and 1 ≤ t ≤ (q + 1)/2,
[n = (qk − 1)/(q − 1)− t(qµ+1 − 1)/(q − 1), k , qk−1 − tqµ]-code
C: minihyper is union of t pairwise disjoint PG(µ, q).
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OTHER CHARACTERIZATION RESULTS

Minihypers involving subspaces of different dimension:
Hamada, Helleseth, and Maekawa: ε0 points, ε1 lines, . . .,
εk−2 PG(k − 2, q), where

∑k−2
i=0 εi <

√
q + 1,

De Beule, Metsch, and Storme: improvements to Hamada,
Helleseth, and Maekawa.
For q prime,

∑k−2
i=0 εi < (q + 1)/2.

Minihypers involving subgeometries over F√q in
PG(k − 1, q), q square:

Govaerts and Storme,
De Beule, Hallez, Metsch, and Storme.
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WELL-KNOWN EXTENDABILITY RESULT

THEOREM

Every linear binary [n, k , d ]-code C, d odd, is extendable to
linear binary [n + 1, k , d + 1]-code.
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HILL-LIZAK RESULT

THEOREM (HILL AND LIZAK)

Let C be linear [n, k , d ]-code over Fq, with gcd(d , q) = 1 and
with all weights congruent to 0 or d (mod q). Then C can be
extended to [n + 1, k , d + 1]-code all of whose weights are
congruent to 0 or d + 1 (mod q).

Proof: Subcode of all codewords of weight congruent to 0
(mod q) is linear subcode C0 of dimension k − 1. If G0 defines
C0 and

G =

(
x

G0

)
,

then
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HILL-LIZAK RESULT

Ĝ =


x 1

0

G0
...
0


defines C.
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GEOMETRICAL COUNTERPART OF LANDJEV

DEFINITION

Multiset K in PG(k − 1, q) is (n, w ; k − 1, q)-multiarc or
(n, w ; k − 1, q)-arc if

1 sum of all weights of points of K is n,
2 hyperplane H of PG(k − 1, q) contains at most w

(weighted) points of K and some hyperplane H0 contains
w (weighted) points of K .
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LINEAR CODES AND MULTIARCS

Let C = [n, k , d ]-code over Fq.
If generator matrix

G = (g1 · · ·gn),

then {g1, . . . , gn} = (n, w = n − d ; k − 1, q)-multiarc.
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LINEAR CODES AND MULTIARCS
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GEOMETRICAL COUNTERPART OF LANDJEV

C linear [n, k , d ]-code over Fq, gcd(d , q) = 1 and with all
weights congruent to 0 or d (mod q). Then C can be
extended to [n + 1, k , d + 1]-code all of whose weight are
congruent to 0 or d + 1 (mod q).
K =(n, w ; k − 1, q)-multiarc with gcd(n − w , q) = 1 and
intersection size of K with all hyperplanes congruent to n
or w (mod q). Then K can be extended to
(n + 1, w ; k − 1, q)-multiarc.
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GEOMETRICAL COUNTERPART OF LANDJEV

Proof: Hyperplanes H containing n (mod q) points of K form
dual blocking set B̃ with respect to codimension 2 subspaces of
PG(k − 1, q). Also

B̃ =
qk−1 − 1

q − 1
.

By dual of Bose-Burton, B̃ consists of all hyperplanes through
particular point P.
This point P extends K to (n + 1, w ; k − 1, q)-multiarc.
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BLOCKING SETS IN PG(2, q)

DEFINITION

Blocking set B in PG(2, q): intersects every line in at least one
point.

Trivial example: Line.

DEFINITION

Non-trivial blocking set in PG(2, q): contains no line.
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BLOCKING SETS IN PG(2, q)

q + r(q) + 1 = size of smallest non-trivial blocking set in
PG(2, q).

(Blokhuis) r(q) = (q + 1)/2 for q > 2 prime,
(Bruen) r(q) =

√
q + 1 for q square,

(Polverino) r(q) = q2/3 + q1/3 + 1 for q cube power.
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IMPROVED RESULTS

THEOREM (LANDJEV AND ROUSSEVA)

Let K be (n, w ; k − 1, q)-arc, q = ps, with spectrum (ai)i≥0. Let
w 6≡ n (mod q) and∑

i 6≡w (mod q)

ai < qk−2 + qk−3 + · · ·+ 1 + qk−3 · r(q), (1)

where q + r(q) + 1 is minimal size of non-trivial blocking set of
PG(2, q). Then K is extendable to (n + 1, w ; k − 1, q)-arc.
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IMPROVED RESULTS

THEOREM

Let C be non-extendable [n, k , d ]-code over Fq, q = ps, with
gcd(d , q) = 1. If (Ai)i≥0 is the spectrum of C, then∑

i 6≡0,d (mod q) Ai ≥ qk−3 · r(q), where q + r(q) + 1 is minimal
size of non-trivial blocking set of PG(2, q).
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IMPROVED RESULTS

Let C be [n, k , d ]-code over Fq with k ≥ 3 and with
gcd(d , q) = 1, and with spectrum (Ai)i≥0.
Define

Φ0 =
1

q − 1

∑
q|i,i 6=0

Ai , Φ1 =
1

q − 1

∑
i 6≡0,d (mod q)

Ai .

The pair (Φ0,Φ1) is the diversity of C.
Theorem of Hill and Lizak states that every linear code with
Φ1 = 0 is extendable.
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IMPROVED RESULTS

THEOREM (MARUTA)

Let q ≥ 5 be odd prime power and let k ≥ 3. For linear
[n, k , d ]-code C over Fq with d ≡ −2 (mod q) and with diversity
(Φ0,Φ1) such that Ai = 0 for all i 6≡ 0,−1,−2 (mod q), the
following results are equivalent:

1 C is extendable.
2 (Φ0,Φ1) ∈ {(vk−1, 0), (vk−1, 2qk−2), (vk−1 + (ρ−

2)qk−2, 2qk−2)} ∪ {(vk−1 + iqk−2, (q − 2i)2k−2 | i =
1, . . . , ρ− 1}, where ρ = (q + 1)/2.

Furthermore, if 1. and 2. are valid and if
(Φ0,Φ1) 6= (vk−1 + (ρ− 2)qk−2, 2qk−2), then C is doubly
extendable.
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DEFINITION

DEFINITION

Let C be linear [n, k , d ]-code over Fq. The covering radius of C
is smallest integer R such that every n-tuple in Fn

q lies at
Hamming distance at most R from codeword in C.

THEOREM

Let C be linear [n, k , d ]-code over Fq with parity check matrix

H = (h1 · · ·hn).

Then covering radius of C is equal to R if and only if every
(n − k)-tuple over Fq can be written as linear combination of at
most R columns of H.
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DEFINITION

DEFINITION

Let S be subset of PG(N, q). The set S is called ρ-saturating
when every point P from PG(N, q) can be written as linear
combination of at most ρ + 1 points of S.

Covering radius ρ for linear [n, k , d ]-code
equivalent with

(ρ− 1)-saturating set in PG(n − k − 1, q)
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1-SATURATING SETS
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2-SATURATING SETS
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1-SATURATING SET IN PG(3, q) OF SIZE 2q + 2
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1-SATURATING SET IN PG(3, q) OF SIZE 2q + 2
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EXAMPLE OF ÖSTERGÅRD AND DAVYDOV

Let Fq = {a1 = 0, a2, . . . , aq}.

H1 =


1 · · · 1 0 0 0 · · · 0
a1 · · · aq 1 0 0 · · · 0
a2

1 · · · a2
q 0 0 1 · · · 1

0 · · · 0 0 1 a2 · · · aq


Columns of H1 define 1-saturating set of size 2q + 1 in
PG(3, q).
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EXAMPLE OF ÖSTERGÅRD AND DAVYDOV
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EXAMPLE OF ÖSTERGÅRD AND DAVYDOV

H2 =



1 · · · 1 0 0 · · · 0 0 · · · 0 0
a1 · · · aq 1 0 · · · 0 0 · · · 0 0
a2

1 · · · a2
q 0 1 · · · 1 0 · · · 0 0

0 · · · 0 0 a2 · · · aq a2
1 · · · a2

q 0
0 · · · 0 0 0 · · · 0 a1 · · · aq 1
0 · · · 0 0 0 · · · 0 1 · · · 1 0

 ,

Columns of H2 define 2-saturating set of size 3q + 1 in
PG(5, q).

Leo Storme Galois geometries contributing to coding theory



Coding theory
Griesmer bound and minihypers

Extendability results and blocking sets
Covering radius and saturating sets

Linear MDS codes and arcs

EXAMPLE OF ÖSTERGÅRD AND DAVYDOV
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LINEAR MDS CODES AND ARCS

Question:
Given

length n,
dimension k ,

find maximal value of d .
Result: Singleton (upper) bound

d ≤ n − k + 1.

Notation: MDS code = [n, k , n − k + 1]-code.
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ARCS

Equivalence:

Singleton (upper) bound (MDS codes)
equivalent with

Arcs in finite projective spaces (Segre)
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DEFINITION

DEFINITION

n-Arc in PG(k − 1, q): set of n points, every k linearly
independent.

Example: n-arc in PG(2, q): n points, no three collinear.
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NORMAL RATIONAL CURVE

Classical example of arc:

{(1, t , . . . , tk−1)||t ∈ Fq} ∪ {(0, . . . , 0, 1)}

defines [q + 1, k , d = q + 2− k ]-GDRS (Generalized
Doubly-Extended Reed-Solomon) code with generator matrix

G =


1 · · · 1 0
t1 · · · tq 0
...

...
...

...
tk−2
1 · · · tk−2

q 0
tk−1
1 · · · tk−1

q 1


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CHARACTERIZATION RESULT

THEOREM (SEGRE, THAS)
For

q odd prime power,
2 ≤ k <

√
q/4,

[n = q + 1, k , d = q + 2− k ]-MDS code is GDRS.
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TECHNIQUE USED BY SEGRE AND THAS

n-Arc in PG(2, q): set of n points, no three collinear.
Dual n-arc in PG(2, q): set of n lines, no three concurrent.

Consequence: Point of PG(2, q) lies on zero, one, or two lines
of dual n-arc.
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POINTS ON ONE LINE OF DUAL n-ARC
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TECHNIQUE USED BY SEGRE AND THAS

THEOREM (SEGRE)

Points of PG(2, q), q odd, belonging to one line of dual n-arc in
PG(2, q) belong to algebraic curve Γ of degree 2(q + 2− n).

If n large (close to q + 1), then Γ contains q + 1− n lines,
extending dual n-arc to dual (q + 1)-arc.

THEOREM (VOLOCH)
For

q odd prime,
2 ≤ k < q/45,

[n = q + 1, k , d = q + 2− k ]-MDS code is GDRS.
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BALL RESULT

THEOREM (BALL)

For q odd prime, n ≤ q + 1 for every [n, k , n− k + 1]-MDS code.

Technique: Polynomial techniques
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Thank you very much for your attention!
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