Abstract

Local distributions of *q*-ary perfect codes and *q*-ary centered functions

Anastasia Yu. Vasil'eva

Sobolev Institute of Mathematics, 630090, Novosibirsk, prosp. Ak. Koptyuga, 4 RUSSIA

We study perfect codes with distance 3 in the space F_q^n with Hamming metric. Centered functions generalizes perfect codes: the sum of function values over an arbitrary radius 1 ball is constant (say, equals zero). The nontrivial (i.e. nonconstant) centered functions exist for $n \equiv 1 \mod q$.

Let γ be a k-dimensional subcube of F_q^n and $\mathbf{a} \in \gamma$. For a function $f: F_q^n \longrightarrow \mathbf{R}$ denote $v_i^{\mathbf{a}}(\gamma) = \sum f(\mathbf{x})$, where the summation is taken over all $\mathbf{x} \in \gamma$ at distance *i* from $\mathbf{a}, i = 0, 1, \ldots, k$. The vector $v = (v_0^{\mathbf{a}}(\gamma), v_1^{\mathbf{a}}(\gamma), \ldots, v_0^{\mathbf{a}}(\gamma))$ is called a local distribution of the function over γ with respect to \mathbf{a} , or a (γ, \mathbf{a}) -local distribution.

Let γ and γ^{\perp} be two orthogonal subcubes of F_q^n and a form its intersection. Then the (γ, \mathbf{a}) -local distribution uniquiely determines the $(\gamma^{\perp}, \mathbf{a})$ -local distribution. The main results are following. First, we obtain the formula for the generating function of $(\gamma^{\perp}, \mathbf{a})$ -local distribution in terms of the components of (γ, \mathbf{a}) -local distribution. Then we obtain the explicit formula for the components of $(\gamma^{\perp}, \mathbf{a})$ -local distribution. Then we obtain the explicit formula for the components of $(\gamma^{\perp}, \mathbf{a})$ -local distribution. Then we obtain the explicit formula for the components of $(\gamma^{\perp}, \mathbf{a})$ -local distribution $v_i^{\mathbf{a}}(\gamma^{\perp}), i = 0, 1, \ldots, n - k$. This formula can be useful for reconstructing an arbitrary centered function in a ball from its values over the corresponding sphere.