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Abstract. We give further results on the question of code optimality for linear codes over finite
Frobenius rings for the homogeneous weight. This article improves on the existing Plotkin bound
derived in an earlier paper [4], and suggests a version of a Singleton bound. We also present some
families of codes meeting these new bounds.
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Introduction

The homogeneous weight, discovered by Heise and Constantinescu [2], has emerged as important in the
context of finite rings. Examples of homogeneous weights include the Hamming weight on finite fields and
the Lee weight on Z4 . The homogeneous weight may be viewed as a natural generalisation of the Hamming
weight for codes over finite rings.
Many of the classical bounds for codes over finite fields have found an equivalent expression for finite ring
codes for the homogeneous weight. The Plotkin and Elias bounds have been given in [4]. In [1], a linear
programming bound is derived. In this note we present further bounds for codes over finite Frobenius rings
for the homogeneous weight. We give a refinement of the Plotkin bound given in [4] for linear codes. We also
suggest a Singleton-like bound.

1 Technical Preliminaries

In all that follows, let R be a finite ring with identity. The character group of the additive group of
R is denoted by R̂ := HomZ(R, C×) . This group has the structure of an R - R -bimodule by defining
χr(x) := χ(rx) and rχ(x) := χ(xr) for all r, x ∈ R , and for all χ ∈ R̂ . Summarizing elements from [6] we
come to the following definition:

Definition 1. A finite ring R is called a Frobenius ring if RR̂ ∼= RR , in which case RR̂ := {rχ | r ∈ R}
for some left-generating character χ .
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The results presented here involve two weight functions on elements Rn . The first is the Hamming weight,
which counts the number of the nonzero components of a word c ∈ Rn or equivalently its support size; we
denote it by `(c) . The second is the homogeneous weight, defined as follows.

Definition 2. A weight w on the finite ring R is called (left) homogeneous, if w(0) = 0 and the following
is true:

(H1) If Rx = Ry then w(x) = w(y) for all x, y ∈ R .

(H2) There exists a real number γ such that∑
y∈Rx

w(y) = γ |Rx| for all x ∈ R \ {0} .

Up to the choice of γ , every finite ring admits a unique (left) homogeneous weight [3, Theorem 1.3].

Example 3. If R is a local Frobenius ring R with residue field GF (q) then the function

w : R −→ R, x 7→


0 : x = 0,
q

q−1 : x ∈ soc(R), x 6= 0,

1 : otherwise,

is a homogeneous weight of average value γ = 1 .

Example 4. On the ring R of 2× 2 matrices over GF (2) the weight

w : R −→ R, x 7→

0 : x = 0,
2 : x singular, x 6= 0,
1 : otherwise,

is a homogeneous weight of average value γ = 3
2 .

The weight function w on R is additively extended to a weight on the R -module RRn , i.e.

w(c) :=
n∑

i=1

w(ci), for c ∈ Rn

We use the notation [n, d] to denote a linear code in RRn with minimum homogeneous weight d . If R is
a finite field then the notion of dimension of a linear code is well defined and we write [n, k, d] to denote a
linear code of length n , dimension k and minimum weight d . We write (n, M, d) to denote a nonlinear
code over a finite field of length n and minimum distance d with M words.

2 Shortened and Residual Codes

We construct new codes from a given code by ‘shortening’ and puncturing. The results of this section will
be applied in later sections to derive further bounds.
Given a linear code C ≤ RRn and word c ∈ Rn , we define the code

Sho(C, c) := {z ∈ C | supp(z) ⊂ supp(c)}, Res(C, c) := {(zi)i/∈supp(c) | z ∈ C}.

Denoting by πc the projection of Rn onto the coordinates not contained in supp(c) , it is clear that
Sho(C, c) = ker(πc) ∩ C and Res(C, c) = πc(C) . Moreover, these codes are related by C/Sho(C, c) ∼=
Res(C, c) .
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Lemma 5. Let C ≤ RRn be a linear code, and let x ∈ Rn . Then

1
|C|

∑
c∈C

w(x + c) = γ|supp(C)|+ w(πc(x)).

In general there is no relationship between Sho(C, x) and Rx , but for x ∈ C we observe that Sho(C, x) ≥
Rx . The following lemma gives conditions for which we have equality.

Lemma 6. Let C ≤ RRn be a linear code of homogeneous minimum weight d , and let c be a word in C
that satisfies `(c) < d

γ . Then Sho(C, c) = Rc .

Corollary 7. Let C ≤ RRn be a linear [n, d] code, and let c ∈ C satisfy `(c) < d
γ . Then Res(C, c) is an

[n− `(c),≥ d− γ`(c)] code satisfying |Res(C, c)| = |C|/|Rc| .

Example 8. Let C be the linear Z4 -octacode, which has 256 words and minimum Lee distance 6 (cf. [5]).
It contains the word c = [0, 0, 0, 2, 0, 2, 2, 2] which satisfies γ`(c) = 4 < 6 = d (recall γ = 1 when the
homogeneous weight coincides with the Lee weight on Z4 ). Clearly, |Rc| = 2 and we puncture C on the
coordinates 4, 6, 7, 8 to obtain C1 = Res(C, c) , which by Corollary 7 is a linear [4, d1 ≥ 2] code of size 128.
(In fact d1 = 2 here). Considering the Gray image of C1 we arrive at an (8, 128, 2) code that obviously
meets the (finite-field coding theory) Singleton bound. For this reason we deduce that C1 is an optimal
linear [4, 2] code.

3 A Refinement of the Plotkin Bound

If a linear code C ≤ RRn has maximal support, meaning |supp(C)| = n , then by observations in [4] or by
applying Lemma 5 we find

|C| − 1
|C|

d ≤ 1
|C|

∑
c∈C

w(c) = γn. (1)

We combine this observation with the following theorem to obtain a Plotkin-like bound for linear codes.

Theorem 9. Let C ≤ RRn be a linear [n, d] code satisfying n < d
γ . Then

|C| ≤ |Rc| d− γ`

d− γn

for any c ∈ C such that ` := `(c) < d
γ .

Example 10. Let m ∈ N and let n = m×(|R|m−1) . Let C ≤ RRn be the Simplex code, which is generated
by the m × n matrix G whose columns comprise the distinct nonzero elements of Rm . It is not hard to
see that C is a constant weight code of homogeneous weight γ|R|m . Moreover, n = |R|m − 1 < |R|m = d

γ

and `(c) ≤ n < d
γ for each word c ∈ C . For any word c = xG ∈ C we have

`(c) = |R|m − |x⊥| = |R|m − |R|m

|Rc|
,

thus the upper bound on |C| determined by Theorem 9 met sharply by |C| .

Corollary 11. Let C ≤ RRn be a linear code of minimum homogeneous weight d and minimum Hamming
weight ` where ` ≤ n ≤ d

γ . Then

|C| ≤ |R| d− γ`

d− γn
.
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It is straightforward to verify that for linear codes, this gives a refinement of the Plotkin bound given in [4]

for ` <
d

γ
< `

|R|
|R| − 1

.

In fact we can do even better, taking into account some properties of R .

Corollary 12. Let C ≤ RRn be a linear code of minimum homogeneous weight d and minimum Hamming
weight ` where ` < n ≤ d

γ . Let Q be the maximum size of any minimal ideal of R . Then

|C| ≤ Q
d− γ`

d− γn
.

Example 13. We again study the Simplex Code, this time over the ring R of all 2×2 -matrices over F2 . This
code is of length n = 16m − 1 for suitable m , and its minimum Hamming weight of is 16m − 16m

4 = 3
416m .

The ring R has 3 minimal ideals, each of size 4 , and and so from Corollary 12 we have

16m = |C| ≤ 4
16mγ − 3

416mγ

16mγ − (16m − 1)γ
= 4

16m

4
= 16m.

3.1 A Singleton bound

Let C be an [n, d] code over R satisfying n ≤ d

γ
. If there exists some codeword c ∈ C satisfying

` = `(c) < n ≤ d

γ
then from Corollary 7, C1 := Res(C, c) is an [n1, d1] code over R , isomorphic to C/Rc

with d1 ≥ d− γ` and

n1 = n− ` ≤ d

γ
− ` ≤ d1

γ
.

Let C0 := C . We now construct a sequence of [ni, di] codes Ci as follows. For each i , as long as there
exists some ci ∈ Ci with Hamming weight `i := `(ci) < ni , define Ci+1 := Res(Ci, c

i) . By assumption,
n ≤ d

γ , which implies that `i < ni = ni−1 − `i < di

γ for each i ≥ 1 . Therefore, from Lemma 6 we have a
finite sequence of codes

C = C0, C1
∼= C/Rc, C2

∼= C1/Rc1, ..., Cr
∼= Cr−1/Rcr−1

of length r + 1 for some nonnegative integer r . Moreover, for each i ∈ {1, ..., r} we have

|Ci| =
|Ci−1|
|Rci−1|

=
|C|

|Rc0| · · · |Rci−1|
and di ≥ di−1 − γ`i−1 > 0. (2)

Observe that the final code Cr has the property that each of its non-zero words has constant Hamming
weight nr , so taking any further quotients by cr ∈ Cr results in a code of length zero. We may write
Cr = Sho(Cr, c

r) for any cr ∈ Cr . Since it may occur that `(cr) := `r = nr = dr

γ we cannot apply Lemma
6 to determine that Cr = Sho(Cr, c

r) = Rcr . However, by a simple counting argument it can be shown that
|Cr| ≤ |R| : if there are more than |R| words in C then at least one pair of words of C have the same
symbol in a given position, in which case their difference is a word of Hamming weight less than n .
From (2) we have

|C| = |Rc0||Rc1| · · · |Rcr−1||Cr|. (3)

The existence of such a sequence of r + 1 codes leads to the following inequality.

n =
r∑

i=0

`i ≥
|Rc| − 1
|Rc|

d

γ
+

r∑
i=1

`i ≥
|Rc| − 1
|Rc|

d

γ
+ r, (4)

This gives a type of Singleton bound for the homogeneous weight:
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Theorem 14. Let C be an [n, d] code over R satisfying n ≤ d
γ and `(C) < n . Let P := max{|Ra| : a ∈

Rn, Ra ≤ C, `(a) < n} . Then

n−
⌈

P − 1
P

d

γ

⌉
≥ dlogP |C| − logP |R|e .

Corollary 15. Let C be an [n, d] code over R satisfying n < d
γ , and let Q := max{|Ra| : a ∈ Rn, Ra ≤

C} . Then

n−
⌈

Q− 1
Q

d

γ

⌉
≥

⌈
logQ |C| − 1

⌉
.

We may deduce the following weaker result directly from (3).

Proposition 16. Let C ≤ RRn be an [n, d] linear code and suppose that n ≤ d
γ . Then

n−
⌈
|R| − 1
|R|

d

γ

⌉
≥

⌈
log|R| |C| − 1

⌉
.

We give an example of an MDS code over a finite chain ring R , using points from the projective Hjelmslev
geometry.

Example 17. Let R be a chain ring of length 2 with socR ' R/radR ' GF (q) . Then R× = R\radR
and |R| = q2 . Let F := R2\radR2 . We denote by PHG(R2) the projective Hjelmslev line, with points
P = {xR : x ∈ F} . PHG(R2) has q2 + q distinct points.
Let C < RRn be the length n := q2 + q code with 2 × n generator matrix G = [g1, ..., gn] whose
columns comprise elements of R2 corresponding to distinct points in PHG(R2) . Clearly `(c) < n for
each c ∈ C . C is free of rank 2 and the maximal cyclic submodules of C have size P := |R| = q2 . Let
r = dlogP |C| − 1e = logq2 q4 − 1 = 1 . Setting γ = 1 , each word xG of C has weight

w(xG) = |J1|+
q

q − 1
|J2| =

{
q2 + q

q−1 (q − 1) = q2 + q if x ∈ F

q2 q
q−1 = q3

q−1 if x ∈ radR2 ,

where J1 = {j | x · gj ∈ R×} and J2 = {j | x · yj ∈ radR\{0}} . Then d = n = q2 + q and

n−
⌈

q2 − 1
q2

d

⌉
= n−

⌈
q2 − 1

q2
(q2 + q)

⌉
= n−

⌈
q2 + q − 1− 1

q

⌉
= q2 + q − q2 − q + 1 = 1 = r,

which meets the bound given in Theorem 14.
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