Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance

Axel Kohnert Karlsruhe December 18, 2008

Bayreuth University Germany axel.kohnert@uni-bayreuth.de

Overview

Designs

Network Codes

Construction

• a set of v points

• a set of v points

a set of blocks (block = set of points)

a set of v points

a set of blocks (block = set of points)

• $t - (v, k, \lambda)$ Design

a set of v points

a set of blocks (block = set of points)

• $t-(v,k,\lambda)$ Design each block is a k-set each t-set of points is in exactly λ blocks

a set of v points

a set of blocks (block = set of points)

• $t-(v,k,\lambda)$ Design each block is a k-set each t-set of points is in exactly λ blocks

a set of v points

```
a, b, c, d, e, f, g
```

a set of blocks (block = set of points)

```
abe, adg, acf, bcg, bdf, cde, efg
```

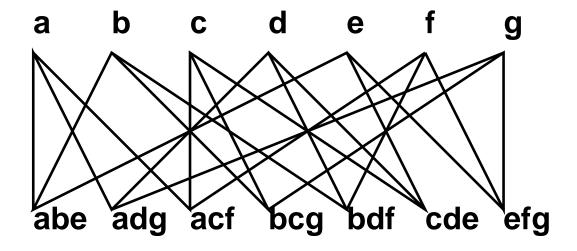
• $t-(v,k,\lambda)$ Design each block is a k-set each t-set of points is in exactly λ blocks

a set of v points

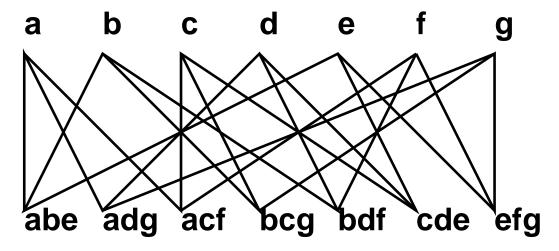
a set of blocks (block = set of points)

• $t-(v,k,\lambda)$ Design each block is a k-set each t-set of points is in exactly λ blocks

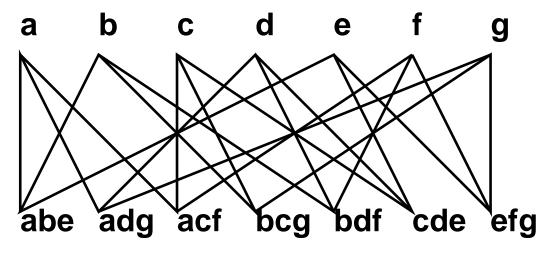
$$2 - (7, 3, 1)$$
 design



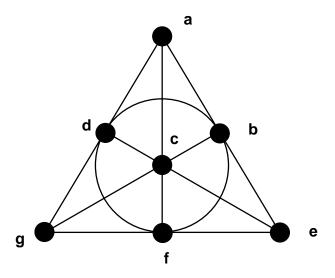
Heawood graph



Heawood graph



Fano plane



a set of v points

a set of k-blocks

• $t - (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks

- a set of v points linear v-space $GF(q)^v$
- a set of k-blocks

• $t - (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks

- a set of v points linear v-space $GF(q)^v$
- a set of k-blocks a set of k-spaces in $GF(q)^v$
- $t (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks

- a set of v points linear v-space $GF(q)^v$
- a set of k-blocks a set of k-spaces in $GF(q)^v$
- $t (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks
 - $t-(v,k,\lambda)$ q- Design each t- space of $GF(q)^v$ is in exactly λ of the k- spaces

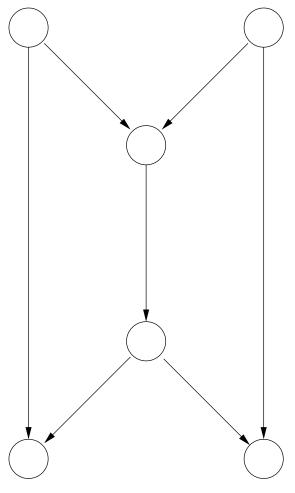
Current State

known:

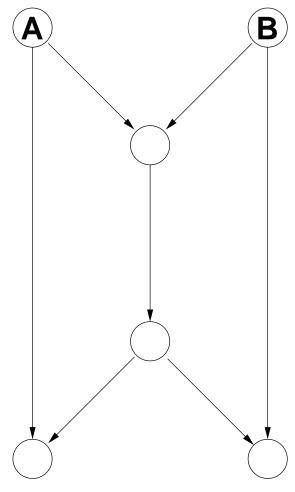
- Thomas (1987): first to study, 2—designs
- Braun, Kerber, Laue (2005): first 3-design

open problems:

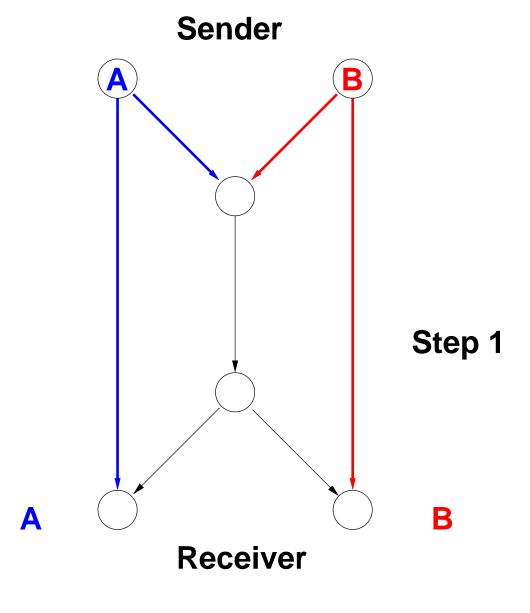
- q-analog of the Fano plane?
- Steiner systems ? $(\lambda = 1)$
- t > 3?

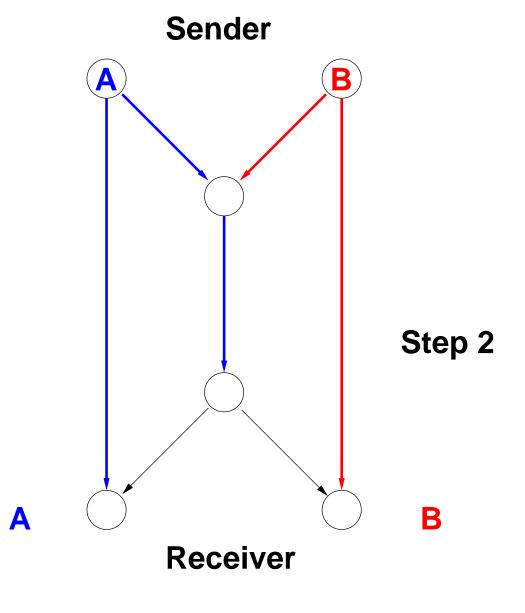


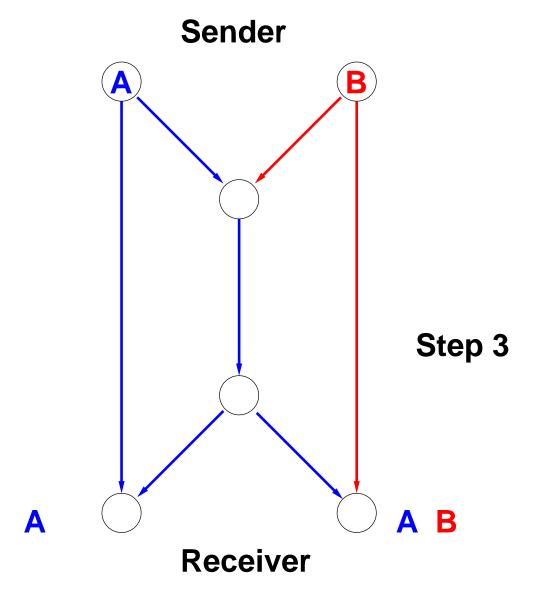
Receiver

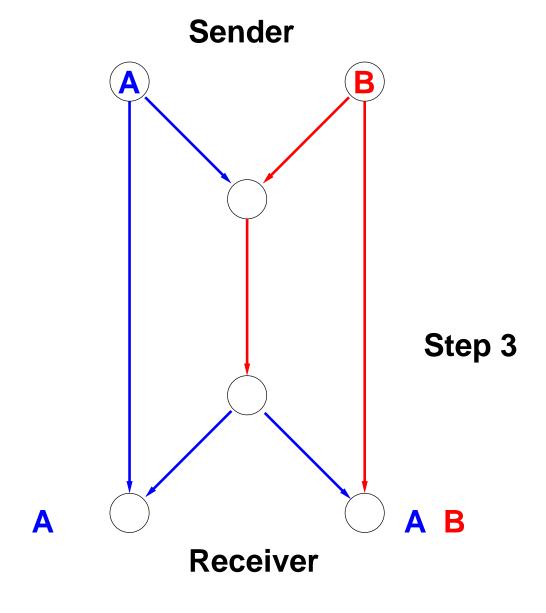


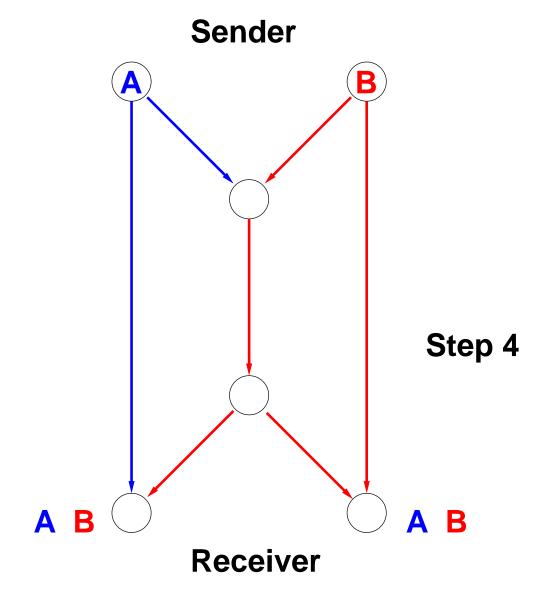
Receiver

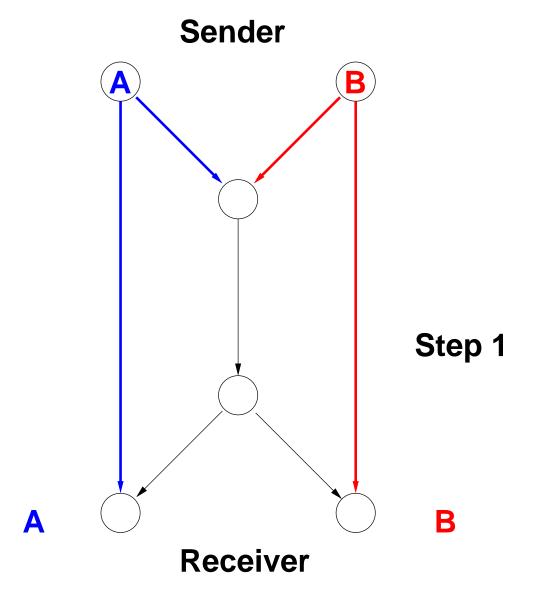


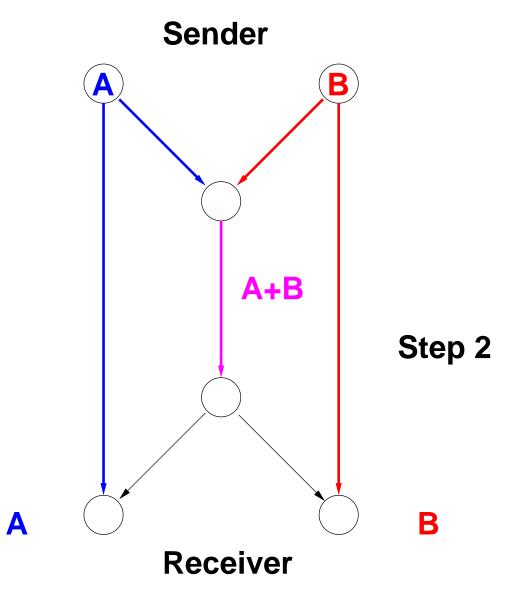


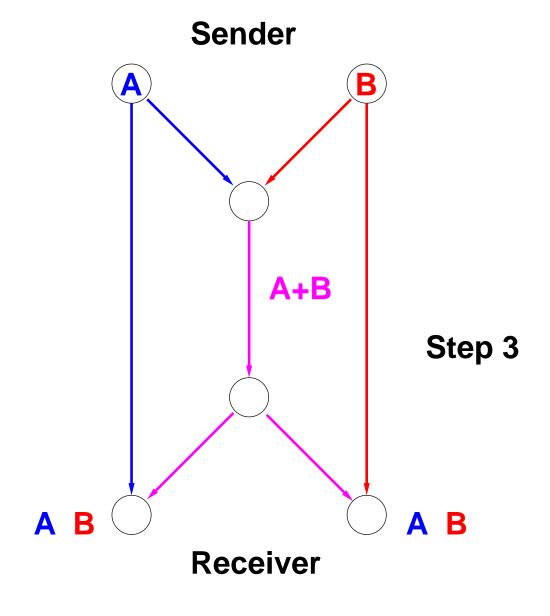












message:

linear space

message:

linear space

single node:

- receives vectors
- sends some linear combination of the incoming vectors

codeword:

• linear subspace of $GF(q)^v$

codeword:

• linear subspace of $GF(q)^v$

distance d:

• distance in the Hasse diagram of the linear lattice of all subspaces of $GF(q)^v$

codeword:

• linear subspace of $GF(q)^v$

distance d:

• distance in the Hasse diagram of the linear lattice of all subspaces of $GF(q)^v$

U, W subspace of $GF(q)^v$:

$$d(U, W) = dim(U) + dim(W) - 2dim(U \cap W)$$

fix minimum distance d:

Find a set of subspaces in $GF(q)^v$ such that the pairwise distance is at least d

fix minimum distance d:

Find a set of subspaces in $GF(q)^v$ such that the pairwise distance is at least d

fix also dimension k of the subspaces:

Find a set of k-subspaces in $GF(q)^v$ such that the pairwise distance is at least 2d

Error-Correcting Network Codes

fix minimum distance d:

Find a set of subspaces in $GF(q)^v$ such that the pairwise distance is at least d

fix also dimension k of the subspaces:

Find a set of k-subspaces in $GF(q)^v$ such that the pairwise distance is at least 2d

constant dimension codes \approx constant weight codes

Codes and Designs

Given a t - (v, k, 1) q-design we get a constant dimension code with minimum distance 2(k - (t - 1)) as the intersection of two codewords has dimension < t - 1.

Codes and Designs

Given a t - (v, k, 1) q-design we get a constant dimension code with minimum distance 2(k - (t - 1)) as the intersection of two codewords has dimension < t - 1.

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in exactly 1 k-subspace

= Steiner system

Codes and Designs

Given a t - (v, k, 1) q-design we get a constant dimension code with minimum distance 2(k - (t - 1)) as the intersection of two codewords has dimension < t - 1.

Find a set of k- subspaces in $GF(q)^v$ such that each t- subspace is in exactly 1 k- subspace

= Steiner system

Find a set of k- subspaces in $GF(q)^v$ such that each t- subspace is in at most 1 k- subspace

= error-correcting network code

Current State

Define $A_q(v, k, d)$ as the maximal size (= number of codewords) of a constant dimension code with minimum distance d, dimension of codewords = k, and ambient space = $GF(q)^v$

Current State

Define $A_q(v, k, d)$ as the maximal size (= number of codewords) of a constant dimension code with minimum distance d, dimension of codewords = k, and ambient space = $GF(q)^v$

open problems:

- find lower and upper bounds for $A_q(v, k, d)$
- find constructions of 'good' codes
- special case $A_2(7,3,4)$ = Fano plane

Construction

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in at most 1 k-subspace = error-correcting network code

Find a set of k- subspaces in $GF(q)^v$ such that each t- subspace is in at most 1 k- subspace

= error-correcting network code

D:= incidence matrix between k-spaces and t-spaces in $GF(q)^v$

$$D_{U\!,V} := \begin{cases} 1 & t\text{-space } U \text{ is subspace of } k - \text{space } W \\ 0 & \text{else} \end{cases}$$

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \ldots, x_s)$ such that

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \dots, x_s)$ such that

• $x_1 + \ldots + x_s$ as large as possible

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \ldots, x_s)$ such that

• $x_1 + \ldots + x_s$ as large as possible

•
$$Dx^T \le \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \ldots, x_s)$ such that

• $x_1 + \ldots + x_s$ as large as possible

•
$$Dx^T \le \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

solution = network code with minimum distance 2(k-t+1).

Automorphisms

Automorphism φ on $GF(q)^v$: $U < W \iff U^{\varphi} < W^{\varphi}$ G subgroup of $Aut(GF(q)^v)$

Automorphisms

Automorphism φ on $GF(q)^v$: $U < W \iff U^{\varphi} < W^{\varphi}$ G subgroup of $Aut(GF(q)^v)$

- shrink matrix D by: adding columns of elements in the same orbit of G on the k-spaces
- \Rightarrow rows of elements in the same orbit on the t-spaces are identical

Automorphisms

Automorphism φ on $GF(q)^v$: $U < W \iff U^{\varphi} < W^{\varphi}$ G subgroup of $Aut(GF(q)^v)$

- shrink matrix D by: adding columns of elements in the same orbit of G on the k-spaces
- \Rightarrow rows of elements in the same orbit on the t-spaces are identical
 - $D^G :=$ shrinked matrix
- \Rightarrow number of columns = number of orbits on k-spaces number of rows = number of orbits on t-spaces

 b_1, \ldots, b_m orbit sizes on k-spaces. Find a 0/1-solution $x = (x_1, \ldots, x_m)$ such that

 b_1, \ldots, b_m orbit sizes on k-spaces. Find a 0/1-solution $x = (x_1, \ldots, x_m)$ such that

• $b_1x_1 + \ldots + b_mx_m$ as large as possible

 b_1, \ldots, b_m orbit sizes on k-spaces. Find a 0/1-solution $x = (x_1, \ldots, x_m)$ such that

• $b_1x_1 + \ldots + b_mx_m$ as large as possible

$$D^G x^T \le \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

 b_1, \ldots, b_m orbit sizes on k-spaces. Find a 0/1-solution $x = (x_1, \ldots, x_m)$ such that

• $b_1x_1 + \ldots + b_mx_m$ as large as possible

$$D^G x^T \le \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

solution = network code with prescribed automorphisms and minimum distance 2(k-t+1).

Results (binary)

v	k	number of codewords: new	old	d
6	3	77	71	4
7	3	304	294	4
8	3	1275	1164	4
9	3	5621	4657	4
10	3	21483	18631	4
11	3	79833	74531	4
12	3	315315	298139	$\overline{4}$

Last Page

A. Kohnert, S. Kurz: Construction of Large Constant Dimension Codes With a Prescribed Minimum Distance, LNCS, 2008.

R. Kötter, F. Kschischang: *Coding for errors and erasures in random network coding*, IEEE Transactions on Information Theory, **54**, 3579–3590, 2008.

Thank you very much for your attention.

