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Agenda

• Network Codes

• Finding Codes (construction)

• Using Codes (decoding)
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I - Network Codes
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Network Codes

Modell (Kötter, Kschischang)
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Network Codes

Modell (Kötter, Kschischang)
one codeword:

• vectorspace V < F
v
2

one vertex in the network:
• receives several vi ∈ V

• sends random combination
of the vi (= EXOR)

Sender

Receiver

A B

AB
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Error Correcting Network Codes

codeword:
• subspace of F

v
2
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Error Correcting Network Codes

codeword:
• subspace of F

v
2

distance d:
• graph theoretic distance in the Hasse diagram of

the subspace lattice of F
v
2

U, W < F
v
2 :

d(U, W) = dim(U) + dim(W)− 2dim(U ∩ W)
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Error Correcting Network Codes

for a fixed d:

find a set of subspaces of F
v
2 with pairwise

distances ≥ d
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Error Correcting Network Codes

for a fixed d:

find a set of subspaces of F
v
2 with pairwise

distances ≥ d

fix also dimension k of the subspaces:

find a set of k−dimensional subspaces of F
v
2

with pairwise distances ≥ 2d

constant dimension codes ≈ q− analog of constant
weight codes
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II - Construction
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Problem

original problem

find a set of k−dimensional subspaces of F
v
2

with pairwise distances ≥ 2d
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Problem

original problem

find a set of k−dimensional subspaces of F
v
2

with pairwise distances ≥ 2d

modified version

find k−dim. subspaces {V1, . . . , Vb} in F
v
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the pairwise intersection is at most 1−dimensional
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Problem

original problem

find a set of k−dimensional subspaces of F
v
2

with pairwise distances ≥ 2d

modified version

find k−dim. subspaces {V1, . . . , Vb} in F
v
2 such that

the pairwise intersection is at most 1−dimensional

⇒ code with minimum distance ≥ 2(k − 1)
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Singer Cycle

• On F
v
2 acts the Singer cycle S

• i.e. multiplication in F2v with non-zero elements
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Singer Cycle

• On F
v
2 acts the Singer cycle S

• i.e. multiplication in F2v with non-zero elements

• inducing action of S on the k−spaces

find a Singer orbit O on the k−dim. subspaces of
F

v
2 such that the pairwise intersection of the

Vi ∈ O is at most 1−dimensional
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Singer Cycle

• typical Singer orbit on k−spaces has 2v − 1
elements

• like in the case of the action on F
v
2
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Singer Cycle

• typical Singer orbit on k−spaces has 2v − 1
elements

• like in the case of the action on F
v
2

• for v large enough there are ’good’ orbits having
above 1−dim. intersection property

• good orbit ⇒ code with 2v − 1 codewords and
minimum distance ≥ 2(k − 1)
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Description of Singer orbit

• Given a k−dimensional space V < F
v
2

• take all the nonzero vectors {u1, . . . , u2k−1}

• action of S is multiplication in F2v
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Description of Singer orbit
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action of S
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Description of Singer orbit

• Given a k−dimensional space V < F
v
2

• take all the nonzero vectors {u1, . . . , u2k−1}

• action of S is multiplication in F2v

• pairwise quotients ui/uj are invariant under the
action of S

• describe a complete orbit by the pairwise quotients
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Example

k = 3 , 3−space = {0, 1, 4, 10, 18, 23, 25}
= exponents of a generator of F

∗
2v (only for the example)
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Example

k = 3 , 3−space = {0, 1, 4, 10, 18, 23, 25}
= exponents of a generator of F

∗
2v (only for the example)

orbit graph GO
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good orbits

Lemma: O is a good orbit ⇐⇒ all the pairwise
quotients are different
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good orbits

Lemma: O is a good orbit ⇐⇒ all the pairwise
quotients are different

find a k−dim. subspace of F
v
2 such that the

pairwise quotients are all different

⇒code with 2v − 1 codewords and minimum distance
≥ 2(k − 1)
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good orbits

Lemma: O is a good orbit ⇐⇒ all the pairwise
quotients are different

find a k−dim. subspace of F
v
2 such that the

pairwise quotients are all different

⇒code with 2v − 1 codewords and minimum distance
≥ 2(k − 1)

find a set {V1, . . . , Vb} of k−dim. subspace of F
v
2

such that all the pairwise quotients are all
different

⇒ code with b (2v − 1) codewords and minimum
distance ≥ 2(k − 1)
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results

number of
v k b codewords dS = 2d

15 3 555 555 ·
(

215 − 1
)

= 18185685 4

16 3 1056 69204960 4

17 3 2108 276297668 4

18 3 4032 1056960576 4
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III - Decoding
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Decoding

• special case b = 1

• number of codewords 2v − 1

• message is a 3−space V < F
v
2
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Decoding

• special case b = 1

• number of codewords 2v − 1

• message is a 3−space V < F
v
2

as d = 4: two possible cases in decoding:
• erasure (we received a 2−space U < V)
• error (i.e. we received a 4−space U > V)
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Erasure

• received a 2−space U = {x1, x2, x3, 0} < V
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Erasure

• received a 2−space U = {x1, x2, x3, 0} < V

• compute x1/x2.
• identify an edge {x1, x2} in orbit graph GO

• multiply x1 with an edgelabel u from GO giving a
third base element ux1 of V = 〈x1, x2, ux1〉
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Erasure

• received a 2−space U = {x1, x2, x3, 0} < V

• compute x1/x2.
• identify an edge {x1, x2} in orbit graph GO

• multiply x1 with an edgelabel u from GO giving a
third base element ux1 of V = 〈x1, x2, ux1〉

• costs: one multiplication and one division in F2v
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Error

• received a 4−space U > V
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Error

• received a 4−space U > V

• choose a random 3−subspace W < U, we know:
W ∩ V is at least 2−dimensional
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Error

• received a 4−space U > V

• choose a random 3−subspace W < U, we know:
W ∩ V is at least 2−dimensional

• loop over the 7 2−dim subspaces of W

• one of it is a 2−dim subspace of V and we can
apply the erasure algorithm, including a check
whether the third constructed vector is in V
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Error

• received a 4−space U > V

• choose a random 3−subspace W < U, we know:
W ∩ V is at least 2−dimensional

• loop over the 7 2−dim subspaces of W

• one of it is a 2−dim subspace of V and we can
apply the erasure algorithm, including a check
whether the third constructed vector is in V

• worst case costs: 7 divisions and 7 multiplications
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Generalisations

• it works for b > 1

• it works for k > 3
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