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Abstract—Based on ideas of Kötter and Kschischang [6] we use
constant dimension subspaces as codewords in a network. We
show a connection to the theory of q-analogues of a combinatorial
designs, which has been studied in [1] as a purely combinatorial
object. For the construction of network codes we successfully
modified methods (construction with prescribed automorphisms)
originally developed for the q-analogues of a combinatorial
designs. We then give a special case of that method which allows
the construction of network codes with a very large ambient
space and we also show how to decode such codes with a very
small number of operations.

network coding, q-analogue of Steiner systems, subspace
codes, constant dimension subspace codes, decoding, Singer
cycle

I. INTRODUCTION

A. Subspace Codes

In [6] R. Kötter and F. R. Kschischang developed the theory
of subspace codes for applications in network coding. We
will modify their presentation in some way. We denote by
L(GF (q)v) the lattice of all subspaces of the ambient space,
which is a vector space of dimension v over the finite field
with q elements. The partial order of L(GF (q)v) is given by
inclusion. A subspace code C then is a subset of L(GF (q)v).
A constant dimension code is the special case where all
subspaces in C are of the same dimension. To study error
correcting codes we have to define some distance between
codewords (in this case codewords are subspaces). The most
natural one is the graph theoretic distance in the Hasse
diagram (vertices are the elements of L(GF (q)v) and two
subspaces are connected by an edge if they are direct neighbors
in the partial order) of the lattice L(GF (q)v). An equivalent
definition without using the underlying graph is as follows:

The subspace distance between two spaces V and W in
L(GF (q)v) is defined as

dS(V,W ) := dim(V +W )− dim(V ∩W )

which is equal to

dim(V ) + dim(W )− 2 dim(V ∩W ).

This defines a metric on L(GF (q)v). Like in classical cod-
ing theory we define the minimum (subspace) distance of a
subspace code C.

DS(C) := min{dS(V,W ) : V,W ∈ C and V 6= W}.

We can now define the optimal (subspace) code problem:

(P) For fixed parameters q, v, d we want to find
the maximal number m of subspaces V1, . . . , Vm in
L(GF (q)v) such that the corresponding subspace
code C = {V1, . . . , Vm} has at least minimum
distance d.

This is a specific instance of a packing problem in a graph. In
classical coding theory the underlying graph is the Hamming
graph. For network codes it is the Hasse diagram of the linear
lattice. In the case of a binary code the Hamming Graph
is isomorphic to the Hasse diagram of the powerset lattice.
Using this connection we can look at the optimal (subspace)
code problem as the q−analogue of the classical optimal code
problem in the Hamming graph. To get the q−analogue we
have to substitute a subset (= 0/1 sequence of length v) of
size k by a k−dimensional subspace of GF (q)v. The number
of k−dimensional subspaces of GF (q)v is denoted by the

Gaussian coefficient
[
v
k

]
q

.

B. q−Analogues of Designs

A t − (v, k, λ) design is a set C of k−element subsets
(called blocks) of the set {1, . . . , v} such that each t−element
subset of {1, . . . , v} appears in exactly λ blocks. The special
case of λ = 1 is called a Steiner system. Like in the
subsection above we now define the q−analogue of a t-
design. A t − (v, k, λ) design over the finite field GF (q) is
a multiset C of k−dimensional subspaces (called q-blocks)
of the v-dimensional vector space GF (q)v such that each
t−dimensional subspace of GF (q)v is a subspace of exactly
λ q−blocks. The connection with the constant dimension
codes is given by the following observation in the case of
a Steiner system: Given a q−analogue of a t− (v, k, 1) design
C we get a constant dimension code of minimum distance
2(k − t + 1), since each t-dimensional space is contained in
exactly one k-dimensional subspace the intersection between
two spaces from C is at most (t−1)−dimensional. Therefore
the minimum distance of C is at least 2(k − t + 1). On the
other hand given any (t−1)−dimensional subspace V we can
find two t−dimensional spaces U,W with intersection V and
then two unique q−blocks containing U and W. The minimum
distance between these q−blocks is 2(k−t+1). q-analogues of
designs were introduced by Thomas in 1987 [10]. Later they
were studied in a paper by Braun et al. [1] where the authors
constructed the first non-trivial q−analogue of a 3-design. We
will describe a method in the second section which is based on
their paper and which we use to construct constant dimension
codes. First results found using that method were already in
[7].
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C. Encoding/Decoding

In [6] the authors introduced the operator channel as a model
to study subspace codes. The input and output alphabet of
the channel is the lattice L(GF (q)v). The transmission of
an information coded by a space U works as follows: The
transmitter inserts into the network vectors from U. During
transmission the internal nodes of the network receive several
such vectors and forward an arbitrary linear combination of
the received vectors. The receiver collects the incoming vectors
and tries to rebuild U as the space generated by the incoming
vectors. There are two possible problems at the receiver. There
can be erasures, which means that some vectors are missing
and the generated space is a subspace of U. Or there can be
errors, which means that the receiver got vectors not from
U. In the third section we will give a decoding algorithm for
minimum distance decoding which allows error and erasure
correction for a special class of constant dimension codes.
This new method uses the symmetries of this special class of
network codes, which were also studied by Etzion and Vardy
[4], who called these codes cyclic.

II. CONSTRUCTION OF CONSTANT DIMENSION SUBSPACE
CODES

In the following we work only with constant dimension codes
built by a collection of k−dimensional subspaces of GF (q)v

of minimum distance at least 2(k − t + 1) as described in
section I-B. In [7] we gave a general method using a prescribed
group G of automorphisms of a putative constant dimension
code C to give an equivalence between the existence of such
a code and a solution of a Diophantine system of inequalities.
Therefore the construction of such a code C boils down
to finding a (0/1)−solution x of a Diophantine system of
inequalities of the form:

MGx ≤

 1
...
1

 .

The number of rows in MG is the number of orbits of G on
the t−dimensional subspaces of GF (q)v and the number of
columns is the number of orbits of G on the k−dimensional
subspaces of GF (q)v . In [7] we described the general method
for the construction using arbitrary automorphisms, and a
further variant which is useful in the case of G equal to the
group generated by a Singer cycle S. Orbits of the Singer cycle
has been studied for several applications [3]. The nice property
of the Singer cycle is that G = 〈S〉 acts transitively on the one-
dimensional subspaces of GF (q)v. So we can label any one-
dimensional subspace W by the unique exponent i between

0 and l :=
[
v
1

]
q

− 1 with the property that W = giV,

where V is some arbitrary one-dimensional subspace. Given
a k-space U (for 1 ≤ k ≤ v) we can describe it by the set PU

of one-dimensional (i.e. numbers between 0 and l) subspaces
contained in U . Given such a description of a k-space U it

is now easy to get all the spaces building the orbit under

the Singer subgroup G. Take the set PU of
[
k
1

]
q

numbers

from {0, . . . , l} representing the one-dimensional subspaces of
GF (q)v being also subspaces of U and now the action of S
on a number in PU is simply adding one modulo l. If we look
at GF (q)v as an field extension of degree v of the base field
GF (q) this is the use of a primitive element ω and writing
the elements of GF (q) using ω and an exponent.

Example 1: We study the case q = 2, v = 5, k = 2 : A two-
dimensional binary subspace contains three one-dimensional
subspaces. We get a two-dimensional space by taking the
two one-dimensional spaces labeled {0, 1} and the third one
given by the linear combination of these two will have a
certain number, in this example {14}. Therefore we have a two
dimensional space described by the three numbers {0, 1, 14}.
To get the complete orbit under the Singer subgroup we simply
have to increase the numbers by one for each multiplication
by a generator S of the Singer subgroup. The orbit length
of the Singer subgroup is 31 and the orbit is built by the
31 sets: {0, 1, 14}, {1, 2, 15}, . . . , {16, 17, 30}, {0, 17, 18}, . . .
{12, 29, 30}, {0, 13, 30}.

III. REAL CODING

In this chapter we will restrict to the case of a constant
dimension subspace code built from a single orbit O of the
Singer cycle on the 3−dimensional subspaces of GF (2)v with
the property that two subspaces of the orbit intersect in a
subspace of dimension less or equal to one. We will call such
an orbit a good orbit. The subspaces in a good orbit O form a
code of minimum distance at least 4. This is a less restrictive
version of the codes studied in [8] where a code was studied,
where the subspaces intersect zero-dimensional.

We describe a single subspace U in the orbit O by the 7 one-
dimensional subspaces contained in U. As an example lets
assume U = {0, 1, 4, 10, 18, 23, 25}. The orbit-type can be
described by the two distance between v1, v2 ∈ U, i.e. the two
exponents i1, i2 of the generator S defined by Si1v1 = v2 and
Si2v2 = v1. In this example it is visualized by the complete
graph KV with vertices from V and edge-labels given by the
the smaller distance. For this concrete example we get:
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If we take a different subspace from O the vertex labels
are increased by a fixed number, but the pairwise distances
remain unchanged. We denote by KO the complete graph with
7 points without vertex-labels and edge-labels given by any
V ∈ O. The following observation is crucial for the proposed
algorithm for decoding:

Lemma 1: All edge-labels in KO are different.

This is because otherwise we would have no orbit where two
subspaces intersect at most one-dimensional. This property
is similar to the questions studied in the theory of finite
difference sets or Golomb rulers (e.g. [2] p.419ff). Above
labeling comes from an optimal Golomb ruler. It is not clear
whether there is a primitive element in GF (2v) such that we
get a vector space using above exponents.

If we work with the field GF (2v) instead of the vector space
GF (2)v , than above graph is constructed using the elements
{v1, . . . , v7} of a subspace as labels of the vertices and the
two quotients vi/vj and vj/vi as labels of the edges.

A. Decoding

There are two cases, which have to be checked for decoding.

1) Erasure Case: The first one is an erasure, meaning that we
receive only a two-dimensional subspace U , represented by
two of the three one-dimensional subspaces U = {r, s}. The
idea now is to identify the two vertices in KO corresponding
to these two elements r and s. To do this we only have to
compute the quotient (in the field GF (2v) ) of the two field
elements r and s. And using the result we can lookup the
corresponding edge in KO and get vertex labels by taking r
and s. After that we use one further application of some power
of the Singer cycle (i.e. multiplication in GF (2v)) to get a
third independent vector, which finished the reconstruction of
the transmitted vectorspace.

Therefore decoding including error correction in the erasure
case is one division and one multiplication in GF (2v).

2) Error Case: The second case is that we received a vec-
tor not in the transmitted space V. As we have minimum
distance 4 the erroneous codeword we want to correct is a
4−dimensional space U containing the transmitted codeword
V. Again the idea is to identify the 3-dimensional subspace
V inside U by looking at the pairwise distances. We start
with 3 independent vectors r, s, t in U. We know that the
space I generated by {r, s, t} intersects with V in a at
least two dimensional space W. Now we loop over all 7 2-
dimensional subspaces of I and for each such space we try the
reconstruction like in the erasure case. We additionaly check
whether the constructed third vector is in the received word
U. If this is the case we have found the original codeword V.

Therefore decoding including error correction in the error case
needs at most 7 divisions and 7 multiplications in GF (2v).

B. Generalisations

There are several immediate generalisations. Of course one can
use n different orbits of the Singer cycle with the pairwise
intersection property for all spaces in the n orbits. In this
case you would have n · 21 possible pairs of distances (=quo-
tients). One can also use k−dimensional subspaces instead
of 3−dimensional subspaces. In this case one has to look at(
2k − 1

) (
2k − 2

)
/2 pairs of distances and would get a code

which allows to correct k − 2 errors. In the non-erasure case
error correction becomes more difficult as one has to study
more two-dimensional subspaces.

IV. HOW TO FIND A CODE

In this section we give some arguments showing, that it is
’easy’ to find good orbits. We study the problem for arbitrary
k (not only k = 3) and for arbitrary finite fields (not only
q = 2). For the computation of an estimation how ’easy’ it
is we use a primitive element ω. For a ’real’ application we
represent the field elements by polynomials, as the internal
nodes of the network have to compute linear combinations,
meaning doing exor operations in the case of q = 2.

We need to find one good orbit O of the Singer cycle
such that all k-dimensional (in the above special case we
had k = 3) subspaces intersect pairwise at most in a one-
dimensional subspace. To do so, we choose arbitrarily k
representatives a1, a2, . . . , ak of one-dimensional subspaces
generating a k−space U represented by the one-dimensional

subspace PU = {b0, . . . , bl}(with l =
[
k
1

]
q

− 1). If the(
l+1
2

)
quotient pairs built form bi, bj for i > j are all different

(meaning that the subspaces generated from the quotient are
different), the intersection of all elemens of the orbit of this
space under the Singer cycle is at most one-dimensional.
Thus, the elements of the orbit O form a code with minimum
distance 2(k − 1). In order to generate such a orbit, we first
select a primitive element ω. Then we choose randomly the
k representatives of one-dimensional subspaces a1, a2, . . . , ak

by choosing k random numbers ei between 0 and qv − 2 and
setting ai = ωei , i = 1, . . . , k. The subspace 〈a1, a2, . . . , ak〉
will be the generator of the orbit O. The probability that the
dimension of 〈a1, a2, . . . , ak〉 is less than k is very small. In
practice, for k = 3 and q = 2 we choose e1 = 0, e2 = 1 and
a random number 1 < e3 ≤ 2v − 2.

The property that all pairwise differences (mod qv−1) between

all
[
k
1

]
q

non-zero elements of the subspace generated by

a1, a2, . . . , ak are different seems to be randomly distributed.
For example, for two generators ai and aj the integer number
0 ≤ x ≤ qv − 2 with ωx = ai + aj is likely to be
hard to compute. It is called the discrete logarithm problem
in cryptography. This problem is also closely related to the
problem of computing the Jacobi logarithm [5], also called
Zech’s logarithm. There are no efficient (polynomial time)
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algorithms known to compute the discrete logarithm [9], also
the discrete logarithm of the sum of arbitrary elements with
known discrete logarithm as in our case seems to be without
structure.

The overall number m of possible pairs {bi, bj} (or pairs
{ei−ej mod qv−1, ej−ei mod qv−1}) is equal to (qv−2)/2
for q even, and (qv − 1) /2 for q odd. Let s be the number
of (unordered) pairs of one-dimensional subspaces in a k-
dimensional vector space. The probability that all s pairs
{bi, bj} are different is equal to

(1− 1
m

)(1− 2
m

) · · · (1− s

m
)

which is approximately(
1− s

2m

)s−1

≈ e−s(s−1)/2m.

For example, for q = 2, v = 100 and k = 3 we get s =(
23−1

2

)
= 21, m = 633825300114114700748351602687 and

therefore

−s(s− 1)/2m ≈ −3.3132158019282496 · 10−28.

So, it is extremely unlikely to find a random orbit which does
not fulfill the desired property.

If we take the union of n orbits as our code we can apply the
same estimation. For q = 2 we get

s =
(
n · (2k − 1)

2

)
.

In the example above, the expected number of orbits which
can be combined without conflicts is 66 955 225 653 132.
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