The Automorphism Groups of Linear Codes and Canonical Representatives of Their Semilinear Isometry Classes

Thomas Feulner

University of Bayreuth

November 14, 2009

Linear Code

Linear Code

A (linear) code C is a subspace of \mathbb{F}_q^n of dimension k.

n, k, q are some fixed parameters.

Generator Matrix

Let C be a linear code. $\Gamma \in \mathbb{F}_q^{k \times n}$ is a generator matrix of C, if the rows of Γ form a basis of C.

Set of Generator Matrices of a code

Let Γ be some generator matrix of C. The set of all generator matrices of C is the orbit $GL_k(q)\Gamma$.

Linear Code

Linear Code

A (linear) code C is a subspace of \mathbb{F}_q^n of dimension k.

n, k, q are some fixed parameters.

Generator Matrix

Let C be a linear code. $\Gamma \in \mathbb{F}_q^{k \times n}$ is a generator matrix of C, if the rows of Γ form a basis of C.

Set of Generator Matrices of a code

Let Γ be some generator matrix of C. The set of all generator matrices of C is the orbit $GL_k(q)\Gamma$.

Linear Code

Linear Code

A (linear) code C is a subspace of \mathbb{F}_q^n of dimension k.

n, k, q are some fixed parameters.

Generator Matrix

Let C be a linear code. $\Gamma \in \mathbb{F}_q^{k \times n}$ is a generator matrix of C, if the rows of Γ form a basis of C.

Set of Generator Matrices of a code

Let Γ be some generator matrix of C. The set of all generator matrices of C is the orbit $GL_k(q)\Gamma$.

Definition

- a column permutation $\pi \in S_n$
- an automorphism α of \mathbb{F}_q applied to each entry
- a column multiplication vector $\varphi \in \mathbb{F}_q^{*n}$

Definition

- a column permutation $\pi \in S_n$
- an automorphism α of \mathbb{F}_q applied to each entry
- a column multiplication vector $\varphi \in \mathbb{F}_q^{*n}$

Definition

- a column permutation $\pi \in S_n$
- an automorphism α of \mathbb{F}_q applied to each entry
- a column multiplication vector $\varphi \in \mathbb{F}_q^{*n}$

Definition

- a column permutation $\pi \in S_n$
- an automorphism α of \mathbb{F}_q applied to each entry
- a column multiplication vector $\varphi \in \mathbb{F}_q^{*n}$

- more general than linear or permutational isometry
- The group is equal to the set of isometries mapping subspaces onto subspaces
- most general definition for linear codes (which guarantees the image to be linear)
- Semilinear isometry is the definition of equivalence in projective geometry

- more general than linear or permutational isometry
- The group is equal to the set of isometries mapping subspaces onto subspaces
- most general definition for linear codes (which guarantees the image to be linear)
- Semilinear isometry is the definition of equivalence in projective geometry

- more general than linear or permutational isometry
- The group is equal to the set of isometries mapping subspaces onto subspaces
- most general definition for linear codes (which guarantees the image to be linear)
- Semilinear isometry is the definition of equivalence in projective geometry

- more general than linear or permutational isometry
- The group is equal to the set of isometries mapping subspaces onto subspaces
- most general definition for linear codes (which guarantees the image to be linear)
- Semilinear isometry is the definition of equivalence in

- more general than linear or permutational isometry
- The group is equal to the set of isometries mapping subspaces onto subspaces
- most general definition for linear codes (which guarantees the image to be linear)
- Semilinear isometry is the definition of equivalence in projective geometry

Canonization Algorithm Can

Input: A generator matrix Γ

Output: A generator matrix $Can(\Gamma)$ which generates an equivalent code such that the result is unique for equivalent generator matrices.

Byproduct: The automorphism group of the code, i.e. the stabilizer subgroup of Γ .

ldea

Canonization Algorithm Can

Input: A generator matrix Γ

Output: A generator matrix $Can(\Gamma)$ which generates an equivalent code such that the result is unique for equivalent generator matrices.

Byproduct: The automorphism group of the code, i.e. the stabilizer subgroup of Γ .

ldea

Canonization Algorithm Can

Input: A generator matrix Γ

Output: A generator matrix Can(Γ) which generates an equivalent code such that the result is unique for equivalent generator matrices.

Byproduct: The automorphism group of the code, i.e. the stabilizer subgroup of Γ .

ldea

Canonization Algorithm Can

Input: A generator matrix Γ

- Output: A generator matrix $Can(\Gamma)$ which generates an equivalent code such that the result is unique for equivalent generator matrices.
- Byproduct: The automorphism group of the code, i.e. the stabilizer subgroup of Γ .

dea

Canonization Algorithm Can

Input: A generator matrix Γ

- Output: A generator matrix $Can(\Gamma)$ which generates an equivalent code such that the result is unique for equivalent generator matrices.
- Byproduct: The automorphism group of the code, i.e. the stabilizer subgroup of Γ .

Idea

Motivation

Use the algorithm to classify linear codes

Build up a database of representatives of each semilinear isometry class.

Leon's Algorithm

- There is only a test on linear isometry of two codes, but no canonical form.
- Difficult to realize such a database without calculation of unique representatives.

Motivation

Use the algorithm to classify linear codes

Build up a database of representatives of each semilinear isometry class.

Leon's Algorithm

- There is only a test on linear isometry of two codes, but no canonical form.
- Difficult to realize such a database without calculation of unique representatives.

Can^{min}

Example

- Some order on \mathbb{F}_q with $0 < 1 < \mu, \forall \mu \in \mathbb{F}_q \setminus \{0, 1\}$
- Colexicographic order on $(\mathbb{F}_{a}^{k}, <_{co})$
- Lexicographic ordered *n*-tuples of columns $((\mathbb{F}_a^k)^n, <_{lex})$

Example

- Some order on $\mathbb{F}_{\pmb{q}}$ with $0<1<\mu, \forall \mu\in\mathbb{F}_{\pmb{q}}\setminus\{0,1\}$
- Colexicographic order on (F^k_q, <_{co})
- Lexicographic ordered *n*-tuples of columns $((\mathbb{F}_q^k)^n, <_{lex})$

Example

- Some order on $\mathbb{F}_{\boldsymbol{q}}$ with $0 < 1 < \mu, \forall \mu \in \mathbb{F}_{\boldsymbol{q}} \setminus \{0,1\}$
- Colexicographic order on $(\mathbb{F}_q^k, <_{co})$
- Lexicographic ordered *n*-tuples of columns $((\mathbb{F}_q^k)^n, <_{lex})$

Can^{min}

Example

- Some order on \mathbb{F}_q with $0 < 1 < \mu, orall \mu \in \mathbb{F}_q \setminus \{0,1\}$
- Colexicographic order on $(\mathbb{F}_q^k, <_{co})$
- Lexicographic ordered *n*-tuples of columns $((\mathbb{F}_q^k)^n, <_{lex})$

First idea for Can^{min}: Backtracking on S_n

A naive approach – Run through all possible permutations

We systematically run through all possible permutations of the columns using a backtracking procedure:

There are n possible choices for the preimage of 0.

First idea for Can^{min}: Backtracking on S_n

There are n-1 choices for the preimage of 1 in each node.

i-semicanonical representatives

Suppose we reached some level *i* (Root is on level 0 by definition). The columns $\{0, \ldots, i-1\}$ will not be permuted anymore!

Definition: *i*-semicanonical representative

Replace nodes $\pi\Gamma$ by representatives $\Gamma^{(i,\pi)}$ which are minimal on the columns $\{0, \ldots, i-1\}$, i.e.

$$\Pi_i(\Gamma^{(i,\pi)}) := \min \Pi_i((A,\varphi,\alpha)\Gamma).$$

Corollary

 $\operatorname{Can}^{\min}(\Gamma) = \min_{\pi \in S_n} \Gamma^{(n,\pi)}$ is the minimum of all *n*-semicanonical representatives of the leaf nodes.

i-semicanonical representatives

Suppose we reached some level *i* (Root is on level 0 by definition). The columns $\{0, \ldots, i-1\}$ will not be permuted anymore!

Definition: *i*-semicanonical representative

Replace nodes $\pi\Gamma$ by representatives $\Gamma^{(i,\pi)}$ which are minimal on the columns $\{0, \ldots, i-1\}$, i.e.

$$\Pi_i(\Gamma^{(i,\pi)}) := \min \Pi_i((A,\varphi,\alpha)\Gamma).$$

Corollary

 $\operatorname{Can}^{\min}(\Gamma) = \min_{\pi \in S_n} \Gamma^{(n,\pi)}$ is the minimum of all *n*-semicanonical representatives of the leaf nodes.

Pruning I

We can compare the i-semicanonical representatives of two nodes on level i.

Automorphisms

Two equal leaf nodes give rise to an automorphism.

Automorphisms

Two equal leaf nodes give rise to an automorphism.

Automorphism

Let $\pi, \sigma \in S_n$ be two permutations:

$$\Gamma^{(n,\pi)} = \Gamma^{(n,\sigma)}$$

$$\exists (A, \varphi, \alpha) : (A, \varphi, \pi^{-1}\sigma, \alpha) \in Aut(\Gamma)$$

Pruning II – The group of known automorphisms

An automorphism give equal leaf nodes.

Pruning

Let $\pi, \sigma \in S_n$ be two permutations:

$$\Gamma^{(n,\pi)} = \Gamma^{(n,\sigma)}$$

$$\begin{array}{c} & \Downarrow \\ \exists (A, \varphi, \alpha) : (A, \varphi, \pi^{-1}\sigma, \alpha) \in Aut(\Gamma) \end{array}$$

Iterative Calculation of *i*-semicanonical representatives

We explain the algorithm by an example over $\mathbb{F}_4 = \{0, 1, x, x^2\}$ where $x^2 + x + 1 = 0$ and $0 < 1 < x < x^2$.

We want to calculate $\Gamma^{(n,id)}$ with

$$\Gamma := \begin{pmatrix} 1 & x & x^2 & 1 & x & 1 \\ x & 0 & x^2 & 1 & 1 & 1 \\ x & 1 & 0 & 1 & 0 & x \end{pmatrix}$$

Gaussian Elimination

Mapping the first column onto the unit vector e_0^T yields an 1-semicanonical representative:

Iterative Calculation of *i*-semicanonical representatives

We explain the algorithm by an example over $\mathbb{F}_4 = \{0, 1, x, x^2\}$ where $x^2 + x + 1 = 0$ and $0 < 1 < x < x^2$.

We want to calculate $\Gamma^{(n,id)}$ with

$$\Gamma := \begin{pmatrix} 1 & x & x^2 & 1 & x & 1 \\ x & 0 & x^2 & 1 & 1 & 1 \\ x & 1 & 0 & 1 & 0 & x \end{pmatrix}$$

Gaussian Elimination

Mapping the first column onto the unit vector e_0^T yields an 1-semicanonical representative:

$$\Gamma := \begin{pmatrix} 1 & x & x^2 & 1 & x & 1 \\ x & 0 & x^2 & 1 & 1 & 1 \\ x & 1 & 0 & 1 & 0 & x \end{pmatrix}$$

We can multiply Γ by

$$A := \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ x & 0 & 1 \end{pmatrix}$$

to get

$$\Gamma^{(1,id)} := \begin{pmatrix} 1 & x & x^2 & 1 & x & 1 \\ 0 & x^2 & x & x^2 & x & x^2 \\ 0 & x & 1 & x^2 & x^2 & 0 \end{pmatrix}$$

Rule 1

If the column i-1 is linearly independent from the columns with indices $\{0, \ldots, i-2\}$ then map it to the smallest possible unit vector.

Rule 1

If the column i-1 is linearly independent from the columns with indices $\{0, \ldots, i-2\}$ then map it to the smallest possible unit vector.

$$\Gamma^{(1,\mathrm{id})} := \begin{pmatrix} 1 & x & x^2 & 1 & x & 1 \\ 0 & x^2 & x & x^2 & x & x^2 \\ 0 & x & 1 & x^2 & x^2 & 0 \end{pmatrix}$$

$$\Gamma^{(2,\mathrm{id})} := \begin{pmatrix} 1 & 0 & x & x^2 & x^2 & x^2 \\ 0 & 1 & x^2 & 1 & x^2 & 1 \\ 0 & 0 & 0 & 1 & x & x \end{pmatrix}$$

Question

How can we minimize the column $\begin{pmatrix} x \\ x^2 \\ 0 \end{pmatrix}$?

Equivalently:

What is the stabilizer of $\Pi_2(\Gamma^{(2,id)})$ under the inner group action?

$$\Gamma^{(2,\mathrm{id})} := \mu \begin{pmatrix} \mu^{-1} \\ 1 & 0 & x & x^2 & x^2 & x^2 \\ 0 & 1 & x^2 & 1 & x^2 & 1 \\ 0 & 0 & 0 & 1 & x & x \end{pmatrix}$$

Question

How can we minimize the column $\begin{pmatrix} x \\ x^2 \\ 0 \end{pmatrix}$?

Equivalently:

What is the stabilizer of $\Pi_2(\Gamma^{(2,id)})$ under the inner group action?

$$\Gamma^{(2,\mathrm{id})} := \begin{array}{cccc} x & x^2 \\ x^2 \begin{pmatrix} 1 & 0 & x & x^2 & x^2 & x^2 \\ 0 & 1 & x^2 & 1 & x^2 & 1 \\ 0 & 0 & 0 & 1 & x & x \end{array}$$

$$\Gamma^{(2,\mathrm{id})} := \begin{array}{c} x \\ x^{2} \\ x^{2} \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ x^{2} \\ x^{2} \\ x^{2} \\ x^{2} \\ 1 \\ x^{2} \\ x^{2}$$

Stabilizer for $\Pi_3(\Gamma^{(3,id)})$?

$$\Gamma^{(3,\mathrm{id})} := \begin{array}{cccc} \mu^{-1} & \mu^{-1} & \mu^{-1} \\ \mu \begin{pmatrix} 1 & 0 & 1 & x & x & x \\ 0 & 1 & 1 & x & 1 & x \\ 0 & 0 & 0 & 1 & x & x \end{pmatrix}$$

Partition of row index set

Let $\mathfrak{p}^{(\Gamma,i)}$ be the finest partition of $\{0, \ldots, k-1\}$ such that $\forall j \in \{0, \ldots, i-1\} \exists p \in \mathfrak{p}^{(\Gamma,i)} : \operatorname{supp}(\Gamma_{*,i}) \subseteq p$

The case i = 4 is done by Rule 1.

$$\Gamma^{(4,\mathrm{id})} := \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & x & 1 \\ 0 & 0 & 0 & 1 & x & x \end{pmatrix}$$

Rule 2

Suppose column i-1 is linearly dependent from the columns with indices $\{0, \ldots, i-2\}$.

For each $p \in \mathfrak{p}^{(\Gamma,i-1)}$ take the maximal index of a nonzero entry $\Gamma_{j,i-1}$ with $j \in p$.

Map those entries to 1.

 $\mathfrak{p}^{(\Gamma,4)} = \{\{0,1\},\{2\}\}$

$$\Gamma^{(4,\mathsf{id})} := \begin{array}{cccc} \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & x & 1 \\ 0 & 0 & 0 & 1 & x & x \end{array} \right)$$

$$\mathfrak{p}^{(\Gamma,4)} = \{\{0,1\},\{2\}\}$$

$$\Gamma^{(4,\mathrm{id})} := \begin{array}{cccc} x & x & x & x \\ x^2 \\ x^2 \\ x^2 \end{array} \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & x & 1 \\ 0 & 0 & 0 & 1 & x & x \end{pmatrix}$$

$$\mathfrak{p}^{(\Gamma,4)} = \{\{0,1\},\{2\}\}$$

$$\Gamma^{(4,\mathrm{id})} := \begin{array}{c} x & x & x & x \\ x^2 \\ x^2 \\ x^2 \end{array} \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & x & 1 \\ 0 & 0 & 0 & 1 & x & x \end{pmatrix}$$

$$\Gamma^{(4, \mathsf{id})} := \begin{pmatrix} 1 & 0 & 1 & 0 & x^2 & x^2 \\ 0 & 1 & 1 & 0 & 1 & x^2 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\Gamma^{(4,id)} := \begin{pmatrix} 1 & 0 & 1 & 0 & x^2 & x^2 \\ 0 & 1 & 1 & 0 & 1 & x^2 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

is not a 5-semicanonical representative!

Application of the field automorphism

There is one more free parameter $\alpha \in Aut(\mathbb{F}_q)$ of the inner group!

$$\Gamma^{(4,\mathrm{id})} := egin{pmatrix} 1 & 0 & 1 & 0 & x^2 & x^2 \ 0 & 1 & 1 & 0 & 1 & x^2 \ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

is not a 5-semicanonical representative!

Application of the field automorphism

There is one more free parameter $\alpha \in Aut(\mathbb{F}_q)$ of the inner group!

Apply the Frobenius automorphism on each entry.

$$\Gamma^{(5,id)} := \begin{pmatrix} 1 & 0 & 1 & 0 & x & x \\ 0 & 1 & 1 & 0 & 1 & x \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Minimization by Field automorphisms

Rule 3

Go from the bottom-up through the column:

Minimize the entries $\Gamma_{j,i-1}$ by the application of the remaining field automorphisms.

Restrict in each step the remaining automorphisms to those which additionally fix $\Gamma_{j,i-1}$.

Pruning III – Partition and Refinement

The search tree is still to huge to get results for larger parameters.

Remember the example with (4096)! possible permutations.

Partition and Refinement

This is a well-known approach also used for example in the program *nauty* (McKay) to calculate a canonical labeling of a graph based on invariants.

Example: Using the Weight Enumerator

Suppose Γ is equal to

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Example: Using the Weight Enumerator

Suppose Γ is equal to

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Calculate the weight enumerator of the punctured codes $C_j, j = 0, \dots, 3$:

$$\begin{array}{c|c|c} 0 & 1+x+x^2+x^3 \\ 1 & 1+3x^2 \\ 2 & 1+x+x^2+x^3 \\ 3 & 1+3x^2 \end{array}$$

Example: Using the Weight Enumerator

Suppose Γ is equal to

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Calculate the weight enumerator of the punctured codes $C_i, j = 0, \ldots, 3$:

$$\begin{array}{c|c|c} 0 & 1+x+x^2+x^3 \\ 1 & 1+3x^2 \\ 2 & 1+x+x^2+x^3 \\ 3 & 1+3x^2 \end{array}$$

Basics

Minimal representatives of the inner orbits

Partition & Refinement

Example: Using the Weight Enumerator

Generalization for finite chain rings

Currently Possible

If R is a finite commutative chain ring. We can show that the inner minimization algorithm is still easy to handle.

A first version is already implemented.

Future Work

Show that the inner minimization algorithm is still easy for non-commutative chain rings.

Generalization for finite chain rings

Currently Possible

If R is a finite commutative chain ring. We can show that the inner minimization algorithm is still easy to handle.

A first version is already implemented.

Future Work

Show that the inner minimization algorithm is still easy for non-commutative chain rings.

Conclusion

Test the program online

http://www.algorithm.uni-bayreuth.de/en/research/ Coding_Theory/CanonicalForm/index.html

Thank you very much for your attention.