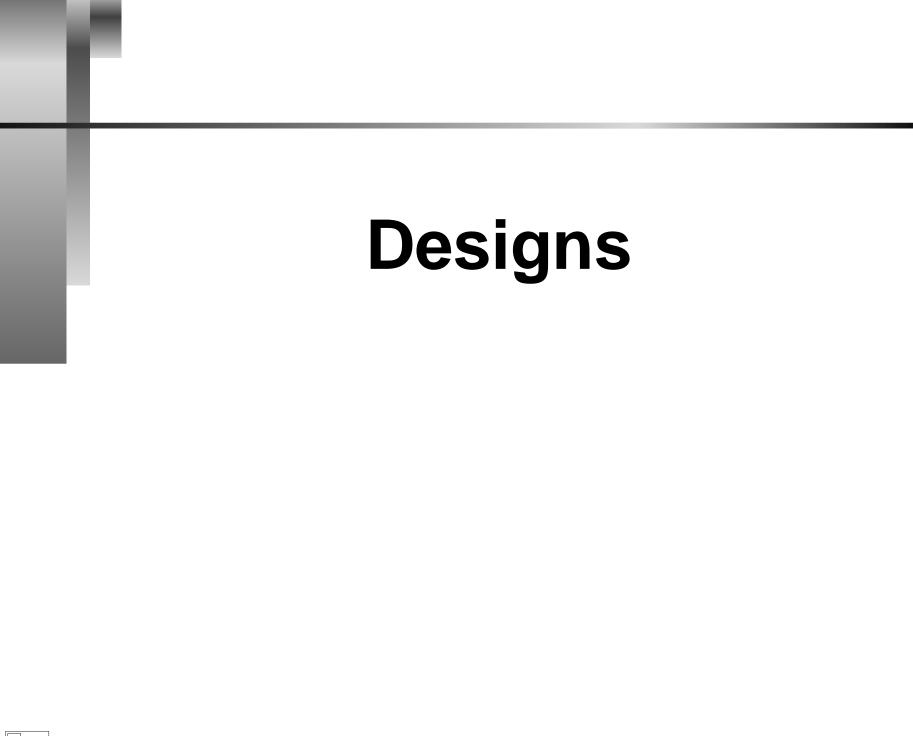
Network Codes and Designs over Finite Fields

Axel Kohnert Magdeburg November 2008

Bayreuth University Germany axel.kohnert@uni-bayreuth.de

Overview

- Designs
- Network Codes
- Construction



• a set of v points

.-p.4/30

- a set of v points
- a set of blocks (block = set of points)

.-p.4/30

- a set of v points
- a set of blocks (block = set of points)
- $t (v, k, \lambda)$ Design

- a set of v points
- a set of blocks (block = set of points)
- $t (v, k, \lambda)$ Design
 - each block is a k-set each t-set of points is in exactly λ blocks

- a set of v points
 - a, b, c, d, e, f, g
- a set of blocks (block = set of points)
- $t (v, k, \lambda)$ Design
 - each block is a k-set each t-set of points is in exactly λ blocks

- a set of v points
 - a, b, c, d, e, f, g
- a set of blocks (block = set of points)

abe, adg, acf, bcg, bdf, cde, efg

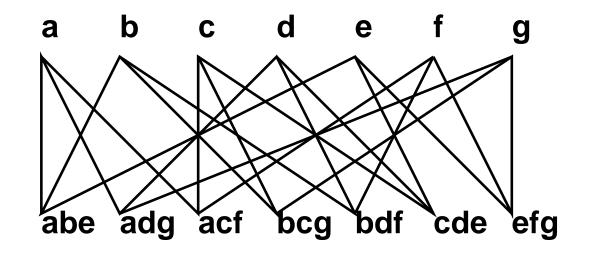
 t - (v, k, λ) Design each block is a k-set each t-set of points is in exactly λ blocks

- a set of v points
 - a, b, c, d, e, f, g
- a set of blocks (block = set of points)

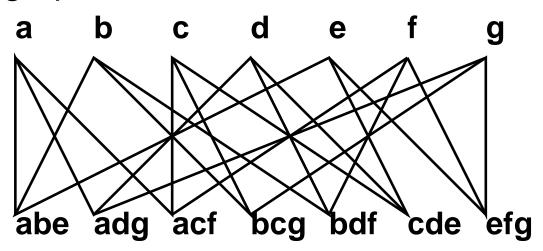
abe, adg, acf, bcg, bdf, cde, efg

 t - (v, k, λ) Design each block is a k-set each t-set of points is in exactly λ blocks

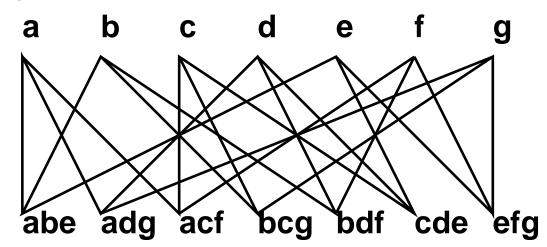
2-(7,3,1) design



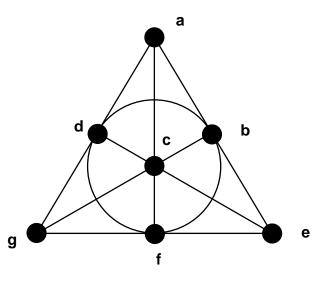
Heawood graph



Heawood graph



Fano plane



Designs over Finite Fields

- a set of v points
- a set of *k*-blocks
- $t (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks

Designs over Finite Fields

• a set of *v* points

linear v-space $GF(q)^v$

- a set of *k*-blocks
- $t (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks

- a set of *v* points
 - linear v-space $GF(q)^v$
- a set of k-blocks
 - a set of k-spaces in $GF(q)^v$
- $t (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks

- a set of *v* points
 - linear v-space $GF(q)^v$
- a set of k-blocks
 - a set of k-spaces in $GF(q)^v$
- $t (v, k, \lambda)$ Design each t-set of points is in exactly λ blocks

 $t - (v, k, \lambda) q$ -Design each t-space of $GF(q)^v$ is in exactly λ of the k-spaces

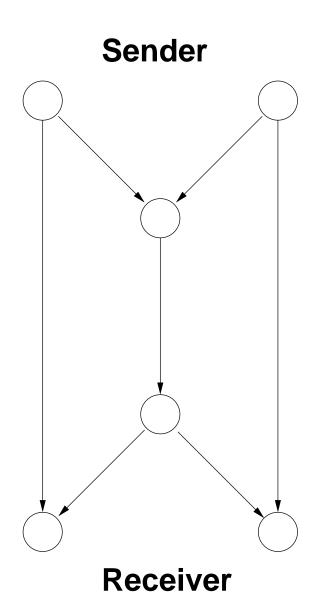
Current State

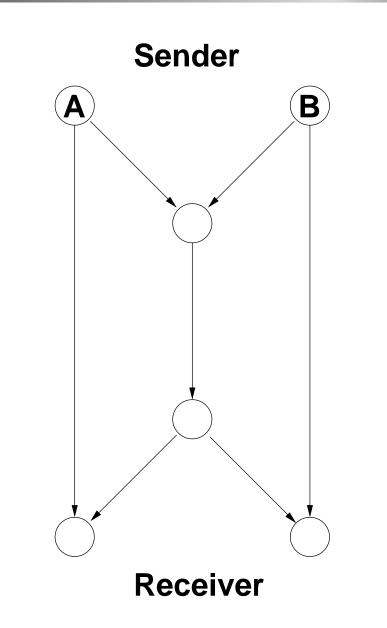
known:

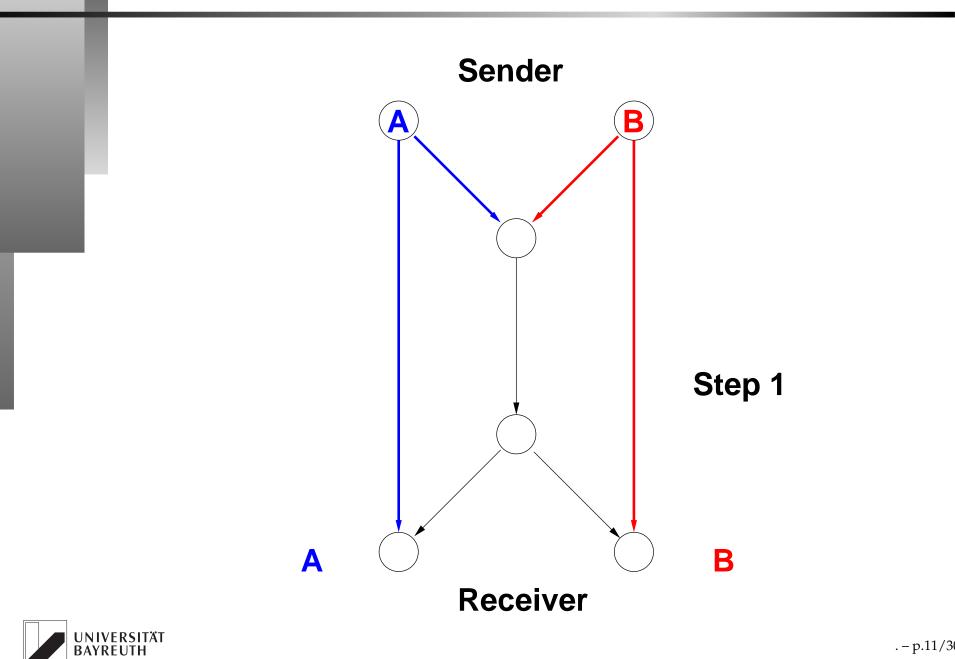
- Thomas (1987): first to study, 2-designs
- Braun, Kerber, Laue (2005): first 3-design

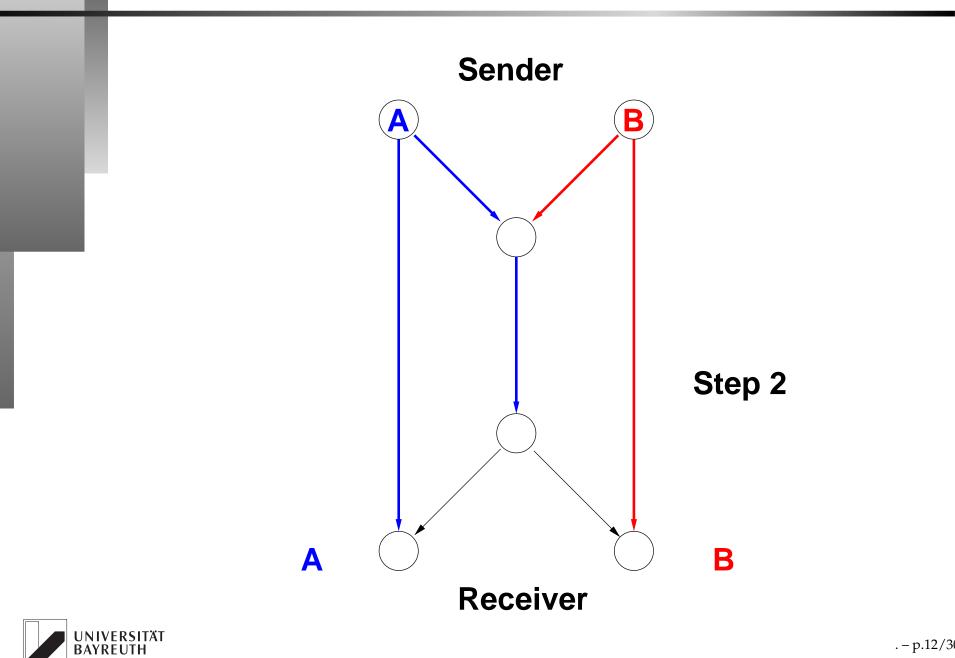
open problems:

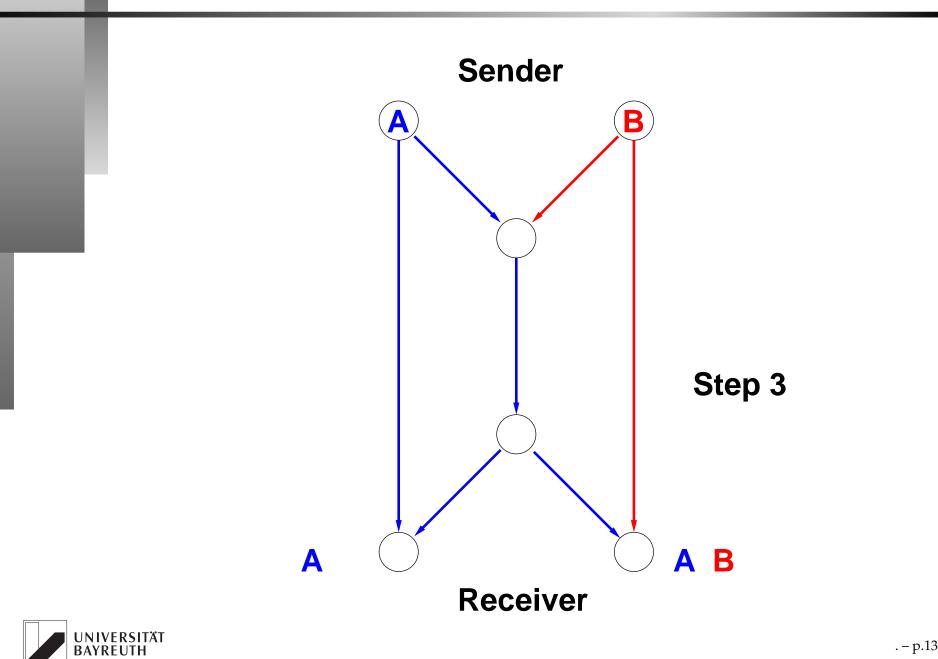
- q-analog of the Fano plane?
- Steiner systems ? $(\lambda = 1)$
- t > 3?

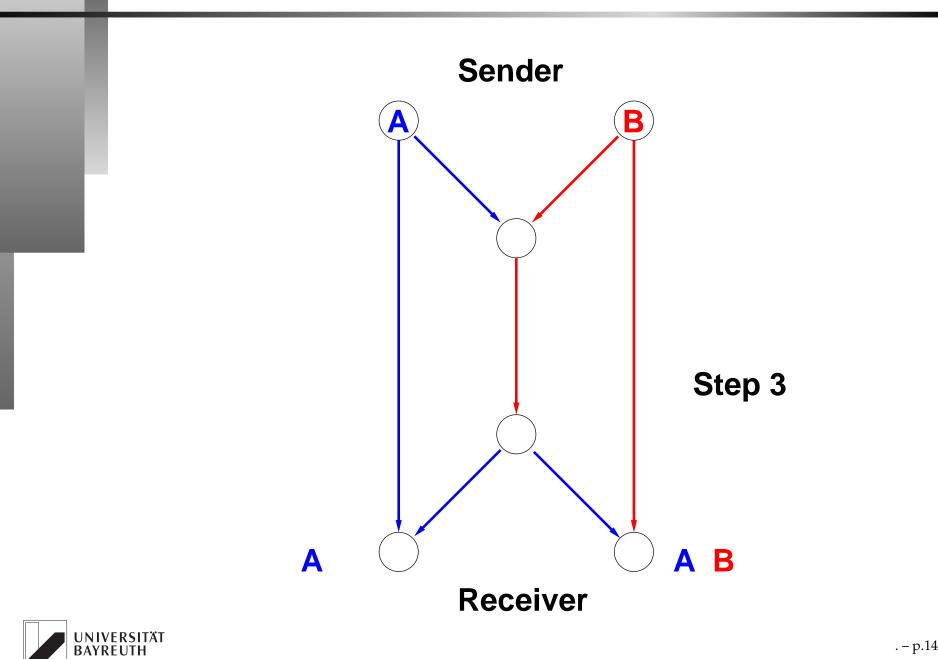


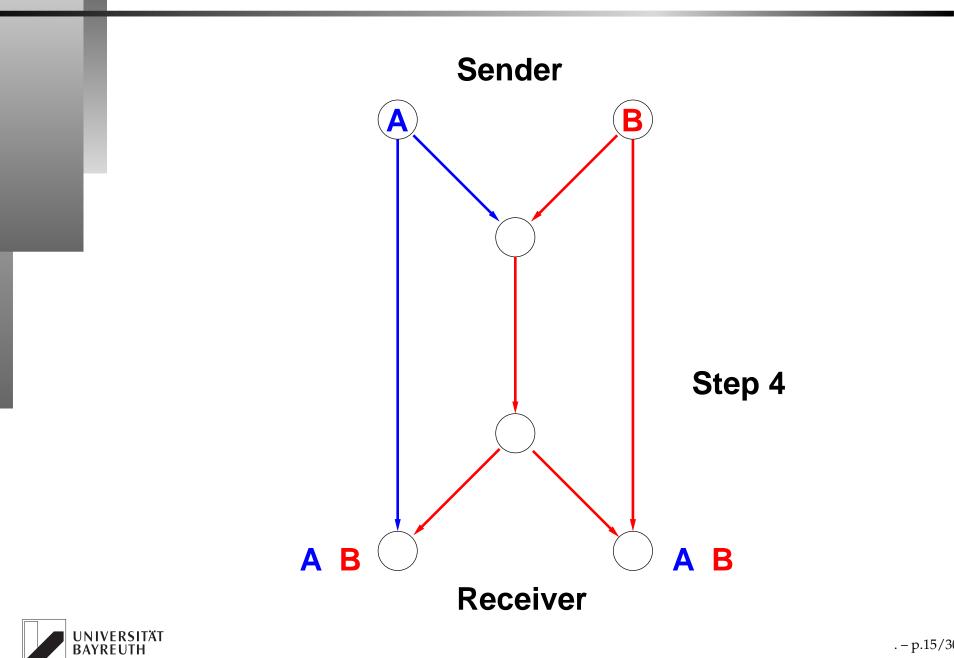


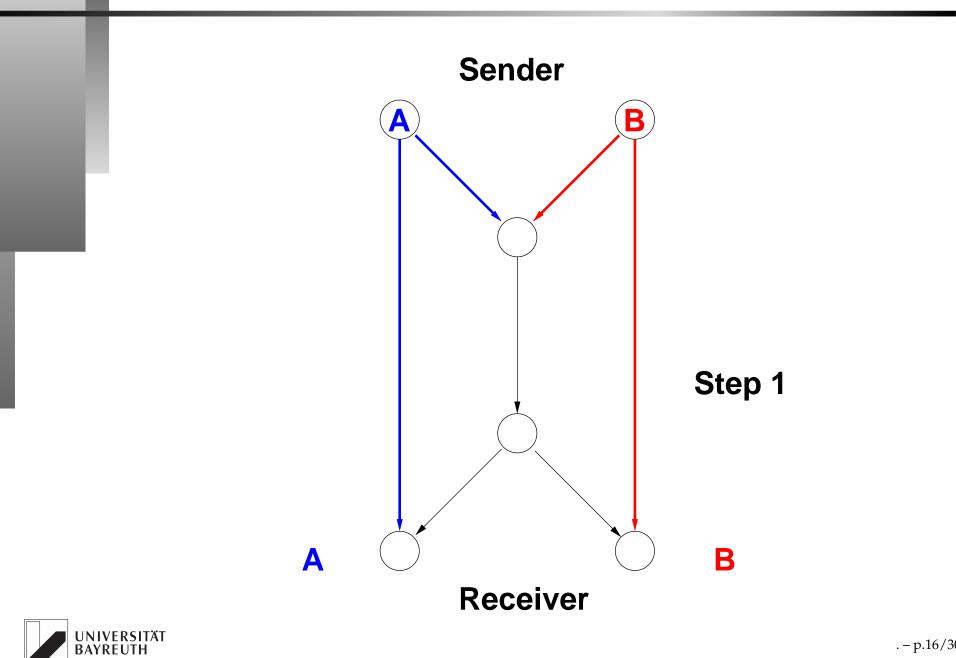


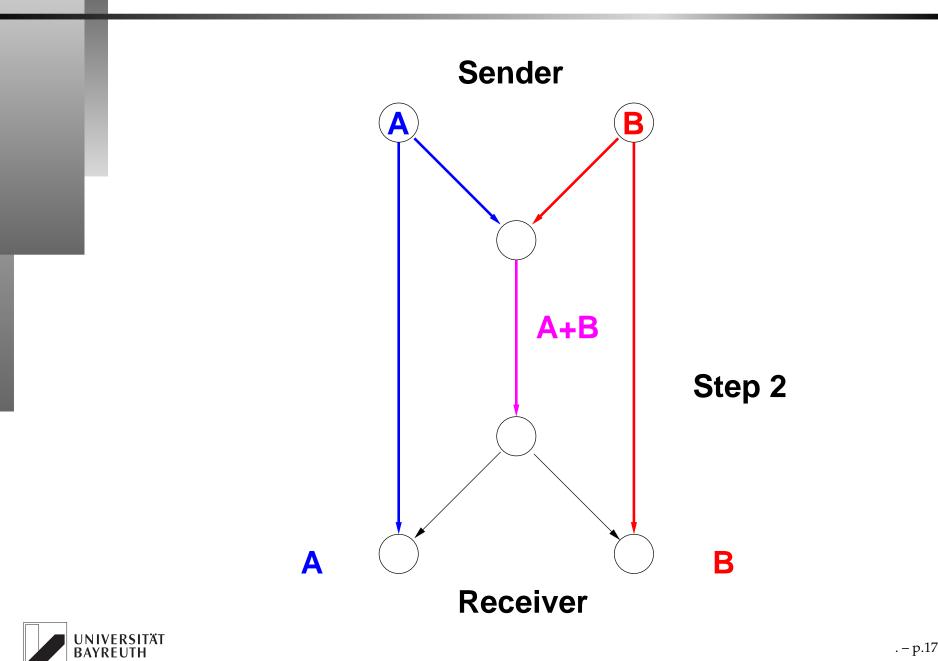


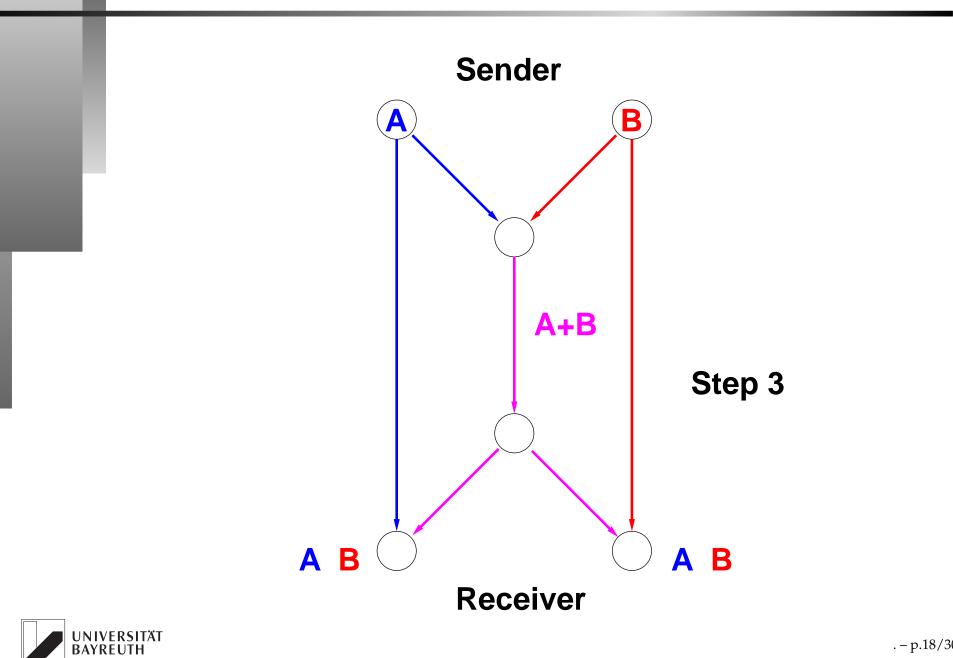












message:

• linear space

message:

linear space

single node:

- receives vectors
- sends some linear combination of the incoming vectors

codeword:

• linear subspace of $GF(q)^v$

codeword:

• linear subspace of $GF(q)^v$

distance d:

 distance in the Hasse diagram of the linear lattice of all subspaces of GF(q)^v

codeword:

• linear subspace of $GF(q)^v$

distance d:

• distance in the Hasse diagram of the linear lattice of all subspaces of $GF(q)^v$

U, W subspace of $GF(q)^v$:

 $d(U,W) = dim(U) + dim(W) - 2dim(U \cap W)$

fix minimum distance d:

Find a set of subspaces in $GF(q)^v$ such that the pairwise distance is at least d

fix minimum distance d:

Find a set of subspaces in $GF(q)^v$ such that the pairwise distance is at least d

fix also dimension k of the subspaces:

Find a set of k-subspaces in $GF(q)^v$ such that the pairwise distance is at least 2d

fix minimum distance d:

Find a set of subspaces in $GF(q)^v$ such that the pairwise distance is at least d

fix also dimension k of the subspaces:

Find a set of k-subspaces in $GF(q)^v$ such that the pairwise distance is at least 2d

constant dimension codes \approx constant weight codes

Given a t - (v, k, 1) q-design we get a constant dimension code with minimum distance 2(k - (t - 1))as the intersection of two codewords has dimension $\leq t - 1$.

Given a t - (v, k, 1) q-design we get a constant dimension code with minimum distance 2(k - (t - 1))as the intersection of two codewords has dimension $\leq t - 1$.

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in exactly 1 k-subspace

= Steiner system

Given a t - (v, k, 1) q-design we get a constant dimension code with minimum distance 2(k - (t - 1))as the intersection of two codewords has dimension $\leq t - 1$.

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in exactly 1 k-subspace

= Steiner system

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in at most 1 k-subspace = error-correcting network code

Define $A_q(v, k, d)$ as the maximal size (= number of codewords) of a constant dimension code with minimum distance d, dimension of codewords = k, and ambient space = $GF(q)^v$

Define $A_q(v, k, d)$ as the maximal size (= number of codewords) of a constant dimension code with minimum distance d, dimension of codewords = k, and ambient space = $GF(q)^v$

open problems:

- find lower and upper bounds for $A_q(v, k, d)$
- find constructions of 'good' codes
- special case $A_2(7,3,4)$ = Fano plane

Construction

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in at most 1 k-subspace

= error-correcting network code

Find a set of k-subspaces in $GF(q)^v$ such that each t-subspace is in at most 1 k-subspace = error-correcting network code

D:= incidence matrix between k-spaces and t-spaces in $GF(q)^v$

 $D_{U,V} := \begin{cases} 1 & t\text{-space } U \text{ is subspace of } k - \text{space } W \\ 0 & \text{else} \end{cases}$

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \ldots, x_s)$ such that

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \ldots, x_s)$ such that

• $x_1 + \ldots + x_s$ as large as possible

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \ldots, x_s)$ such that

• $x_1 + \ldots + x_s$ as large as possible

•
$$Dx^T \leq \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

Combinatorial optimization problem

Find a 0/1-solution $x = (x_1, \dots, x_s)$ such that

• $x_1 + \ldots + x_s$ as large as possible

•
$$Dx^T \leq \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

solution = network code with minimum distance 2(k - t + 1).

Automorphisms

Automorphism φ on $GF(q)^v$: $U < W \iff U^{\varphi} < W^{\varphi}$ *G* subgroup of $Aut(GF(q)^v)$

Automorphisms

Automorphism φ on $GF(q)^v$: $U < W \iff U^{\varphi} < W^{\varphi}$ *G* subgroup of $Aut(GF(q)^v)$

 shrink matrix D by: adding columns of elements in the same orbit of G on the k-spaces

 \Rightarrow rows of elements in the same orbit on the t-spaces are identical

Automorphisms

Automorphism φ on $GF(q)^v$: $U < W \iff U^{\varphi} < W^{\varphi}$ *G* subgroup of $Aut(GF(q)^v)$

 shrink matrix D by: adding columns of elements in the same orbit of G on the k-spaces

 \Rightarrow rows of elements in the same orbit on the t-spaces are identical

• $D^G :=$ shrinked matrix

 \Rightarrow number of columns = number of orbits on k-spaces number of rows = number of orbits on t-spaces

 b_1, \ldots, b_m orbit sizes on k-spaces. Find a 0/1-solution $x = (x_1, \ldots, x_m)$ such that

- b_1, \ldots, b_m orbit sizes on k-spaces. Find a 0/1-solution $x = (x_1, \ldots, x_m)$ such that
 - $b_1x_1 + \ldots + b_mx_m$ as large as possible

- b_1, \ldots, b_m orbit sizes on k-spaces. Find a 0/1-solution $x = (x_1, \ldots, x_m)$ such that
 - $b_1x_1 + \ldots + b_mx_m$ as large as possible

•
$$D^G x^T \leq \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

- b_1, \ldots, b_m orbit sizes on k-spaces. Find a 0/1-solution $x = (x_1, \ldots, x_m)$ such that
 - $b_1x_1 + \ldots + b_mx_m$ as large as possible

•
$$D^G x^T \leq \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

/ 1 \

solution = network code with prescribed automorphisms and minimum distance 2(k - t + 1).

Results (binary)

v	k	number of codewords:		d
		new	old	
6	3	77	71	4
7	3	304	294	4
8	3	1275	1164	4
9	3	5621	4657	4
10	3	21483	18631	4
11	3	79833	74531	4
12	3	315315	298139	4

A. Kohnert, S. Kurz: *Construction of Large Constant Dimension Codes With a Prescribed Minimum Distance*, LNCS, 2008.

R. Kötter, F. Kschischang: *Coding for errors and erasures in random network coding*, IEEE Transactions on Information Theory, **54**, 3579–3590, 2008.

Thank you very much for your attention.

