Construction of Codes for Network Coding

Axel Kohnert Budapest MTNS July 2010

University of Bayreuth axel.kohnert@uni-bayreuth.de

(joint work with A.S. Elsenhans, A. Wassermann)

Agenda

- Network Codes
- Finding Codes (construction)
- Using Codes (decoding)

I - Network Codes

Network Codes

Network Codes

Modell (Kötter, Kschischang) one codeword:

• vectorspace $V < \mathbb{F}_2^v$

Modell (Kötter, Kschischang) one codeword:

• vectorspace $V < \mathbb{F}_2^v$

one vertex in the network:

- receives several $v_i \in V$
- sends random combination of the v_i (= EXOR)

Error Correcting Network Codes

codeword:

• subspace of \mathbb{F}_2^v

codeword:

• subspace of \mathbb{F}_2^v

distance d:

- graph theoretic distance in the Hasse diagram of the subspace lattice of \mathbb{F}_2^v

codeword:

• subspace of \mathbb{F}_2^v

distance *d*:

- graph theoretic distance in the Hasse diagram of the subspace lattice of \mathbb{F}_2^v

 $U, W < \mathbb{F}_2^v$:

 $d(U,W) = dim(U) + dim(W) - 2dim(U \cap W)$

Error Correcting Network Codes

for a fixed d:

find a set of subspaces of \mathbb{F}_2^v with pairwise distances $\geq d$

Error Correcting Network Codes

for a fixed *d*:

find a set of subspaces of \mathbb{F}_2^v with pairwise distances $\geq d$

fix also dimension k of the subspaces:

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

for a fixed *d*:

find a set of subspaces of \mathbb{F}_2^v with pairwise distances $\geq d$

fix also dimension k of the subspaces:

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

constant dimension codes $\approx q-$ analog of constant weight codes

II - Construction

Problem

original problem

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

original problem

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

modified version

find k-dim. subspaces $\{V_1, \ldots, V_b\}$ in \mathbb{F}_2^v such that the pairwise intersection is at most 1-dimensional

original problem

find a set of k-dimensional subspaces of \mathbb{F}_2^v with pairwise distances $\geq 2d$

modified version

find k-dim. subspaces $\{V_1, \ldots, V_b\}$ in \mathbb{F}_2^v such that the pairwise intersection is at most 1-dimensional

 \Rightarrow code with minimum distance $\geq 2(k-1)$

- On \mathbb{F}_2^v acts the Singer cycle *S*
- i.e. multiplication in \mathbb{F}_{2^v} with non-zero elements

- On \mathbb{F}_2^v acts the Singer cycle *S*
- i.e. multiplication in \mathbb{F}_{2^v} with non-zero elements
- inducing action of S on the k-spaces

- On \mathbb{F}_2^v acts the Singer cycle *S*
- i.e. multiplication in \mathbb{F}_{2^v} with non-zero elements
- inducing action of S on the k-spaces

find a Singer orbit O on the k-dim. subspaces of \mathbb{F}_2^v such that the pairwise intersection of the $V_i \in O$ is at most 1-dimensional

- typical Singer orbit on k-spaces has 2^v 1 elements
- like in the case of the action on \mathbb{F}_2^v

- typical Singer orbit on k−spaces has 2^v − 1 elements
- like in the case of the action on \mathbb{F}_2^v
- for v large enough there are 'good' orbits having above 1-dim. intersection property

- typical Singer orbit on k−spaces has 2^v − 1 elements
- like in the case of the action on \mathbb{F}_2^v
- for v large enough there are 'good' orbits having above 1-dim. intersection property
- good orbit \Rightarrow code with $2^v 1$ codewords and minimum distance $\ge 2(k-1)$

- Given a k-dimensional space $V < \mathbb{F}_2^v$
- take all the nonzero vectors $\{u_1, \ldots, u_{2^k-1}\}$
- action of *S* is multiplication in \mathbb{F}_{2^v}

- Given a k-dimensional space $V < \mathbb{F}_2^v$
- take all the nonzero vectors $\{u_1, \ldots, u_{2^k-1}\}$
- action of *S* is multiplication in \mathbb{F}_{2^v}
- pairwise quotients u_i/u_j are invariant under the action of S

- Given a k-dimensional space $V < \mathbb{F}_2^v$
- take all the nonzero vectors $\{u_1, \ldots, u_{2^k-1}\}$
- action of *S* is multiplication in \mathbb{F}_{2^v}
- pairwise quotients u_i/u_j are invariant under the action of *S*
- describe a complete orbit by the pairwise quotients

Example

k = 3, $3-\text{space} = \{0, 1, 4, 10, 18, 23, 25\}$ = exponents of a generator of $\mathbb{F}_{2^v}^*$ (only for the example)

Example

k = 3, 3-space = $\{0, 1, 4, 10, 18, 23, 25\}$ = exponents of a generator of $\mathbb{F}_{2^v}^*$ (only for the example) orbit graph G_O

Lemma: O is a good orbit \iff all the pairwise quotients are different

Lemma: O is a good orbit \iff all the pairwise quotients are different

find a k-dim. subspace of \mathbb{F}_2^v such that the pairwise quotients are all different

 \Rightarrow code with $2^{\upsilon}-1$ codewords and minimum distance $\geq 2(k-1)$

Lemma: O is a good orbit \iff all the pairwise quotients are different

find a k-dim. subspace of \mathbb{F}_2^v such that the pairwise quotients are all different

 \Rightarrow code with $2^v - 1$ codewords and minimum distance $\ge 2(k-1)$

find a set $\{V_1, \ldots, V_b\}$ of k-dim. subspace of \mathbb{F}_2^v such that all the pairwise quotients are all different

 \Rightarrow code with $b(2^v-1)$ codewords and minimum distance $\geq 2(k-1)$

results

			number of	
U	k	b	codewords	$d_S = 2d$
15	3	555	$555 \cdot \left(2^{15} - 1\right) = 18185685$	4
16	3	1056	69204960	4
17	3	2108	276297668	4
18	3	4032	1056960576	4

III - Decoding

Decoding

- special case b = 1
- number of codewords $2^v 1$
- message is a 3-space $V < \mathbb{F}_2^v$

- special case b = 1
- number of codewords $2^v 1$
- message is a 3-space $V < \mathbb{F}_2^v$

as d = 4: two possible cases in decoding:

- erasure (we received a 2-space U < V)
- error (i.e. we received a 4-space U > V)

• received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$

- received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
- compute x_1/x_2 .

- received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
- compute x_1/x_2 .
- identify an edge $\{x_1, x_2\}$ in orbit graph G_O

- received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
- compute x_1/x_2 .
- identify an edge $\{x_1, x_2\}$ in orbit graph G_O
- multiply x_1 with an edgelabel u from G_O giving a third base element ux_1 of $V = \langle x_1, x_2, ux_1 \rangle$

- received a 2-space $U = \{x_1, x_2, x_3, 0\} < V$
- compute x_1/x_2 .
- identify an edge $\{x_1, x_2\}$ in orbit graph G_O
- multiply x_1 with an edgelabel u from G_O giving a third base element ux_1 of $V = \langle x_1, x_2, ux_1 \rangle$
- costs: one multiplication and one division in \mathbb{F}_{2^v}

Error

• received a 4-space U > V

- received a 4-space U > V
- choose a random 3-subspace W < U, we know: W ∩ V is at least 2-dimensional

- received a 4-space U > V
- choose a random 3-subspace W < U, we know: W ∩ V is at least 2-dimensional
- loop over the 7 $2-\dim$ subspaces of W

- received a 4-space U > V
- choose a random 3-subspace W < U, we know: W ∩ V is at least 2-dimensional
- loop over the 7 $2-\dim$ subspaces of W
- one of it is a 2-dim subspace of V and we can apply the erasure algorithm, including a check whether the third constructed vector is in V

- received a 4-space U > V
- choose a random 3-subspace W < U, we know: W ∩ V is at least 2-dimensional
- loop over the 7 $2-\dim$ subspaces of W
- one of it is a 2-dim subspace of V and we can apply the erasure algorithm, including a check whether the third constructed vector is in V
- worst case costs: 7 divisions and 7 multiplications

Generalisations

- it works for b > 1
- it works for k > 3

A.S. Elsenhans, A. Kohnert, A. Wassermann: *Construction* of *Codes for Network Coding*, Proceedings MTNS 2010.

A.S. Elsenhans, A. Kohnert: *Constructing Network Codes* using Möbius Transformations, in preparation

- T. Etzion, N. Silberstein: several papers on arxiv.org on constant dimension codes
- A. Kohnert, S. Kurz: Construction of Large Constant Dimension Codes With a Prescribed Minimum Distance, LNCS, 2008.

R. Kötter, F. Kschischang: *Coding for errors and erasures in random network coding*, IEEE Transactions on Information Theory, **54**, 3579–3590, 2008.

A.S. Elsenhans, A. Kohnert, A. Wassermann: *Construction* of *Codes for Network Coding*, Proceedings MTNS 2010.

A.S. Elsenhans, A. Kohnert: *Constructing Network Codes* using Möbius Transformations, in preparation

- T. Etzion, N. Silberstein: several papers on arxiv.org on constant dimension codes
- A. Kohnert, S. Kurz: *Construction of Large Constant Dimension Codes With a Prescribed Minimum Distance*, LNCS, 2008.

R. Kötter, F. Kschischang: *Coding for errors and erasures in random network coding*, IEEE Transactions on Information Theory, **54**, 3579–3590, 2008.

