Construction of Optimal Linear Codes

Axel Kohnert Thurnau April 2005

Bayreuth University kohnert@uni-bayreuth.de www.mathe2.uni-bayreuth.de

Construction of Sometimes Optimal Linear Codes

Axel Kohnert Thurnau April 2005

Bayreuth University kohnert@uni-bayreuth.de www.mathe2.uni-bayreuth.de

A *linear* (n, k, q) *code* C is a k-dimensional subspace of the vectorspace $GF(q)^n$.

Linear Code

A *linear* (n, k, q) *code* C is a k-dimensional subspace of the vectorspace $GF(q)^n$.

The *generator matrix* Γ of a linear (n, k, q) code C is a $k \times n$ matrix where each row is a basis element of the code C.

Linear Code

A *linear* (n, k, q) *code* C is a k-dimensional subspace of the vectorspace $GF(q)^n$.

The *generator matrix* Γ of a linear (n, k, q) code C is a $k \times n$ matrix where each row is a basis element of the code C.

$$C = \{v\Gamma : v \in GF(q)^k\}$$

Minimum Distance

The minimum distance of a linear code is the minimum number of nonzero entries (=weight) of all nonzero codewords.

Minimum Distance

The minimum distance of a linear code is the minimum number of nonzero entries (=weight) of all nonzero codewords.

We want to find generator matrices Γ of good codes, this means the weight $wt(v\Gamma)$ is high for all nonzero $v \in GF(q)^k$.

Minimum Distance

The minimum distance of a linear code is the minimum number of nonzero entries (=weight) of all nonzero codewords.

We want to find generator matrices Γ of good codes, this means the weight $wt(v\Gamma)$ is high for all nonzero $v \in GF(q)^k$.

A linear code is called *optimal* if the minimum distance is at the upper bound, so no better linear code for (n, k, q) is possible, and the upper bound could be met.

We build a matrix M whose columns are labeled by the possible columns γ of the generator matrix. Rows are labeled by the nonzero $v \in GF(q)^k$ which produce after the multiplication with the generator matrix the codewords of the code.

•

$$\begin{array}{c} \gamma \\ \downarrow \\ M = \boxed{M_{v,\gamma}} \leftarrow v \end{array}$$

. – p.6/18

•

$$M = M_{v,\gamma} \leftarrow v$$

$$M_{v,\gamma} = \{ \begin{array}{cc} 1 & v\gamma = 0\\ 0 & v\gamma \neq 0 \end{array}$$

. – p.6/18

۲

Diophantine System of Equations

We interested in an integral (or 0/1) solution $x = (x_1, \ldots, x_{q^k-1})$ of the system

(1)
$$Mx \leq \begin{pmatrix} n-d \\ \vdots \\ n-d \end{pmatrix}$$

(2) $\sum x_i = n$

Diophantine System of Equations

We interested in an integral (or 0/1) solution $x = (x_1, \ldots, x_{q^k-1})$ of the system

(1)
$$Mx \leq \begin{pmatrix} n-d \\ \vdots \\ n-d \end{pmatrix}$$

(2) $\sum x_i = n$

A solution corresponds via selection of columns of the generator matrix to an (n, k, q) code with minimum distance $\geq d$.

Projective Geometry

As we are computing scalar products, the 0/nonzero property is invariant under scalar multiplication, so we can label rows and columns by 1-dimensional subspaces of $GF(q)^k$.

Projective Geometry

As we are computing scalar products, the 0/nonzero property is invariant under scalar multiplication, so we can label rows and columns by 1-dimensional subspaces of $GF(q)^k$.

M is after this reduction the incidence matrix between the 1-dimensional subspaces and the (k-1)-dimensional subspaces of $GF(q)^k$.

Automorphisms

We now further reduce the size of the system of equations by prescribing a groups of automorphisms, this method corresponds to choosing complete orbits of subgroups of GL(k,q) on the 1-dimensional subspaces as possible columns of the generator matrix.

Automorphisms

We now further reduce the size of the system of equations by prescribing a groups of automorphisms, this method corresponds to choosing complete orbits of subgroups of GL(k,q) on the 1-dimensional subspaces as possible columns of the generator matrix.

This further reduces the number of columns, in our system of equations, as the dimension is now the number of orbits.

Reduction

The defining property of the incidence matrix $M_{U,V} = 1 \iff U \leq V$

is invariant under the automorphisms.

Reduction

The defining property of the incidence matrix $M_{U,V} = 1 \iff U \leq V$

is invariant under the automorphisms.

This also reduces the number of rows in the same way, the dimension is also the number of orbits.

We computed a new (103, 5, 8) code with minimum distance 84.

We computed a new (103, 5, 8) code with minimum distance 84.

We computed a new (103, 5, 8) code with minimum distance 84.

$$q^k - 1 \qquad \quad \frac{q^k - 1}{q - 1}$$

 $32767 \rightarrow 4681$

We computed a new (103, 5, 8) code with minimum distance 84.

We computed a new (103, 5, 8) code with minimum distance 84.

Searching for Groups

We use random subgroups of GL(k,q).

- Permutation groups
- Blockdiagonal
- Monomial
- random cyclic generator

Searching for Groups

We use random subgroups of GL(k,q).

- Permutation groups
- Blockdiagonal
- Monomial
- random cyclic generator

Limits on orbit sizes, number of orbits,

Using this method we computed over 400 new codes for $q \in \{2, 3, 4, 5, 7, 8, 9\}$, i.e. codes better than the previous lower bound.

Using this method we computed over 400 new codes for $q \in \{2, 3, 4, 5, 7, 8, 9\}$, i.e. codes better than the previous lower bound.

Among these there are more than 50 optimal codes.

Ternary Codes (q=3)

k	n	d	k	n	d	k	n	d.
6	191	<u>126</u>	7	46	<u>26</u>	8	64	<u>37</u>
ľ,	201	131		59	34		65	37
	202	<u>132</u>		60	36		200	126
	217	142		61	36		205	128
	219	144	12	222	144	300	224	141
				243	156		225	141
							226	142
							227	143
							228	144

۲

. – p.14/18

Last update on March, 22 2005

•

Code details

best found code with parameters q=3 k=7 n=60minimum distance = 36

this is new optimal code

the previous bounds were 34/36 this is a projective code

We used the prescribed group of automorphisms with the following generators

. – p.15/18

0	0	2	0	0	0	0	1	0	0	0	0	0	C
2	0	0	0	0	0	0	0	2	0	0	0	0	C
0	2	0	0	0	0	0	0	0	2	0	0	0	C
0	0	0	0	0	2	0	0	0	0	1	0	0	C
0	0	0	2	0	0	0	0	0	0	0	1	0	C
0	0	0	0	2	0	0	0	0	0	0	0	2	C
0	0	0	0	0	0	2	0	0	0	0	0	0	2

This group make 67 orbits of sizes:

The solution of the corresponding linear system of equations was found after less than 22 seconds:

This produces the following generator matrix

. – p.17/18

Which is a code with the following weight distribution $1y^{60}+742x^{36}y^{24}+444x^{39}y^{21}+564x^{42}y^{18}+400x^{45}y^{15}+24x^{48}y^{12}+12x^{51}y^{9}$

Last Page

Thank you very much for your attention.

- M. Braun, A. Kohnert, A. Wassermann: Optimal Linear Codes From Matrix Groups, submitted, 2004
- list of new codes including generator matrix and weight distribution: http://linearcodes.uni-bayreuth.de
- A. E. Brouwer has current bounds: http://www.win.tue.nl/~aeb/voorlincod.html

