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Linear Code

A linear

� ��� � � � � code is a

� �dimensional
subspace of the vectorspace

� � �	� .

The generator matrix of a linear code
is a matrix where each row is a basis

element of the code
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Minimum Distance

The minimum distance of a linear code is the
minimum number of nonzero entries (=weight) of
all nonzero codewords.

We want to find generator matrices of good
codes, this means the weight is high for
all nonzero .

A linear code is called optimal if the minimum
distance is at the upper bound, so no better
linear code for is possible, and the upper
bound could be met.
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Minimum Distance Matrix

We build a matrix whose columns are labeled
by the possible columns � of the generator
matrix. Rows are labeled by the nonzero

� � � � � �

which produce after the multiplication
with the generator matrix the codewords of the
code.
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Minimum Distance Matrix
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Minimum Distance Matrix
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Diophantine System of Equations

We interested in an integral (or

�  �

) solution

! 
 � !#" � � � � � !%$ &(' " �

of the system

(1) ! )
� � *

...
� � *

+

(2) !#, 
 �

A solution corresponds via selection of columns
of the generator matrix to an code with
minimum distance
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Projective Geometry

As we are computing scalar products, the�

/nonzero property is invariant under scalar
multiplication, so we can label rows and columns
by

� �dimensional subspaces of

� � � �
�

is after this reduction the incidence matrix
between the dimensional subspaces and the

dimensional subspaces of .
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Automorphisms

We now further reduce the size of the system of
equations by prescribing a groups of
automorphisms, this method corresponds to
choosing complete orbits of subgroups of- � � � � � on the

� �dimensional subspaces as
possible columns of the generator matrix.

This further reduces the number of columns, in
our system of equations, as the dimension is now
the number of orbits.

. – p.9/18



Automorphisms

We now further reduce the size of the system of
equations by prescribing a groups of
automorphisms, this method corresponds to
choosing complete orbits of subgroups of- � � � � � on the

� �dimensional subspaces as
possible columns of the generator matrix.

This further reduces the number of columns, in
our system of equations, as the dimension is now
the number of orbits.

. – p.9/18



Reduction

The defining property of the incidence matrix

.� / 
 �

is invariant under the automorphisms.

This also reduces the number of rows in the
same way, the dimension is also the number of
orbits.
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Example

We computed a new

� � �0 � 1 � 2 �

code with
minimum distance

2 3 �

62
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Searching for Groups

We use random subgroups of

- � � � � � �

C Permutation groups

C Blockdiagonal

C Monomial

C random cyclic generator

Limits on orbit sizes, number of orbits, ....
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Results

Using this method we computed over 400 new
codes for � � � 4 � 0 � 3� 1 � 5� 2 � D�

, i.e. codes better
than the previous lower bound.

Among these there are more than 50 optimal
codes.
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Last Page

Thank you very much for your attention.

C M. Braun, A. Kohnert, A. Wassermann:
Optimal Linear Codes From Matrix Groups,
submitted, 2004

C list of new codes including generator matrix
and weight distribution:
http://linearcodes.uni-bayreuth.de

C A. E. Brouwer has current bounds:
http://www.win.tue.nl/~aeb/voorlincod.html
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