
A Steiner 5-Design on 36 PointsAnton Betten, Reinhard Laue, Alfred WassermannMathematical Department, University of Bayreuth, GermanyJune 9, 1998Abstract All known Steiner 5-designs previously had an order q + 1 where q � 3 (mod 4) is aprime power and PSL(2; q) was admitted as a group of automorphisms of such a design. In this paperwe present a 5-(36; 6; 1) design admitting PGL(2; 17) � C2 as a group of automorphisms. The designis unique with this automorphism group and even for the commutator group PSL(2; 17) � id2 of thisautomorphism group there exists no further design with these parameters. We list the intersectionnumbers of this Steiner system and show the incidence matrix of t-subset orbits and block orbits, toallow an analysis of the design.1 IntroductionFor a long time t-designs were known only for t � 5 and these designs admitted some group PSL(2; q)as a group of automorphisms. The full automorphism group could be larger as in the case of the famousWitt designs [20]. Assmus and Mattson [1] contributed such designs for the cases q = 23; 48 derivingthem from codes. The new designs had values of � greater than 1, and in several cases consisted of justone orbit of the group PSL(2; q). The search for t-designs at that time was closely related to the searchfor transitive extensions of permutation groups [14]. So, Assmus and Mattson pointed out that theirnew 5-designs are not "orbit-designs", i.e. PSL(2; q) is not transitive on the set of blocks of the design.A few years later, Denniston [10], [9], Mills [18], Grannell, Griggs [11], constructed Steiner 5-systems,i.e. 5-(q+1; k; 1) designs, where they used some PSL(2; q) as a prescribed group of automorphisms too.Denniston also noticed that several orbits of the group on k-subsets had to be combined to obtain sucha design. More generally, using the classi�cation theorem of �nite simple groups, Praeger and Cameron[7] showed that no block-transitive 8-(v; k; �) designs exist and conjectured that already block-transitive6-(v; k; �) designs do not exist. Therefore it is a natural requirement to have a tool that constructst-designs by combining many orbits. This has been formalized nicely by Kramer and Mesner [15]. Theauthors have developed a software package DISCRETA which has produced already several 6-, 7-, and8-designs by this approach. Details may be found in the papers [19], [6], [4].A di�cult task in �nding new t-designs by a software tool like DISCRETA still is to predict a groupof automorphisms of the designs. So, since all Steiner 5-designs known previously have an order q + 1where q � 3 (mod 4) is a prime power and PSL(2; q) is admitted as a group of automorphisms [8],Denniston [10], Grannell, Griggs, Mathon [12], [13], [21], and Mathon [17] looked for further values ofq to construct new Steiner 5-systems. In this paper we slightly modify the permutation presentation ofPSL(2; 17) and thus act on a set of v points, where v� 1 is not a prime power. So, we present a simple5-(36; 6; 1) design admitting PGL(2; 17)�C2 as a group of automorphisms. The design is unique withthis automorphism group and even prescribing only the commutator group PSL(2; 17) � Id2 of thisautomorphism group yields no further simple design with these parameters. We list some characteristicsof this Steiner system and the incidence matrix of t-subset orbits and block orbits, to allow an analysisof the design. DISCRETA also shows that with this prescribed automorphism group there exist simple5-(36; 6; �) designs for each of the admissible values of � = 1; 2; � � � ; 31.
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Readers interested in DISCRETA may consult our WWW-page listing many t-designs especially fort � 6 and allowing to download DISCRETA for various platforms:http://mathe2.uni-bayreuth.de/betten/DESIGN/d1.htmlWe remark that this kind of direct product groups has already lead to other important t-designs.According to A. Brouwer [3], Denniston [9] has found a 4-(12,5,4) design with PGL(2; 5)� Id2, S. Baysand E. De Weck [2] found a 3-(14,4,1) already in 1935, using Hol(C7)2 � Id2. Here Hol(C7)2 is thesubgroup of index 2 of the holomorph of C7. A. Brouwer [3] used the latter group to get some 3-(15,5,�)designs for di�erent values of �, a 4-(15,5,3) design, and using PSL(2; 7)� Id2 many 3-(16,4,�) designsfor di�erent values of �. Also 5-(16,6,3) and 5-(16,6,5) designs arouse from this group. A 4-(18,8,84)design came from a PGL(2; 8)� C2.We have �rst used PGL(2; 9)� Id2 to �nd large sets LS[2](4; 9; 20), LS[2](4; 10; 20), and adding a�xed point to PSL(2; 9)�Id2 we found an LS[2](5; 9; 21): PSL(3; 2)�S3 acting with an additional �xedpoint gave an LS[2](6; 9; 22)[16]. While in the case of an LS[2](t; k; v) the value of � in the t-designs isas large as possible up to complementary designs, in this paper we are interested in the smallest possiblevalue � = 1. We have obtained some cases where � = 2 or � is smallest admissible. So far the aboveSteiner system is the only one we could derive from this kind of groups. We list some parameter setsand the direct product groups used to �nd the designs. Some of these parameter sets are new, othershad already been found using other types of groups.Parameter Group7-(20,10,126) (PSL(2; 8)� C2) + + [5]4-(16,6,6) (D5 � C3)+ [5]3-(14,5,5) (C7 � C2) [5]5-(24,6,2) PSL(2; 11)� C25-(24,8,288) (M11)12 � Id25-(24,9,1080) (M11)12 � Id25-(28,6,2) PGL(2; 13)� C25-(34,6,5) P�L(2; 16)� C25-(36,6,1) PGL(2; 17)� C25-(46,8,800) M23 � Id25-(48,6,2) PGL(2; 23)� C25-(52,6,2) P�L(2; 25)� C2In this table, (M11)12 denotes the permutation representation of the Mathieu group M11 on 12points.2 Steiner systems with prescribed automorphismsIn order to explain the choice of blocks which gives the 5-(36; 6; 1) design we make some remarks onthe connection between the design and its automorphism group.Lemma. Let G be a group of automorphisms of a t-(v; k; 1) Steiner system D. Then the mapping� : �Vt �! D mapping each t-subset of the underlying point set V onto the unique block B containing Tcommutes with the actions of G on �Vt � and D. In particular, for each T 2 �Vt � its stabilizer NG(T ) iscontained in NG(�(T )), the stabilizer of the block containing T . Any two t-subsets of a block B whichare in the same orbit under G must be in the same orbit under NG(B).The 6-(36,6,1) design consists of 15 orbits of blocks under the action of PGL(2; 17) � C2. It iseasily very�ed that for each block-orbit representative B the sum over all jNG(B)j=jNG(T )j for T � Ba representative of a 5-orbit is 6, as required by the Lemma. The block orbits can be classi�ed withrespect to the orders of the stabilizers in G. The structure of the group action allows a re�nementby the number of points belonging to the same orbit of PGL(2; 17). So, a 5-subset has two numbersassigned counting the entries from f1; � � � ; 18g and from f19; � � � ; 36g. Any g 2 G applied to B may2



interchange these numbers, but �xes the set of these numbers. So, we draw a bipartite graph with theblock orbits and the 5-orbits as vertices. If a block B contains m 5-subsets from the orbit of T then weconnect the vertices for BG and TG by an edge of multiplicity m.3 The 5-(36; 6; 1) designThe prescribed group of automorphisms has order 9792 and is isomorphic to PGL(2; 17) � C2. Itspermutation representation is obtained by taking two copies of the natural point set of PGL(2; 17) andthe same action of this group on both sets. A permutation of order two interchanging the correspondingpoints is taken as an additional generator of the group. Thus we obtain the following presentation bygenerating permutations.G = h(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36);(3 5 11 12 15 7 17 13 18 16 10 9 6 14 4 8)(21 23 29 30 33 25 35 31 36 34 28 27 24 32 22 26);(3 8 4 14 6 9 10 16 18 13 17 7 15 12 11 5)(21 26 22 32 24 27 28 34 36 31 35 25 33 30 29 23);(2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36);(1 3 11 8 15 9 5 7 17 4 14 16 12 6 13 10 18)(19 21 29 26 33 27 23 25 35 22 32 34 30 24 31 28 36)iThere are 48 orbits on 5-sets which are shown in the second column of the next table. The Steinersystem consists of 15 6-orbits out of 259 orbits. A block of the Steiner system can be described bya 5-subset and the additional point in the block. So, the �rst 15 rows of the table belong to 5-orbitrepresentatives which are to be extended by one additional element to obtain the unique block of thedesign that contains that 5-set. These elements are listed as additional points above the inclusionmatrix. Other 5-subsets of a block will belong to further orbits which can be found in the followingrows.
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The inclusion relation of 5-orbits and blocks (size 48� 15)orbit number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15stabilizer order 2 2 2 2 4 2 2 2 2 4 2 6 2 4 2additional point 25 30 26 30 34 24 28 35 36 21 19 31 32 31 335-orbitsf1; 2; 3; 4; 8g2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 4; 5g2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 5; 9g2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 6; 26g1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 4; 7g4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 22; 23g1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0f1; 2; 3; 22; 25g1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0f1; 2; 3; 22; 31g1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0f1; 2; 3; 19; 22g1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0f1; 2; 3; 4; 19g2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0f1; 2; 3; 19; 23g1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0f1; 2; 3; 24; 25g1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0f1; 2; 3; 5; 27g1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0f1; 2; 3; 19; 27g1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0f1; 2; 3; 19; 25g1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1f1; 2; 3; 6; 19g1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 4; 26g2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 5; 19g1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 6; 22g2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 5; 22g1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 4; 23g1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 6; 23g1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 5; 24g1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 5; 28g2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 23; 33g1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 23; 28g1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 6; 25g1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 4; 25g4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0f1; 2; 3; 22; 24g1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0f1; 2; 3; 23; 24g1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0f1; 2; 3; 22; 26g1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0f1; 2; 3; 23; 31g1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0f1; 2; 3; 22; 32g1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0f1; 2; 3; 23; 27g1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0f1; 2; 3; 22; 29g2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0f1; 2; 3; 23; 30g2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0f1; 2; 3; 19; 26g1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0f1; 2; 3; 19; 29g2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0f1; 2; 3; 19; 20g2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0f1; 2; 3; 24; 34g2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0f1; 2; 3; 19; 24g1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0f1; 2; 3; 23; 35g2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0f1; 2; 3; 23; 25g1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0f1; 2; 3; 23; 34g1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0f1; 2; 3; 24; 33g2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0f1; 2; 3; 24; 27g2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1f1; 2; 3; 23; 26g2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1f1; 2; 3; 19; 28g1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1The index appended to a 5-orbit representative denotes the order of the stabilizer of that 5-subset.4



Splitting of blocks into 5-orbits2 2 4 6

10

4
2 2 1 1 1 1 1 1 4 4 1 1 1 2

2 2 4
1 1 1 1 1 1 2 2 2

(5,0) (4,1)(4,1)(4,1) (3,2)(3,2)(3,2)(3,2) (5,0) (4,1) (4,1) (3,2) (3,2) (3,2)

(3,2) (3,2) (3,2)4, 13 (3,2) (3,2) (3,2)6, 7, 8 (4,1) (3,2) (3,2)
1, 2, 3 9, 11, 15 14 12 14

In the �rst row the stabilizer orders of the block orbits are shown. The bipartite graph relates blockorbits to 5-orbits. An edge of multiplicity m means that m 5-sets of the 5-orbit are contained in thesame block from the block orbit. The �rst row below the graph denotes the stabilizer orders of the5-orbits. The second row below the graph denotes the split type of the 5-orbit, i. e. the distribution ofpoints to the two sets of 18 points. The third row below the graph denotes the orbit numbers of theblocks which �t to the tree pattern above the numbers.Intersection Numbersb = 62832r = 10472The Mendelsohn system:0BBBBBB@ 1 1 1 1 1 1 11 2 3 4 5 61 3 6 10 151 4 10 201 5 151 6
1CCCCCCA0BBBBBBBB@ �0�1�2�3�4�5�6

1CCCCCCCCA = 0BBBBBB@ 62832628322244035202406
1CCCCCCA = 0BBBBBB@ � 60� 62832� 61� 10472� 62� 1496� 63� 176� 64� 16� 65� 1

1CCCCCCA (1)The (unique) solution: 0BBBBBBBB@ 191552757613275260022501
1CCCCCCCCA (2)
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The triangle 62832 52360 43384 35728 29232 2375110472 8976 7656 6496 54811496 1320 1160 1015176 160 14516 151 (3)References[1] E. F. Assmus, H. F. Mattson: New 5-designs. J. Comb. Theory 6 (1969), 122-151.[2] S. Bays, E. De Weck: Sur les syst�emes de quadruples. Comment. Math. Helvet. 7 (1935),222-241.[3] A. E. Brouwer: Table of t-designs without repeated blocks, 2 � t � k � v=2; � � �+=2:Math. Centrum. Report ZN76, Amsterdam 1977, unpublished update 1986.[4] A. Betten, R. Laue, A. Wassermann: Some simple 7-designs. to appear in J. Comb.Designs.[5] A. Betten, R. Laue, A. Wassermann: Designs on up to 21 points, some di�cult cases.in preparation.[6] A. Betten, A. Kerber, R. Laue, A. Wassermann: Simple 8-designs with small param-eters. to appear in J. Designs, Codes and Cryptography.[7] P. J. Cameron, C. E. Praeger: Block-transitive t-designs I: point-imprimitive designs.Discr. Math. 118 (1993), 33{43.[8] C. J. Colbourn, R. Mathon: Steiner systems. C. J. Colbourn, J. H. Dinitz, ed., The CRCHandbook of Combinatorial Designs,66{75, CRC Press, Boca Raton (1996).[9] R. H. F. Denniston: A small 4-design. Ann. Discrete Math. 18 (1983), 291{294.[10] R. H. F. Denniston: Some new 5-designs. Bull. London Math. Soc. 8 (1976), 263{267.[11] M. J. Grannell, T. S. Griggs: On Steiner systems S(5; 6; 24). Ars Combinatoria 8 (1979),45{48.[12] M. J. Grannell, T. S. Griggs, R. Mathon: Some Steiner 5-designs with 108 and 132points. J. Comb. Designs 1 (1993), 213{238.[13] M. J. Grannell, T. S. Griggs, R. Mathon: Steiner Systems S(5; 6; v) with v = 72 and84. Mathematics of Computation 67 (1998), 357{359.[14] D. R. Hughes: On t-designs and groups. Amer. J. Math. 87 (1965), 761{778.[15] E. S. Kramer, D. Mesner: t-designs on hypergraphs. Discr. Math. 15 (1976), 263{296.[16] R. Laue: Halvings on small point sets. Preprint: Center of Discrete Mathematics and The-oretical Computer Science Technical Report CDMTCS-078, University of Auckland, New-Zealand. Extended version is to appear in Journal of Comb. Designs.[17] R. Mathon: Searching for spreads and packings. in Geometry, Combinatorial Designsand Related Structures, Proceedings of the �rst Pythagorean conference J. W. P. Hirschfeld,S. S. Magliveras, M. J. de Resmini ed., London Math. Soc. LN 245 (1997), 161{176.6



[18] W. H. Mills: A new 5-design. Ars Combinatoria 6 (1978), 193{195.[19] A. Wassermann: Finding simple t-designs with enumeration techniques. J. CombinatorialDesigns 6 (1998), 79{90.[20] E. Witt: �Uber Steinersche Systeme. Abh. Math. Sem. Hamburg 12 (1938), 265{275.[21] B. Schmalz: t-Designs zu vorgegebener Automorphismengruppe. Dissertation, Univ.Bayreuth (1992).
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