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Abstract All known Steiner 5-designs previously had an order q + 1 where ¢ = 3 (mod /) is a
prime power and PSL(2,q) was admitted as a group of automorphisms of such a design. In this paper
we present a 5-(36,6,1) design admitting PGL(2,17) x Ca as a group of automorphisms. The design
is unique with this automorphism group and even for the commutator group PSL(2,17) X ids of this
automorphism group there exists no further design with these parameters. We list the intersection
numbers of this Steiner system and show the incidence matriz of t-subset orbits and block orbits, to
allow an analysis of the design.

1 Introduction

For a long time t-designs were known only for ¢ < 5 and these designs admitted some group PSL(2, q)
as a group of automorphisms. The full automorphism group could be larger as in the case of the famous
Witt designs [20]. Assmus and Mattson [1] contributed such designs for the cases ¢ = 23, 48 deriving
them from codes. The new designs had values of A greater than 1, and in several cases consisted of just
one orbit of the group PSL(2, q). The search for t-designs at that time was closely related to the search
for transitive extensions of permutation groups [14]. So, Assmus and Mattson pointed out that their
new 5-designs are not ”orbit-designs”, i.e. PSL(2,q) is not transitive on the set of blocks of the design.
A few years later, Denniston [10], [9], Mills [18], Grannell, Griggs [11], constructed Steiner 5-systems,
ie. 5-(q+1,k,1) designs, where they used some PSL(2, q) as a prescribed group of automorphisms too.
Denniston also noticed that several orbits of the group on k-subsets had to be combined to obtain such
a design. More generally, using the classification theorem of finite simple groups, Praeger and Cameron
[7] showed that no block-transitive 8-(v, k, \) designs exist and conjectured that already block-transitive
6-(v, k, \) designs do not exist. Therefore it is a natural requirement to have a tool that constructs
t-designs by combining many orbits. This has been formalized nicely by Kramer and Mesner [15]. The
authors have developed a software package DISCRETA which has produced already several 6-, 7-, and
8-designs by this approach. Details may be found in the papers [19], [6], [4].

A difficult task in finding new ¢-designs by a software tool like DISCRETA still is to predict a group
of automorphisms of the designs. So, since all Steiner 5-designs known previously have an order ¢ + 1
where ¢ = 3 (mod 4) is a prime power and PSL(2,q) is admitted as a group of automorphisms [8],
Denniston [10], Grannell, Griggs, Mathon [12], [13], [21], and Mathon [17] looked for further values of
q to construct new Steiner 5-systems. In this paper we slightly modify the permutation presentation of
PSL(2,17) and thus act on a set of v points, where v — 1 is not a prime power. So, we present a simple
5-(36,6,1) design admitting PGL(2,17) x Cy as a group of automorphisms. The design is unique with
this automorphism group and even prescribing only the commutator group PSL(2,17) x Idy of this
automorphism group yields no further simple design with these parameters. We list some characteristics
of this Steiner system and the incidence matrix of ¢-subset orbits and block orbits, to allow an analysis
of the design. DISCRETA also shows that with this prescribed automorphism group there exist simple
5-(36,6, A) designs for each of the admissible values of A =1,2,---,31.



Readers interested in DISCRETA may consult our WWW-page listing many ¢-designs especially for
t > 6 and allowing to download DISCRETA for various platforms:
http://mathe2.uni-bayreuth.de/betten/DESIGN /d1.html

We remark that this kind of direct product groups has already lead to other important ¢-designs.
According to A. Brouwer [3], Denniston [9] has found a 4-(12,5,4) design with PGL(2,5) x Id», S. Bays
and E. De Weck [2] found a 3-(14,4,1) already in 1935, using Hol(C7)s x Idy. Here Hol(C7)s is the
subgroup of index 2 of the holomorph of C7. A. Brouwer [3] used the latter group to get some 3-(15,5,))
designs for different values of A, a 4-(15,5,3) design, and using PSL(2,7) x Idy; many 3-(16,4,)\) designs
for different values of A. Also 5-(16,6,3) and 5-(16,6,5) designs arouse from this group. A 4-(18,8,84)
design came from a PGL(2,8) x Cs.

We have first used PGL(2,9) x Ids to find large sets LS[2](4,9, 20), LS[2](4,10,20), and adding a
fixed point to PSL(2,9) x Idy we found an LS[2](5,9,21). PSL(3,2) x S3 acting with an additional fixed
point gave an LS[2](6,9,22)[16]. While in the case of an LS[2](t, k,v) the value of A in the t-designs is
as large as possible up to complementary designs, in this paper we are interested in the smallest possible
value A = 1. We have obtained some cases where A = 2 or A is smallest admissible. So far the above
Steiner system is the only one we could derive from this kind of groups. We list some parameter sets
and the direct product groups used to find the designs. Some of these parameter sets are new, others
had already been found using other types of groups.

Parameter Group
7-(20,10,126) | (PSL(2,8) x C3) + + [5]
4-(16,6,6) (D5 x C3)+ [5]
3-(14,5,5) (C7 x Cy) [3]
5-(24,6,2) PSL(2,11) x Cy
5-(24,8,288) (My1)12 x Idy
5-(24,9,1080) (Mi1)12 x Ids
5-(28,6,2) PGL(2,13) x Cy
5-(34,6,5) PT'L(2,16) x Cy
5-(36,6,1) PGL(2,17) x Cy
5-(46,8,800) Mz x Ids
5-(48,6,2) PGL(2,23) x Cy
5-(52,6,2) PT'L(2,25) x Cy

In this table, (Mi1)12 denotes the permutation representation of the Mathieu group M;; on 12
points.

2 Steiner systems with prescribed automorphisms

In order to explain the choice of blocks which gives the 5-(36,6,1) design we make some remarks on
the connection between the design and its automorphism group.

Lemma. Let G be a group of automorphisms of a t-(v,k,1) Steiner system D. Then the mapping
o: (‘t/) — D mapping each t-subset of the underlying point set V onto the unique block B containing T
commutes with the actions of G on (‘t/) and D. In particular, for each T € (‘t/) its stabilizer Ng(T) is
contained in Ng((T)), the stabilizer of the block containing T. Any two t-subsets of a block B which
are in the same orbit under G must be in the same orbit under Ng(B).

The 6-(36,6,1) design consists of 15 orbits of blocks under the action of PGL(2,17) x Cy. It is
easily veryfied that for each block-orbit representative B the sum over all |Ng(B)|/|Ng(T)| for T C B
a representative of a 5-orbit is 6, as required by the Lemma. The block orbits can be classified with
respect to the orders of the stabilizers in G. The structure of the group action allows a refinement
by the number of points belonging to the same orbit of PGL(2,17). So, a 5-subset has two numbers
assigned counting the entries from {1,---,18} and from {19,---,36}. Any g € G applied to B may



interchange these numbers, but fixes the set of these numbers. So, we draw a bipartite graph with the
block orbits and the 5-orbits as vertices. If a block B contains m 5-subsets from the orbit of T' then we
connect the vertices for B and T% by an edge of multiplicity m.

3 The 5-(36,6,1) design

The prescribed group of automorphisms has order 9792 and is isomorphic to PGL(2,17) x Cy. Its
permutation representation is obtained by taking two copies of the natural point set of PGL(2,17) and
the same action of this group on both sets. A permutation of order two interchanging the corresponding
points is taken as an additional generator of the group. Thus we obtain the following presentation by
generating permutations.

G =

((119)(220)(3 21)(4 22)(5 23) (6 24) (7 25)(8 26) (9 27) (10 28) (11 29) (12 30) (13 31) (14 32)
(1533)(16 34)(17 35)(18 36),
(351112157171318161096 144 8)(212329 30 33 25 35 31 36 34 28 27 24 3222 26),
(3841469101618131771512115)(21 26223224 27 28 34 36 31 35 25 33 30 29 23),
(234567891011121314 151617 18)(20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36),
(13118159571741416126 1310 18)(1921 29 26 33 27 23 25 35 22 32 34 30 24 31 28 36))

There are 48 orbits on 5-sets which are shown in the second column of the next table. The Steiner
system consists of 15 6-orbits out of 259 orbits. A block of the Steiner system can be described by
a 5-subset and the additional point in the block. So, the first 15 rows of the table belong to 5-orbit
representatives which are to be extended by one additional element to obtain the unique block of the
design that contains that 5-set. These elements are listed as additional points above the inclusion
matrix. Other 5-subsets of a block will belong to further orbits which can be found in the following
rOwS.



The inclusion relation of 5-orbits and blocks (size 48 x 15)
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The index appended to a 5-orbit representative denotes the order of the stabilizer of that 5-subset.



Splitting of blocks into 5-orbits

2 2 4 6 4
2 2 1 1 11 1 1 4 4 1 1 1 2

(5,0) (4,1)(4,1)(4,1) (3,23,2)(3,2)(3,2) (5,0) (4,1) (4,1)  (3,2)  (3,2) (3,2)

1,23 9,11, 15 14 12 14

2 2 4
1 1 1 1 1 1 2 2 2

(3,2) (3,2) (3,2) (3,2) 3,2)  (3,2) (41) (3,2) (3,2
4,13 6,7, 8 10

In the first row the stabilizer orders of the block orbits are shown. The bipartite graph relates block
orbits to 5-orbits. An edge of multiplicity m means that m 5-sets of the 5-orbit are contained in the
same block from the block orbit. The first row below the graph denotes the stabilizer orders of the
5-orbits. The second row below the graph denotes the split type of the 5-orbit, i. e. the distribution of
points to the two sets of 18 points. The third row below the graph denotes the orbit numbers of the
blocks which fit to the tree pattern above the numbers.

Intersection Numbers
b = 62832
r = 10472
The MENDELSOHN system:

11111 1 1 «o 62832 (g) 62832
1234 5 6 o 62832 (y) 10472
1 36 10 15 21 22440 | | (%) 1496 )
1410 20 | [T | 7| (¢ 1w M)
1 5 15 Zz 240 (2) 16
1 6 Qg 6 ( 5 ) 1
The (unique) solution:
19155
27576
13275
2600 (2)
225
0
1



The triangle

62832 52360 43384 35728 29232 23751
10472 8976 7656 6496 5481
1496 1320 1160 1015

176 160 145 (3)
16 15
1
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