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Abstract

The first 5-(72,6,1) designs with automorphism group PSL(2,71) have been found by
Mills [10]. We enumerated all 5-(72,6,1) designs with this automorphism group. There
are 926299 non-isomorphic designs.

We show that a necessary condition for semiregular 5-(v, 6,1) designs with automor-
phism group PSL(2,v — 1) to exist is v = 84,228 (mod 360). There are exactly 3
non-isomorphic semiregular 5-(84, 6, 1) designs with automorphism group PSL(2, 83).

There are at least 6450 non-isomorphic 5-(244, 6, 1) designs with automorphism group
PYL(2,3°).

1 INTRODUCTION

For the construction of ¢-(v, k, \) designs the approach of Kramer and Mesner [7] has been very
successful: At first a automorphism group G is prescribed and the incidence matrix Afk of
the orbits is calculated. Then, a design having GG as a group of automorphisms corresponds to
solutions x of the Diophantine linear system
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where x is a 0/1-vector. The solving of this system is a NP-complete task. Finally, isomorphic
designs have to be identified. The first two steps can be done with DISCRETA [1], a software
package developed by the authors. The isomorphism problem is solved by the methods in [3].

Steiner systems with ¢ > 3 are still rare objects. It is not known whether any exist for ¢ > 6,
and for t = 5 only a few parameter sets are known. All known Steiner 4-systems are derived
from Steiner 5-systems. So, we continue the search for such objects.

In the search for Steiner systems with large ¢, i. e. 5-(v, k, 1) designs, a fruitful approach was
to further cut the search space by restricting the incidence matrix Afk of the orbits to orbits
of k-subsets which do not have length equal to the group order. These orbits usually are called
short orbits.

The values of v for which 5-(v, 6, 1) designs are known, are 12, 24, 36, 48, 72, 84, 108, 132, 168.
Apart from the recently found 5-(36, 6, 1) design [2] they all admit some PSL(2,q) as a group
of automorphisms, where ¢ = 3 mod 4. Their number of isomorphism types was known only for
v < 48 completely and — restricted to short orbit-designs — also for v = 72, 84. Denniston [5]
showed that ¢ = 3 mod 4 is a necessary condition for the existence of ¢-(¢ + 1,¢ + 1, 1) designs
with odd ¢ > 5, having PSL(2,q) as a group of automorphisms, and that PGL(2,q) never
occurs as group of automorphisms for ¢-(¢ + 1,¢ + 1, 1) designs.

For 5-(72,6,1) designs with automorphism group PSL(2,81) we could drop the restriction
to short orbits and enumerate all non-isomorphic designs having this group as automorphism
group.

We also tried the opposite restriction to use only long orbits to reduce the search space. Such
Steiner systems then are semiregular designs. Since most orbits usually are long orbits, one
would expect a large number of solutions. But it is easy to see that already divisibility conditions
heavily restrict the possible situations where such designs might exist. We give a necessary
condition for the existence of parameter sets of semiregular Steiner 5-(v,6,1) designs with
automorphism group PSL(2,q) for some prime power ¢ and consider the smallest possible
case, i. e. v = 84. Surprisingly, there only exist exactly 3 isomorphism types in this case. The
next smallest parameter set for a semiregular Steiner 5-(v,6,1) design would be 5-(228, 6, 1).

Since already in the case of the famous Witt designs the full automorphism group of a Steiner
5-design was much bigger than the corresponding PSL(2,p), we also used a bigger group to
find 5-(244, 6, 1) designs. A bigger group as a rule reduces the size of of the Diophantine linear
system whose solutions are the designs in the number of rows and in the number of columns
roughly by the factor of the index in that group.

2 5-(72,6,1) DESIGNS

There had been some success in prescribing that only short orbits should be contained in the
Steiner systems. So, the number of possibilities was greatly reduced and the full number of
isomorphism types with this additional property could be determined. The first 5-(72,6, 1)
designs have been found by Mills [10] using this approach, and up to 8 designs with this
parameter set consisting only of short orbits are known since B. Schmalz [11].



Grannell, Griggs and Mathon [6] found that there exist exactly 4204 isomorphism types with
blocks from short orbits only.

The present version of DISCRETA now was able to determine the full set of all isomorphism
types of 5-(72,6, 1) designs with automorphism group PSL(2,71). There exist exactly 926299
isomorphism types. The order of the group PSL(2,71) is equal to 178920. The incidence
matrix of the orbits has 79 rows and 982 columns.

3 5-(84,6,1) DESIGNS

Grannell, Griggs and Mathon [6] showed that for short orbits there are exactly 38717 isomor-
phism types. There will be much more isomorphism types if we take into account orbits of
arbitrary length. We already enumerated at least 348512 isomorphism types. So, we look at
the other extreme of a restriction, i. e. to use only orbits of full length.

If a design admits a group of automorphisms G then its set of blocks consists of a collection
of orbits on k-subsets. The smallest possible number of orbits is achieved with semiregular
designs, i. e. if each orbit has the length |G|.

Theorem 3.1 If there exists a 5-(q+1,6,1) design which is semireqular under the automor-
phism group PSL(2,q), q odd, then q = 83,227 mod 360.

Proof Assume, a design with these properties exists. Then the number of blocks b must be
divisible by the group order. Thus, we obtain that the following fraction represents a natural

number. .
b Q0

[PSL(2,q)]  (¢+1)q(g—1)/2
where v = ¢+ 1, £k = 6, and t = 5. Therefore,

(¢ —=2)(g—3)
5-8-9

must be a natural number. But since ¢ is a prime power, ¢ — 3 cannot be divisible by 9. (¢ —2)
and (¢ — 3) are coprime, so 9 has to divide (¢ — 2). Similarly, 8 divides (¢ — 3). Lastly, 5 divides
either (¢ —2) or (¢ — 3). By the Chinese remainder theorem we have a unique solution modulo
5-8-9 =360 in each case. So, 227 and 83 are the unique solutions mod 360, respectively.

O

For the smallest case v = 84 we have used DISCRETA [1] to find all 5-(84,6,1) designs which
consist only of orbits of length |PSL(2,83)| and found exactly 6 solutions. These are grouped
into 3 isomorphic pairs under the action of PGL(2,83) such that there exist exactly 3 isomor-
phism types by [3]. Such a semiregular 5-(84,6,1) design has exactly 18 block orbits. We list
representatives of these orbits for each of the designs.

Design 1 and design 3, respectively design 2 and design 3 are pairwise disjoint such that they
can be combined to designs with A = 2. Since the group PSL(2,83) acts 3-homogeneously,
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each orbit of these semiregular designs is a 3-(84, 6, 60) design. This means, each Steiner system
can be partitioned into 18 3-designs. The designs can not be partitioned into 4-designs with
automorphism group PSL(2,83).

We used the following generators of PSL(2,83), its order is equal to 285852:

(182)(241)(355)(462)(533)(669)(771)(831)(946)(1058)(1115)(12 76)
1351)(1477)(16 57)(17 39) (18 23) (19 48) (20 29) (21 79) (22 49) (24 38) (25 73) (26 67),

(
(14181)(25540)(36254)(43361)(56932)(67168)(7 31 70)(8 46 30)(9 58 45)
(101557) (1176 14)(12 51 75)(13 77 50) (16 39 56) (17 23 38).

The block-orbit representatives:

Design 1: Design 2: Design 3:

{1,2,3,4,5,38}  {1,2,3,4,5,51} {1,2,3,4,5,15}
{1,2,3,4,6,20}  {1,2,3,4,6,9} {1,2,3,4,7,77}
{1,2,3,4,7,11}  {1,2,3,4,7,12}  {1,2,3,4,8,40}
{1,2,3,4,9,62}  {1,2,3,4,8,20} {1,2,3,4,10,54}
{1,2,3,4,10,46} {1,2,3,4,10,72} {1,2,3,4,12,68}
{1,2,3,4,12,44} {1,2,3,4,14,65} {1,2,3,4,13,72}
{1,2,3,4,14,29} {1,2,3,4,15,43} {1,2,3,4,16,48}
{1,2,3,4,17,47} {1,2,3,4,22,63} {1,2,3,4,20,34}
{1,2,3,4,24,42} {1,2,3,4,23,53} {1,2,3,4,23,76}
{1,2,3,4,22,27} {1,2,3,4,31,62} {1,2,3,4,24,66}
{1,2,3,4,31,63} {1,2,3,4,44,76} {1,2,3,4,35,84}
{1,2,3,4,35,65} {1,2,3,4,45,54} {1,2,3,4,37,63}
{1,2,3,5,6,13}  {1,2,3,5,9,52} {1,2,3,4,45,62}
{1,2,3,5,9,52}  {1,2,3,5,22,25} {1,2,3,5,10,22}
{1,2,3,5,16,21} {1,2,3,5,23,70} {1,2,3,5,26,55}
{1,2,3,5,24,59} {1,2,3,5,24,57} {1,2,3,5,49,60}
{1,2,3,5,25,32} {1,2,3,5,26,63} {1,2,3,6,9,34}
{1,2,3,6,7,42}  {1,2,3,6,7,27} {1,2,3,6,41,70}

4 5-(244,6,1) DESIGNS

There are only finitely many 5-(v, 6, 1) designs known, see [4]. As the 5-(36,5, 1) design shows,
v — 1 need not be a prime power. So, the existence of an automorphism group PSL(2,v — 1)
cannot be a necessary condition. It is also not sufficient, since no 5-(28,6,1) design exists
with automorphism group PSL(2,3%). We remark that also no 5-(82,6,1) design admitting
automorphism group PSL(2,81) exists. The next power of 3 that is congruent to 3 mod 4 is
q = 3°5. We find that in this case there do exist Steiner 5-designs, they even admit PXL(2,3%) as
a group of automorphisms in which PSL(2, 3%) has index 5. The order of the group is equal to
35871660, the matrix then still has 196 rows and 7940 columns. So we restricted the search as
usual to short orbits only and ended up with 504 columns. This led to at least 12900 solutions.
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From [8] we conclude that the only overgroups of PXL(2,3%) in S35, are Azs g and PTL(2, 3%).
Both groups are not admitted as an automorphism group of a 5-(244,6, 1) design. Therefore,
by [3, Theorem 2.1], the isomorphism types are determined by the action of PT'L(2,3%) on the
set of the designs. So, they fall into orbits of size 2 under this group. The solutions found
represent at least 6450 isomorphism types.

It seems interesting to notice that this is the first case of a Steiner 5-(v,6,1) design with an
automorphism group PXL(2,p’), where f > 1, and the first parameter set of a 5-(v, 6, 1) design
where v is not a multiple of 12. Further, this seems to be the first known Steiner 5-designs
defined on more than 200 points. So, the number of points is the largest of all presently known
Steiner 5-designs.

We used the following generators of the group PY.L(2,3°):

(32192438219710640113 17715519193 133433314244 86174238 135703659171 74 10
19224016273199 213159153 7263 6291 201 241 55194 186 156 233 107 93 229 134 96 146 18
57225809065956885121122178482211897611768172210239 188 10222727 58118 204
1581791011311014166 130123 149 181211132150 1529892 12220 136 203 18749114 151 4560
14520778 144718994 119151371783 11)

(411212442140 180 75224 109 200 24 138 234 81 64 198 77 170 103 120 232 54 61 3588 38 6 139
12720551 141154208 2145234 32168 157 126 69 143 100202131 176 184 129 230 190209 25 31 115
4116947729516523724210867 116 9739223 5387 148 12595175128 16 30 222 163 206 104
1732121826 84228244 21510514723521721218518222111231 1619966 226 216 79 37 195 160
46196 50 167 183 236 28 191 23 164 20),

234)(567)(8910)(11 12 13)(14 15 16)(17 18 19)(20 21 22)(23 24 25)(26 27 28)(29 30 31)(32 33 34)
3536 37)(38 39 40)(41 42 43) (44 45 46)(47 48 49)(50 51 52) (53 54 55)(56 57 58) (59 60 61)(62 63 64)
6566 67)(68 69 70)(71 72 73)(74 75 76)(77 78 79)(80 81 82)(83 84 85)(86 87 88)(89 90 91)(92 93 94)
9596 97)(98 99 100)(101 102 103)(104 105 106)(107 108 109)(110 111 112)(113 114 115)(116 117 118)

)
)

(
(
(
(
(119120 121)(122 123 124)(125 126 127)(128 129 130)(131 132 133)(134 135 136)(137 138 139)
(140141 142)(143 144 145)(146 147 148)(149 150 151)(152 153 154)(155 156 157)(158 159 160)
(161162 163)(164 165 166)(167 168 169)(170 171 172)(173 174 175)(176 177 178)(179 180 181)
(182183 184)(185 186 187)(188 189 190)(191 192 193)(194 195 196)(197 198 199)(200 201 202)
(203 204 205)(206 207 208)(209 210 211)(212 213 214)(215 216 217)(218 219 220)(221 222 223)
( ) ) ) ) ) ) )

224 225 226)(227 228 229)(230 231 232)(233 234 235)(236 237 238)(239 240 241)(242 243 244),

(134)(5153124)(6 123 84)(7 83 154)(8 243 214)(9 213 164)(10 166 244)(11 36 34)(1233 111)
(13110 37)(14 181 155)(15 157 51)(16 50 179)(17 221 195)(18 194 41)(19 43 222)(20 63 61)

(21 60218)(22 220 64)(23 145 116)(24 118 81)(25 80 143)(26 200 105)(27 104 71)(28 73 201)

(29 187 75)(30 74 120)(31 119 185)(32 35 112)(38 58 238)(39 237 100)(40 99 56)(42 196 223)
(44199 192)(45 191 215)(46 217 197)(47 167 102)(48 101 177)(49 176 168)(52 156 180)(53 134 162)
(54 161 148)(55 147 135)(57 98 236)(59 62 219)(65 175 89)(66 91 107)(67 109 173)(68 205 230)
(69232211)(70 210 203)(72 106 202)(76 186 121)(77 139 141)(78 140 150)(79 149 137)(82 117 144)
(85122 152)(86 97 94)(87 93 225)(88 224 95)(90 174 108)(92 96 226)(103 169 178)(113 171 188)
(114190 182)(115 184 172)(125 159 131)(126 133 228)(127 227 160)(128 240 207)(129 206 235)
(130234 241)(132 158 229)(136 146 163)(138 151 142)(165 212 242)(170 183 189)(193 198 216)
(204 209 231)(208 239 233),

(529169 184 232)(6 30 167 182230)(7 31 168 183 231)(8 56 9093 135)(9 57 91 94 136)



(10588992 134)(11 1771 150 241)(12 18 72 151 239)(13 19 73 149 240)(14 44 229 59 117)
(154522760 118)(16 46 228 61 116)(20 23 50 217 126)(21 24 51 215 127)(22 25 52 216 125)

(26 77129 35 223)(27 78 130 36 221)(28 79 128 37 222)(32 196 105 141 235)(33 194 106 142 233)

(34 195 104 140 234)(38 175 226 53 244)(39 173 224 54 242) (40 174 225 55 243)(41 202 138 208 111)
(42200 139 206 112)(43 201 137 207 110)(47 190 205 84 120)(48 188 203 85 121)(49 189 204 83 119)
(62 144 181199 132)(63 145179 197 133)(64 143 180 198 131)(65 96 162 166 238)(66 97 163 164 236)
(6795161 165 237)(68 12374 102 114)(69 124 75 103 115)(70 122 76 101 113)(80 156 193 159 220)
(81157191160 218)(82 155 192 158 219)(86 146 213 98 107)(87 147 214 99 108)(88 148 212 100 109)
(152186 177 171 210)(153 187 178 172 211)(154 185 176 170 209).

Here are the block-orbit representatives of one 5-(244, 6, 1) design, the indices give the order of
the stabilizers of the orbits.

{1,2,3,4,5,243},  {1,2,3,5,41,130}, {1,2,3,6,7,147},
{1,2,3,4,11,61}, {1,2,3,5,42,52},  {1,2,3,6,11,172},
{1,2,3,5,6,88},  {1,2,3,5,44,81},  {1,2,3,6,19,85},
{1,2,3,5,9,169},  {1,2,3,5,45,175},  {1,2,3,6,22,210},
{1,2,3,5,12,66}, {1,2,3,5,46,47},  {1,2,3,6,32,223},
{1,2,3,5,13,35}, {1,2,3,5,53,218}, {1.2,3,6,33,103},
{1,2,3,5,14,38}, {1,2,3,5,54,121}, {1.2,3.6,36,140},
{1,2,3,5,15,60}, {1,2,3,5,55,120}, {1,2,3,6,38,98),
{1,2,3,5,16,30},  {1,2,3,5,64,180}, {1,2,3,6,39,66},
{1,2,3,5,17,242}, {1,2,3,5,69,131},  {1,2,3,6,45,236},
{1,2,3,5,18,167}3 {1,2,3,5,70,157},  {1,2,3,6,47,145},
{1,2,3,5,19,190}, {1,2,3,5,77,156}, {1,2,3,6,56,87},
{1,2,3,5,20,85}, {1,2,3,5,78,236}, {1.2,3,6,74,178},
{1,2,3,5,21,61}, {1,2,3,5,86,100}, {1,2,3,6,89,1461},
{1,2,3,5,22,186}, {1,2,3,5,90,154}, {1,2,3,6,206,221},
{1,2,3,5,25,80},  {1,2,3,5,105,210}, {1,2,3,7,18,43},
{1,2,3,5,27,228}, {1,2,3,5,111,199}, {1,2,3,7,34,141},
{1,2,3,5,28,68}, {1,2.3,5,123,192}, {1,2,3,7,35,145},
{1,2,3,5,29,219}, {1,2,3,5,125,216}, {1,2,3,7,37,74};
{1,2,3,5,33, 104}, {1,2,3,5,155,203}2 {1,2,3,7,53,207},
{1,2,3,5,34,138}s  {1,2,3,5,166,217}, {1,2,3,7,102,214};
{1,2,3,5,36,168}, {1,2.3,5,187,222}, {1,2,3,11,51,137};
{1,2,3,5,37,99},

For the solving of the Diophantine linear systems we implemented a solver after Mathon’s
algorithm spreads [9], as part of DISCRETA. The first 5-(244, 6, 1) design with automorphism
group PXL(2,3%) was found with a randomized version of this algorithm by the third author.
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