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Abstract
Some simple 7-designs with small parameters are constructed with
the aid of a computer. The smallest parameter set found is 7-(24,8,4).
An automorphism group is prescribed for finding the designs and used
for determining the isomorphism types. Further designs are derived
from these designs by known construction processes.

1 Parameter Sets

Certain projective groups are 3-homogeneous and have a small number of
orbits on k-subsets for moderately small k. They have therefore been a valu-
able tool in several geometric constructions. The first simple 6-designs were
found by Magliveras and Leavitt using a prescribed automorphism group
PI'L(2,32), [13]. Later, further 6-designs were found having other projective
automorphism groups, see [7], [15], [9]. For a recent survey on ¢-designs with
large t see D. L. Kreher’s contribution in [10]. The recipe used to construct
these designs in principle also applies to the construction of simple 7-designs.

Theorem 1.1 The following projective groups are automorphism groups of
t-(v, k, \) designs:

I PSL(2,23) of 7-(24,8,)), where A =4, 5, 6, 7, 8;
11 PGL(2,23) of T-(24,9,\), where A = 40, 48, 64;
Il PGL(2,25) of 7-(26,8,6),

IV PIL(2,25) of 7-(26,9,A), A = 54, 63, 8;

V PTL(2,32) of 7-(33,8,10), 2.

The only 7-designs known before were those of Teirlinck [16] with k =141
and astronomically large A and v like :

A= (t+ 1)!2t+1, v=1mod \.

Applying a construction from Tran van Trung[17], see also Kreher[9], yields
further 7-designs from those of the theorem.
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2 7-DESIGNS

Corollary 1.2 There exist simple T-designs with the following parameter
sets:

VI 7-(25,9,\) for A = 45, 54, 72;
VII 7-(27,9,60).

Thus, there exist simple 7-designs for v = 24, 25, 26, 27, and 33 with
some projective automorphism groups.

2 Methods

The designs are constructed by the Kramer-Mesner method [6]. This method
assumes a prescribed group A of automorphisms of the desired ¢-(v,k, )
designs. The group A is a permutation group on the underlying set V of v
elements acting in the induced way on the set of all k-subsets of V. A design
allows A as an automorphism group if and only if the set of blocks of the
design consists of full k-orbits of A.

Therefore a collection of such k-orbits has to be chosen such that each
t-subset T' is contained in equally many blocks from these orbits. So for each
k-orbit K the number m (T, K*4) of members containing T is computed. If T
is replaced by some 7" from the t-orbit 7 these numbers remain unchanged.
So it suffices to consider only one representative T' from each t-orbit. There
results a matrix M with a row for each t-orbit and a column for each k-
orbit. Choosing k-orbits for a t-(v, k, A) design means to multiply M by an
appropriate 0/1-vector on the right such that a vector with constant entries
A results.

There have been different approaches to finding such 0/1 vectors. We
have implemented a variant of the LLL-algorithm [12], see [18], which in
comparison to Kreher and Radzizowski [8] has the new feature of considering
A as a variable. This helps find unsuspected values of A. After applying the
LLL-algorithm all solutions are determined by an exhaustive search. The
Kramer-Mesner matrix is computed by a new version of B. Schmalz’s Leit-
erspiel (snakes and ladders). Our computational system DISCRETA allows
the choice of groups A from some predefined series. The user computes the
matrices and solves the diophantine system of equations by pressing some
buttons at a graphical user interface. Besides the LLIL-solver we have also
included in the system a clever backtrack-solver written by B.D. McKay [14]
and a linear programming tool Ip-solve [1]. McKay’s solver, in particular, is
frequently a valuable alternative to the LLL method. The system is written
in C and uses a Motif package for the graphical surface. It can be obtained
from the authors via ftp.
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The following group theoretic results allow us to determine the isomor-
phism types of designs with prescribed automorphism groups in many impor-
tant cases without isomorphism testing.

Theorem 2.1 Let GG be a group acting on a set Q. Let A be a subgroup of G
which is the full stabilizer of the points in a set A C Q. Then two points of A
may only lie in the same G-orbit if they lie in the same orbit of No(A), the
normalizer of A in G.

If A'in the theorem is the set of all points having stabilizer A then Ng(A)
acts on this set with orbits of length |Ng(A)/A|. Thus, the number of iso-
morphism types of designs having a prescribed full automorphism group A is
obtained by dividing the total number of all designs having a prescribed full
automorphism group A by the index of A in its normalizer taken in the full
symmetric group on the underlying point set. If the group A is not the full
automorphism group of some designs fixed by A then those designs must have
a larger automorphism group. The principle of inclusion-exclusion allows to
determine the number of isomorphism types with prescribed automorphism
group in this situation. This is the method W. Burnside formalized with his
table of marks [3] for general actions of finite groups, see also [15],[11] for con-
structive aspects of this approach. Since in many situations the subgroups
which occur as stabilizers are not easy to determine, the following special
situation is of interest.

Theorem 2.2 Let GG be a group acting on a set ). Let wy,wy € Q and let
P be a Sylow-p-subgroup of G fizing wy and wy. Then if wy and wy are in
the same orbit of G both points are already in the same orbit of Ng(P), the
normalizer of P in (.

In the situation of the theorem for a subgroup A containing P no know-
ledge about the overgroups of A is needed to decide whether two points fixed
by A lie in the same G-orbit. The only difficulty in formulating general count-
ing formulas results from the fact that the set of points fixed by A usually is
not closed under Ng(P). However, it is sometimes possible to enlarge P and
Ne(P) so that the overgroup of Ng(P) acts on the set of fixed points of the
overgroup of P. Hence, for any prime p the projective group PSL(2,p) con-
tains a Sylow-p-subgroup P of S,11 and PGL(2,p) contains the normalizer
of P. Therefore the following holds.

Corollary 2.3 For any prime p all designs which admit PGL(2,p) as a
group of automorphisms are pairwise non-isomorphic. All designs admitting
PSL(2,p) but not PGL(2,p) as a group of automorphisms are grouped into
isomorphic pairs under the action of PGL(2,p)/PSL(2, p).
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By the preceding methods, the numbers of designs obtained for the cases
[ to V yield the following numbers of isomorphism types:

I 1, 138, > 590, > 126,> 65 for 7-(24,8,A) and A = 4, 5, 6, 7, &;
11 113, 5463, > 15325 for 7-(24,9, \), where A = 40, 48, 64;

11T 7 for 7-(26,8,6),

IV 3989, 37932, > 14 for 7-(26,9, \), where A = 54, 63, 81;

V 4996426 for 7-(33,8, 10), [18].

The corollary also explains why in their investigations of Steiner 5-designs
M.J. Grannel, T.S. Griggs and R.A. Mathon in a series of papers, see [4],
always found two copies of each isomorphism type of Steiner systems with
some prescribed automorphism group PSL(2, p).

B.D. McKay [14] was the first to find more 7-(33,8,10) designs different
from those in [2]. He estimated the existence of about 5 million designs of
type V, and this gave the impetus for the development of better equation
solver for the Kramer-Mesner method, see [18]. In fact, there are 4996426
such designs which is suprisingly close to his estimate.

A detailed presentation of all results mentioned would be very space con-
suming. A moderate listing is planned to appear elsewhere together with
some new 6-designs and material on deduced parameter sets. The details can
be obtained from the authors, see also our WWW-pages. Here we include
only one representative for the smallest value of A in each of the basic cases

I-1V.

3 Selected 7-Designs with Small A

[: We use the following permutation representation of PGL(2,23), a group of
order 12144. Generators are the permutations

a=(374126221019181311242023152151789 1416 )
f=(31614981752115232024 1113181910226 124 7)
y=(234567891011 1213 14 1516 17 18 19 20 21 22 23 24)
6=(1314108166 125209234187 221521 11 19 17 13 24) The
permutations 3%, v, and & generate PSL(2,23), a group of order 6072.

The 7-(24,8,4) design consists of the orbits of the following 8-subsets,
called starter blocks, under the action of PSL(2,23) :
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Starter Blocks Orbit Length

17 18 19 20 21 22 23 24 6072
7 18 19 20 21 22 23 24 6072
5 1 19 20 21 22 23 24 3036
9 1 19 20 21 22 23 24 6072
5 4 19 20 21 22 23 24 6072
16 4 19 20 21 22 23 24 6072
10 8 19 20 21 22 23 24 3036
16 8 19 20 21 22 23 24 6072
10 3 1 20 21 22 23 24 3036
13 3 1 20 21 22 23 24 3036
17 3 1 20 21 22 23 24 6072
11 4 1 20 21 22 23 24 6072
16 4 1 20 21 22 23 24 6072
17 4 1 20 21 22 23 24 3036
12 5 1 20 21 22 23 24 6072
18 5 1 20 21 22 23 24 6072
9 7 1 20 21 22 23 24 6072
13 8 1 20 21 22 23 24 6072
8 5 3 20 21 22 23 24 6072
10 5 3 20 21 22 23 24 6072
8 6 3 20 21 22 23 24 6072
13 6 3 20 21 22 23 24 6072
13 7 3 20 21 22 23 24 6072
17 8 3 20 21 22 23 24 3036
13 10 3 20 21 22 23 24 3036
14 11 3 20 21 22 23 24 3036
16 14 3 20 21 22 23 24 6072
11 6 4 20 21 22 23 24 6072
18 6 4 20 21 22 23 24 6072
13 8 4 20 21 22 23 24 3036
18 13 4 20 21 22 23 24 3036
10 7 5 20 21 22 23 24 3036
11 8 5 20 21 22 23 24 3036
12 9 5 20 21 22 23 24 1518
16 10 5 20 21 22 23 24 3036
16 10 7 20 21 22 23 24 3036
17 14 12 20 21 22 23 24 759
18 14 6 4 21 22 23 24 759

II: One out of 113 isomorphism types of 7-(24,9,40) designs has the fol-
lowing starter blocks for orbits under the action of PGL(2,23) :

Starter Blocks Orbit Length

16 17 18 19 20 21 22 23 24 6072
6 17 18 19 20 21 22 23 24 12144
8 17 18 19 20 21 22 23 24 12144
9 17 18 19 20 21 22 23 24 6072
8 1 18 19 20 21 22 23 24 12144
7 4 18 19 20 21 22 23 24 12144
8 4 18 19 20 21 22 23 24 12144
9 4 18 19 20 21 22 23 24 12144
12 5 18 19 20 21 22 23 24 4048
13 5 18 19 20 21 22 23 24 6072
9 8 18 19 20 21 22 23 24 12144
5 3 1 19 20 21 22 23 24 12144
12 3 1 19 20 21 22 23 24 6072
17 3 1 19 20 21 22 23 24 2024
9 4 1 19 20 21 22 23 24 12144
16 4 1 19 20 21 22 23 24 6072
11 5 1 19 20 21 22 23 24 12144
12 8 1 19 20 21 22 23 24 2024
10 9 1 19 20 21 22 23 24 12144
8 5 4 19 20 21 22 23 24 12144
10 5 4 19 20 21 22 23 24 12144
11 5 4 19 20 21 22 23 24 2024
16 5 4 19 20 21 22 23 24 12144
10 9 4 19 20 21 22 23 24 12144
16 10 4 19 20 21 22 23 24 6072
7 4 3 1 20 21 22 23 24 12144
13 4 3 1 20 21 22 23 24 12144
8 5 3 1 20 21 22 23 24 4048
11 5 3 1 20 21 22 23 24 12144
16 7 3 1 20 21 22 23 24 12144
13 12 3 1 20 21 22 23 24 12144
7 5 4 1 20 21 22 23 24 6072
9 5 4 1 20 21 22 23 24 12144
13 5 4 1 20 21 22 23 24 12144
9 8 4 1 20 21 22 23 24 12144
13 8 5 1 20 21 22 23 24 12144
14 8 5 1 20 21 22 23 24 12144
16 8 5 1 20 21 22 23 24 6072
13 8 5 3 20 21 22 23 24 6072
15 10 5 3 20 21 22 23 24 12144




6 7-DESIGNS

III: We use the following permutation representation of PI'L(2, 25), a group
of order 31200. Generators are the permutations

1234567891011 1213 14 15 16 17 18 19 20 21 22 23 24)

117 14 15 10)(2 5 13 22 3)(4 11 9 19 8)(6 18 12 25 24)(7 21 23 16 20)
18417 3)(221 2219 11)(5 16 20 13 15)(6 12 26 24 18)(7 10 9 14 23)
1 5)(2 10)(3 15)(4 20)(7 11)(8 16)(9 21)(13 17)(14 22)(19 23)

> =2 ™ P
I

The permutations «, 3, and v generate PGL(2,25), a group of order 15600.

One out of 7 isomorphism types of 7-(26,8,6) designs has the following
starter blocks for orbits under the action of PGL(2,25) :

Starter Blocks Orbit Length

2 20 21 22 23 24 25 26 15600
7 20 21 22 23 24 25 26 15600
8 20 21 22 23 24 25 26 15600
3 2 21 22 23 24 25 26 7800
4 2 21 22 23 24 25 26 15600
7 2 21 22 23 24 25 26 15600
9 2 21 22 23 24 25 26 15600
18 2 21 22 23 24 25 26 15600
10 3 21 22 23 24 25 26 15600
11 3 21 22 23 24 25 26 15600
6 4 21 22 23 24 25 26 15600
8 4 21 22 23 24 25 26 7800
9 4 21 22 23 24 25 26 15600
16 4 21 22 23 24 25 26 7800
11 5 21 22 23 24 25 26 15600
15 5 21 22 23 24 25 26 15600
16 5 21 22 23 24 25 26 7800
9 6 21 22 23 24 25 26 7800
14 6 21 22 23 24 25 26 15600
15 6 21 22 23 24 25 26 3900
9 7 21 22 23 24 25 26 15600
10 9 21 22 23 24 25 26 7800
11 10 21 22 23 24 25 26 1950
5 4 2 22 23 24 25 26 7800
10 4 2 22 23 24 25 26 7800
13 4 2 22 23 24 25 26 15600
18 4 2 22 23 24 25 26 15600
11 5 2 22 23 24 25 26 15600
17 5 2 22 23 24 25 26 15600
14 6 2 22 23 24 25 26 15600
16 6 2 22 23 24 25 26 15600
19 6 2 22 23 24 25 26 15600
16 8 2 22 23 24 25 26 7800
18 10 2 22 23 24 25 26 15600
19 10 2 22 23 24 25 26 7800
19 11 2 22 23 24 25 26 7800
5 4 3 22 23 24 25 26 3900
9 7 3 22 23 24 25 26 3900
14 9 3 22 23 24 25 26 7800
17 5 4 22 23 24 25 26 15600
12 8 4 22 23 24 25 26 7800
17 10 4 3 23 24 25 26 3900

IV: One out of 3989 isomorphism types of 7-(26,9,54) designs consisting
of the orbits of the following starter blocks under the action of PI'L(2,25) :
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Starter Blocks Orbit Length

18 19 20 21 22 23 24 25 26 15600
2 19 20 21 22 23 24 25 26 31200
4 19 20 21 22 23 24 25 26 31200
8 2 20 21 22 23 24 25 26 31200
15 2 20 21 22 23 24 25 26 15600
17 2 20 21 22 23 24 25 26 31200
8 3 20 21 22 23 24 25 26 15600
5 4 20 21 22 23 24 25 26 15600
6 4 20 21 22 23 24 25 26 15600
7 4 20 21 22 23 24 25 26 31200
8 4 20 21 22 23 24 25 26 31200
9 4 20 21 22 23 24 25 26 31200
10 4 20 21 22 23 24 25 26 15600
12 4 20 21 22 23 24 25 26 31200
13 5 20 21 22 23 24 25 26 15600
8 6 20 21 22 23 24 25 26 31200
10 6 20 21 22 23 24 25 26 15600
14 6 20 21 22 23 24 25 26 15600
9 8 20 21 22 23 24 25 26 31200
7 3 2 21 22 23 24 25 26 31200
9 3 2 21 22 23 24 25 26 31200
11 4 2 21 22 23 24 25 26 31200
13 4 2 21 22 23 24 25 26 15600
11 5 2 21 22 23 24 25 26 31200
8 6 2 21 22 23 24 25 26 31200
9 6 2 21 22 23 24 25 26 31200
14 7 2 21 22 23 24 25 26 31200
15 7 2 21 22 23 24 25 26 31200
15 8 2 21 22 23 24 25 26 15600
13 9 2 21 22 23 24 25 26 15600
14 9 2 21 22 23 24 25 26 15600
11 10 2 21 22 23 24 25 26 3900
15 13 2 21 22 23 24 25 26 31200
18 17 2 21 22 23 24 25 26 31200
17 12 3 21 22 23 24 25 26 7800
8 7 4 21 22 23 24 25 26 15600
17 7 4 21 22 23 24 25 26 31200
13 10 4 21 22 23 24 25 26 15600
8 7 5 21 22 23 24 25 26 31200
15 7 6 21 22 23 24 25 26 7800
19 10 6 2 22 23 24 25 26 15600
20 11 6 2 22 23 24 25 26 31200

References

1]

2]

[5]

[6]

M.R.C.m. Berkelaar, Ip-solve, a public domain MILP solver, freely avail-
able from ftp://ftp.es.ele.tue.nl/pub/lp_solve/

A. Betten, A. Kerber, A. Kohnert, R. Laue, A. Wassermann, The disco-
very of simple 7-designs with automorphism group PI'L(2,32). AAECC
Proceedings 1995, Springer LNCS 948 (1995),131-145.

W. Burnside, Theory of Groups of Finite Order, Second edition(1911),
republication by Dover Publications, 1955.

C.J. Colbourn, R. Mathon, Steiner Systems, The CRC Handbook on
Combinatorial Designs C.J. Colbourn, J.H. Dinitz (eds.), CRC Press,
Boca Raton, New York, London, Tokyo, 1996, pp. 66-75.

B. Huppert, Endliche Gruppen I, Grundlehren der math. Wiss. 134
Springer-Verlag Berlin Heidelberg New York (1967).

E.S. Kramer, D.M. Mesner, ¢t-designs on hypergraphs. Discrete Math. 15
(1976), 263-296.



7]

[10]

[11]

[12]

[13]

7-DESIGNS

E.S. Kramer, 5.5. Magliveras and D.W. Leavitt, Construction Proce-
dures for t-Designs and the Existence of New Simple 6-designs, Annals

of Discrete Mathematics, 26 (1985), 247-274.

D.L. Kreher, S.P. Radziszowski, Simple 5-(28,6,)) designs from
PSLy(27). Annals of Discrete Math. 37 (1987), 315-318.

D.L. Kreher, An infinite family of (simple) 6-designs. Journal of Combi-
natorial Designs 1 No.4 (1993), 41-48.

D.L. Kreher, t-designs, ¢ > 3, The CRC Handbook on Combinatorial
Designs C.J. Colbourn, J.H. Dinitz (eds.), CRC Press, Boca Raton, New
York, London, Tokyo, 1996, pp. 47-66.

R. Laue, Construction of combinatorial objects — A tutorial. Bayreuther

Math. Schr. 43 (1993), 53-96.

A.K. Lenstra, H.W. Lenstra Jr., L. Lovasz, Factoring Polynomials with
Rational Coefficients, Math. Ann. 261 (1982), 515-534.

S. Magliveras, D.W. Leavitt, Simple 6-(33,8,36) designs from
PI'L2(32). Computational Group Theory, M.D. Atkinson (ed.), Academic
Press 1984, 337-352.

B.D. McKay, private communication.

B. Schmalz, The t-designs with prescribed automorphism group, new
simple 6-designs. J. Combinatorial Designs 1 (1993), 125-170.

L. Teirlinck, Non trivial ¢-designs without repeated blocks exist for all ¢.
Discrete Mathematics 65 (1987), 301-311.

Tran van Trung, On the construction of t-designs and the existence of
some infinite families of simple 5-designs. Arch. Math. 47 (1986), 187-192.

A. Wassermann, Finding simple ¢-designs with enumeration techniques.
In preparation

A. Betten Lehrstuhl II fiir Mathematik
e-mail: Anton.Betten@uni-bayreuth.de

R. Laue Lehrstuhl II fiir Mathematik

e-mail: laue@btm2x2.mat.uni-bayreuth.de

A. Wassermann Lehrstuhl Mathematik und ihre Didaktik

e-mail: Alfred.Wassermann@uni-bayreuth.de



BETTEN et al.

Universitat Bayreuth D-95440 Bayreuth
Germany

http://www.mathe2.uni-bayreuth.de/betten/DESIGN /d1.html.



