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Abstract

A new simple 6-(14,7,4) design is presented with automorphism group
isomorphic to A4. Combining the derived and the residual designs
of the 6-(14,7,4) designs, which were known by now, in the extension
method of van Leijenhorst and Tran van Trung results in a large num-
ber of simple 5-(14,7,18) designs with trivial automorphism group.
This parameter set results from interpreting a 6-(14,7,4) design as a

5-design.
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1 Introduction

For almost two decades, only two isomorphism types of 6-(14,7,4) designs
have been known, both with automorphism group Ci3 acting with an addi-
tional fixed point. They were found by Kreher and Radziszowski [4] using
a lattice basis reduction in Kramer and Mesner’s approach [3] of combining
orbits of a prescribed automorphism group. This parameter set deserves
special interest as it is the smallest admissible parameter set of a 6-design.

Each such design consists of half of all possible 6-sets on 14 points. Thus,



together with its complement it forms a large set and is a starting point
for various recursive constructions of infinite series of ¢-designs. Recently,
Eslami and Khosrovshahi [2] constructed 4 further 6-(14, 7,4) designs using
trades and determined the possible derived designs of the desired smallest

6-designs. These new 6-designs only admit C5 as full automorphism group.

In this note, we present a simple 6-(14,7,4) design with automorphism
group G isomorphic to A4. In order to obtain a permutation representation
of A4 on a set of 14 points, we consider the action of A4 on the set of vertices
of a solid that is derived from the tetrahedron. The solid is constructed
in two extension steps. In the first step the dual tetrahedron is inscribed
by taking the centers of the faces as new vertices. In the second step, an
octahedron is inscribed by taking the midpoints of the edges of the first
tetrahedron, see Fig. 1 below. No automorphism is admitted that would

interchange the two tetrahedra, since the two have different sizes.

Theorem 1 There exists exactly one isomorphism type of simple 6-(14,7,4)

designs with full automorphism group G.

Proof Prescribing this permutation group our software package DISC-
RETA yields 8 solutions to the Kramer-Mesner system of diophantine equa-
tions. The 8 designs are isomorphic, since they are already in only one orbit
under the action of the normalizer of G in S14 which has order 96. We will
also deduce that G is the full automorphism group of each of these 8 de-
signs. So, we fix one of these designs D. From the discussion in [2] it is
clear that non-trivial automorphisms of D have order 3 or some power of
2. If a group of automorphisms of order 9 would exist then this group
would have two orbits of length 1. The design derived at the two fixed
points then also would admit this group. From [2] we know that each non-
identity automorphism of a simple 4-(12,5,4) design has no fixed points.
But then each orbit would have length 9 which is impossible on 12 points.
So the index of G in the full automorphism group is some power of 2 and
by Burnside’s Theorem on p®g®-groups Aut(D) is soluble. Suppose G is
not the full automorphism group. From G = Ng,,(G) N Aut(D) we obtain



Figure 1:

that Nauyp)(G) = G. So, if G is a maximal subgroup of a subgroup H
of Aut(D) then the index of G in H must be at least 4. Then we con-
sider a subgroup @ of order 3 of G. This subgroup is not normal in G
and also not in H. Therefore the Fitting subgroup of F(H) is a 2-group
not containing G. Thus, H = F(H)G and F(H)NG = F(G) = V4. The
factor F'(H)/F(QG) is a chief factor of H on which @ acts irreducibly and
therefore is elementary abelian of order 4. So we know some structure of
H. The subgroup @ is a Sylow-3 subgroup which is a complement of F(H)
in H. If Q@ < Ng(Q) then Ngy(Q) has order 12 and @ acts trivially on
Np(Q)N F(H). Neither F(G) nor F(H)/F(G) allow any non-trivial fixed



points of @ under conjugation. Therefore Q = Ny (Q).

Consider a point z fixed by ). The stabilizer S of 2 in H cannot be
Q, as otherwise the orbit of x would have length 16. So Q < S < H and
S N F(H) is normalized by (). Like in the case of the normalizer @) acts
non-trivially on SN F(H). The order of SN F(H) thus has to be at least 4.
If SN F(H) is not normal in F(H) then SN F(H) < Npg) (SN F(H)) <
F(H) and @ leaves Np(g)(S N F(H)) invariant. Then @ acts trivially
on F(H)/Npg) (SN F(H)) and on Npg) (SN F(H))/S N F(H) because
both are of order 2. Thus, S N F(H) is normal in F(H) and @ acts non-
trivially on F(H)/S N F(H). A check with DISCRETA shows that the
group of order 48 constructed as a subdirect product of two copies of Ay
with amalgamated factor group of order 3 acting with two orbits of length
4 and one orbit of length 6 is not a group of automorphisms of a 6-(14,7,4)
design. The other potential group of order 16 admitting an automorphism
group of order 3 acting in the described way is an extension of Cy x Cy4 by
C5. This group has no faithful action on 14 points. This proves our claim.
O

We point out that the non-abelian group A4 has 3 orbits, two of length 4
and one of length 6, on the set of vertices in this action but no fixed points.
This can be deduced from our presentation as the automorphism group of
nested solids. The vertices of the tetrahedra form the two orbits of length
4 and the vertices of the octahedron form the orbit of length 6. Thus, there
result 3 isomorphism types of derived designs with parameters 5-(13,6,4),
two with automorphism group of order 3 and one with automorphism group
of order 2. Notice that each automorphism of a 5-(13, 6, 4) design extends to
an automorphism of the 6-(14,7,4) design obtained by Alltop’s construction.

The approach presented in [5] implies that a large number of isomor-
phism types of 5-(14,7,18) designs exist, most of them with trivial auto-
morphism group: We combine the different isomorphism types of 5-(13, 6, 4)
designs with the different isomorphism types of 5-(13,7,14) designs which
appear as derived and residual designs of the by now known simple 6-

(14,7,4) designs using the construction of van Leijenhorst [7] and Tran van



Trung [6]. We use the following notation. If D is a t-(v, k, ) design with
point set {1,...,v} then D*{v+1} denotes the set of blocks of D extended
by an additional point v + 1. Any permutation 7 on the point set maps D
onto an isomorphic design D™ = {B™|B € D} where B™ denotes the image
of B under . We have the following result [5]:

Theorem 2 Let Dy be a (t—1)-(v—1,k—1, ) design with autormorphism
group Ay and Dy be a (t —1)-(v — 1,k,Mv —k)/(k —t+ 1)) design with
automorphism group Ao, where the point set in each case is V' = {1,--- jv—
1}. Then Dy #{v}UDI isa (t—1)-(v,k,\(v—t+1)/(k—t+1)) design for

each permutation m on V' ={1,...,v — 1}. There exists an isomorphism
¢ : D(my) = D(ma)
for permutations w1, 7 on V' such that ¢ fizes v if and only if

A17I'1A2 = A17I'2A2.

Taking as D; the derived design of a 6-(14,7,4) design and as D, the
residual design of a 6-(14,7,4) design then by the Theorem there result
many different isomorphism types of 5-(14,7, 18) designs.

We consider a special case that is easy to analyse. Suppose D; with
parameters 5-(13,6,4) and D, with parameters 5-(13,7,14) are derived and
residual designs, resp., of non-isomorphic 6-(14,7,4) designs. Then Alltop’s
construction in each case reconstructs the original 6-(14,7,4) designs. So,
if the reconstructed designs are non-isomorphic then the designs resulting
from van Leijenhorst’s and Tran van Trung’s construction are 5-(14,7,18)
designs but no 6-(14,7,4) designs.

This situation appears very often. If we start with a 5-(13,6,4) design
and apply Alltop’s construction we obtain a 6-(14,7,4) design. Each auto-
morphism of the 5-(13, 6,4) design then also extends to an automorphism of
the 6-(14,7,4) design fixing the additional point. Thus, each automorphism
also is an automorphism of the residual design. The same holds true, vice

versa, if we start with the residual design and transfer the automorphisms



to the derived design. Therefore, if in a 5-(14,7,18) design the derived
design and the residual design with respect to some point are 5-designs

with different automorphism groups, the 5-(14,7,18) design cannot be a
6-(14,7,4) design.

We obtain the following cases of 5-(13,6,4) designs:

1. The construction by Kreher and Radziszowski yields 2 isomorphism
types with automorphism group Ci3, and 2 isomorphism types with

trivial automorphism group.

2. The construction by Eslami and Khosrovshahi yields 1 isomorphism
type with automorphism group Cs x Ids+ and 8 isomorphism types

with trivial automorphism group, see [2].

3. The new construction of this paper yields 2 isomorphism type with
automorphism group C3 X I'dy+ and 1 isomorphism type with auto-

morphism group Cy X Idg+.

These designs from the different origins are not isomorphic because their
Alltop extensions have different automorphism groups. By [5], Theorem 23,
the new point 14 is unique in all these designs and the isomorphism types
are in bijection to the double cosets A\S13/C13. The resulting designs all
have trivial automorphism group because no non-trivial subgroup of C3 is
conjugate to a subgroup of A. Each double coset in A\S;3/C13 consists of
just 13 right cosets of A in Sy3. This yields the following result:

Corollary 1 Let Dy be a 5-(13,6,4) design with automorphism group A
different from Ci3 and Dy a 5-(13,7,14) design with automorphism group
Ci3. Then there exist 12!/|A| different isomorphism types of 5-(14,7,18)
designs of the form Dy x {14} U D] where m € S13. Each of these designs

has a trivial automorphism group.

For Aut(Dy) = Cy we thus obtain 238,500,800 isomorphism types and
for Aut(Dy) = C3 we thus obtain 159,667,200 isomorphism types of 5-
(14,7,18) designs with trivial automorphism group.



We present the new 6-(14,7,4) design by a list of canonical representa-

tives from the orbits of G on the set of blocks.

2  The 6-(14,7,4) design

The automorphism group is

G = ((123)(567)(91011)(121314),
(124)(568)(91312)(101411))

of order 12.

There are 1716 blocks, each point lies in half of the blocks.

The design ® consists of 152 orbits of G on 7-sets. We list all
orbit representatives of blocks, with orbit length and stabilizer

order appended.

{1,2,10,11,12,13, 14} 2 {1,2,3,5,10,13, 14} 15 1 {1,2,3,5,6,7,8}4 3

{1,2,3,4,5,6,11}121 {1,2,3,5,11,12,14} 123 {1,2,3,5,6,8,11} 121
{1,2,3,4,5,6,14}g > {1,2,3,5,11,13,14} 121 {1,2,3,5,6,8,13} 121
{1,2,3,4,5,6,9}5,2 {1,2,3,5,12,13, 14} 15 1 {1,2,3,5,6,8,9}12,1

{1.2,3,4,5,9,10}12,1 {1,2,3,5,6,10,11}12 1 {1.2,3,5,6,9,12}12 1
{1,2,3,4,5,9,13} 101 {1,2,3,5,6,10,12}19 1 {1,2,3,5,6,9,14} 101
{1,2,3,4,9,10,12}g » {1,2,3,5,6,10,13}19 1 {1,2,3,5,8,10,13}19,1
{1.2,3,4,9,10, 14}5 o {1,2,3,5,6,10,14}12 1 {1,2,3,5,8,10,14}19 1
{1,2,3,5,10, 11,12} 12 1 {1,2,3,5,6,11,12}19 1 {1,2,3,5,8,11,13}19 1
{1,2,3,5,10,12,13} 12 1 {1,2,3,5,6,7,12}12 1 {1,2,3,5,8,12,13}19 1



2,3,5,8,12,14} 12 1 {1,2,5,7,10,11,13} 13 1 {1,2,5,9,12,13,14}19 1

2,3,5,8,9,11}12,1 {1,2,5,7,10,12,13}12’1 {1,2,7,10,11,12,14}12’1
2,3,5,8,9,14}12,1 {1,2,5,7,10,12,14}12’1 {1,2,7,10,11,13,14}12’1
2,3,5,9,10, 11} 19 1 {1,2,5,7,11,12,13} 19 1 {1,2,7,8,10,11,12}19 4
2,3,5,9,10,12} 19 1 {1,2,5,7,11,12, 14} 19 1 {1,2,7,8,10,13,14}19 1
2,3,5,9,11,12}12,1 {1,2,5,7,12,13,14}12’1 {1,2,7,8,11,13,14}612
2,3,5,9,11,13}12,1 {1,2,5,7,8,10,11}12,1 {1,2,7,8,9,10,13}12,1
2,3,5,9,18,14} 191 {1,2,5,7,8,10,14}19 1 {1,2,7,8,9,10,14}19 1
2,3,8,12,13,14}4 3 {1,2,5,7,8,11,12}19 4 {1,2,7,8,9,11,13}g 2
2,3,8,9,10,11}4,3 {1,2,5,7,8,12,13}12,1 {1,2,7,9,10,11,12}12,1
2,3,8,9,10,12}12,1 {1,2,5,7,8,13,14}12,1 {1,2,7,9,10,11,13}12,1
2,3,8,9,10,13} 121 {1,2,5,7,8,9,10}12 1 {1,2,7,9,10,12, 14} 19 4
2,3,8,9,18,14} 191 {1,2,5,7,8,9,13}19 1 {1,2,7,9,11,13,14}19 4
2,3,9,10,12,13}12,1 {1,2,5,7,8,9,14}12,1 {1,2,7,9,12,13,14}12,1
2,3,9,10,13,14}12,1 {1,2,5,7,9,10,13}12,1 {1,2,9,10,11,12,13}612
2,5,10,11,12,13}19 1 {1,2,5,7,9,11,12}19 4 {1,2,9,10,11,13,14}19 1
2,5,10,11,12,14}99 1 {1,2,5,7,9,11,13}19 1 {1,5,6,10,11,12,14}19 1
2,5,6,10,11,13}12,1 {1,2,5,7,9,11,14}12,1 {1,5,6,10,11,13,14}12’1
2,5,6,10,11,14}12,1 {1,2,5,8,10,11,12}12’1 {1,5,6,10,12,13,14}12’1
2,5,6,11,13,14}g o {1,2,5,8,10,11,13} 19 1 {1,5,6,7,10,11,12}19 1
2,5,6,7,10, 11} 19 1 {1,2,5,8,10,18, 14} 19 1 {1,5,6,7,10,11,13}19 1
2,5,6,7,10,12}12,1 {1,2,5,8,11,12,14}12’1 {1,5,6,7,11,12,13}12,1
2,5,6,7,10,14}12,1 {1,2,5,8,11,13,14}12’1 {1,5,6,7,11,12,14}12,1
2,5,6,7,12,14} 19 1 {1,2,5,8,9,10,11}19 1 {1,5,6,7,11,13,14}19 1
2,5,6,7,18,14} 19 1 {1,2,5,8,9,10,12}19 1 {1,5,6,7,8,10,13}19 1
2,5,6,7,8,11}12,1 {1,2,5,8,9,11,14}12,1 {1,5,6,7,8,9,11}12,1
2,5,6,7,9,10}12,1 {1,2,5,8,9,12,13}12,1 {1,5,6,7,8,9,14}12,1
2,5,6,7,9,11} 191 {1,2,5,8,9,12,14}19 4 {1,5,6,7,9,10,13}19 1
2,5,6,7,9,12} 191 {1,2,5,9,10, 11,14} 19 1 {1,5,6,7,9,10,14}19 1
2,5,6,9,10,13}12,1 {1,2,5,9,10,12,13}12’1 {1,5,6,7,9,12,13}12,1
2,5,6,9,11,13}6,2 {1,2,5,9,10,12,14}12’1 {1,5,6,7,9,12,14}12,1
2,5,6,9,11,14}12,1 {1,2,5,9,10,13,14}12’1 {1,5,6,9,10,11,12}12,1



{1,5,6,9,10,12,13} 15 1 {1,6,7,8,9,10,13}19 1 {1,6,9,11,12,13, 14}19 1
{1,5,6,9,10,12,14}12,1 {1,6,7,8,9,13,14}12'1 {5,6,7,8,9,10,11}413
{1,5,6,9,10,13,14}12,1 {1,6,7,9,10,11,13}12,1 {5,6,7,8,9,10,13}413
{1,5,6,9,11,12,13}12)1 {1,6,7,9,10,11,14}12)1 {5,6,7,9,10,11,12}12’1
{1,5,9,10,11,12,13}1211 {1,6,7,9,10,12,13}12)1 {5,6,7,9,10,12,14}12’1
{1,6,10,11,12,13,14}12,1 {1,6,7,9,11,12,13}12,1 {5,6,7,9,12,13,14}12,1
{1,6,7,10,11,12,14}12,1 {1,6,7,9,11,12,14}12,1 {5,6,9,10,11,13,14}12,1
{1,6,7,10,12,13,14}1211 {1,6,7,9,11,13,14}12)1 {5,9,10,11,12,13,14}413
{1,6,7.8,9,10,12}12 1 {1,6,9,10,11,13, 14} 15 1
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