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K and vertex set X. The orbits of S [2]n on 2V are just the isomorphism classesof graphs and thus such an orbit can be described by drawing an unlabelledgraph. If a collection of these orbits for a �xed k forms a t-design then thisdesign is called a graphical design (on n points).We give appropriate collections of isomorphism classes of graphs such thatthe resulting collections of subsets of V form a t-design. The condition for adesign that each t-subset of V be contained in the same number � of blocksin this context means that each labelled graph T with t edges and vertex setX occurs exactly � times as a subgraph in the selected collection of labelledgraphs. We don't allow a multiple occurrence of the same graph, i.e. we onlyconsider simple designs. Usually, we also are not interested in the completedesign consisting of all graphs with k edges or the empty design. So, withoutexplicit mentioning we mean by a design an incomplete non-empty design.There are a few papers considering this special kind of designs. It seems thatW. O. Alltop [1] �rst constructed graphical 2-(�n2�; k; �)-designs, where K isthe set of edges of a cycle of length k and n = 2� k � 3:Our approach uses Kramer-Mesner matrices which are named after an in-
uential paper [17]. In fact, the method is a systematic version of �nding atactical decomposition of a structure by means of the automorphism group ofthe structure. Similar approaches have a long history which we do not wantto trace back here. We only report that in the early 70's M. H. Klin [15]already used Kramer-Mesner matrices (as they are called now) with polyno-mial entries to describe graphical 2- and 3-designs for showing that S [2]n is amaximal subgroup of S(n2) with only a few small exceptions. A new version ofthis result is part of the present paper. Besides the note [14] with the �nite-ness theorem which was published in a local journal not known even in theformer USSR his results never were published. A similar approach of poly-nomial matrices for another class of groups can also be found in the reportof L. H. M. E. Driessen [11]. Moreover, Driessen gave graphical 3-(10; 5; 6),3-(10; 4; 1), and 3-(15; 5; 30) designs. In [5], Chee also shows 3 Kramer-Mesnermatrices with polynomial entries for graphical t-designs. Only, there is noindication in that paper how these matrices can be found.Important contributions to the theory of graphical designs were made by L. G.Chouinard II, E. S. Kramer, and D.L. Kreher [9], who determined the graphicaldesigns for � = 1; 2.P. J. Cameron and C. E. Praeger [4, example 1.4], obtain a 
ag-transitivegraphical 2-(78; 15; �) design from the Petersen graph, enlarged by 3 isolatedvertices. Two further examples for graphical designs have been published byE. S. Kramer [16] and Y. M. Chee [7]. Kramer's design has parameters 3-(21; 5; 3) and Chee's design has parameters 3-(28; 5; 30). Additional material2



has been reported by Y. M. Chee [8].Starting from Alltop's approach [1] we show how polynomial Kramer-Mesnermatrices can be obtained. We use our program DISCRETA to construct suchmatrices for smaller cases. The graphical designs obtained for 2-(v; 3; �) and3-(v; 4; �) are used in an elementary way to determine all overgroups of S [2]nin S(n2) following Klin [14,15]. Nowadays this result can also be obtained fromthe classi�cation of �nite simple groups [20].From the polynomial Kramer-Mesner matrices we obtain some results ongraphical designs for in�nitely many parameter sets. It was known that thereexist only �nitely many graphical designs with parameter sets of type 2-(v; 3; �); 2-(v; 4; �); 3-(v; 4; �); and none for 4-(v; 5; �), [8], [6]. We show thatthere is also no graphical 5-(v; 6; �) design and, more generally, for each k thereexist only �nitely many graphical t-(v; k; �) designs in each of the followingcases:� k = t+ 1;� t = 2,� 2 � t < k � 6:The proof leads to conjecture that such a �niteness result might hold forall �xed pairs (t; k): Then, there would exist only sporadic graphical designsfor these parameters. We thus determine many such sporadic designs and,surprisingly, �nd examples even for t = 5. The results are reported in twotables in Section 6.2 PreliminariesIf X is any �nite set and k a natural number then�Xk�= fK j K � X; jKj = kg;Xk= f(x1; x2; : : : ; xk) j xi 2 X for all ig:A tuple (x1; x2; : : : ; xk) 2 Xk is injective if all components are pairwise di�er-ent. We denoteXkinj= f(x1; x2; : : : ; xk) j (x1; x2; : : : ; xk) injective tuple from Xkg:Let G be a group acting on X. In particular, there is always the full symmetricgroup S(X) on X. We denote the image of x 2 X under g 2 G by xg. Then3



G also acts on �Xk� by Kg = fxg j x 2 Kg for K 2 �Xk�, and on Xk by(x1; x2; : : : ; xk)g = (xg1; xg2; : : : ; xgk) for (x1; x2; : : : ; xk) 2 Xk. We denote by G[2]the permutation group induced by G on �X2�. Especially we will use this forG = Sn, the symmetric group on f1; 2; : : : ; ng. An is the alternating group onf1; 2; : : : ; ng.The set Xkinj is closed under G, since each g 2 G acts as a bijective functionon X. Therefore we have a mapping' : Xkinj �! �Xk� : (x1; x2; : : : ; xk) 7! fx1; x2; : : : ; xkgwhich commutes with the action of G. We denote by k()-orbits and kfg-orbitsthe respective orbits of G on Xkinj and �Xk�. Usually kfg-orbits are also denotedas k-orbits. We will follow this convention when no misunderstanding is likely.A k()-orbit � of injective k-tuples is totally symmetric, if with each(x1; x2; : : : ; xk) 2 � also each (x1� ; x2� ; : : : ; xk�) 2 � for each permutation� of the k components. Thus, for a totally symmetric k()-orbit � we havej�j = k! � j'(�)j.For a K 2 �Xk� the setwise stabilizer of K in G isNG(K) = fg j g 2 G; for all x 2 K xg 2 Kg:It is clear that NSn(K) = Aut(�); where Aut(�) is the automorphism groupof a graph � = (X;K): We also call this the normalizer of K in G. Then thepointwise stabilizer of K in G isCG(K) = fg j g 2 G; for all x 2 K xg = xg:We also call this the centralizer of K in G. The centralizer of K is just thekernel of the permutation representation of NG(K) de�ned by the restrictionof the action to K. � is totally symmetric if and only if for each K 2 �NG(K)=CG(K) �= Sk. G is called k()-transitive (or simply k-transitive), ifthere exists only one k()-orbit. If G is k()-transitive but not (k+1)()-transitivethen G is called exactly k()-transitive. G is called k-homogeneous if there existsonly one kfg-orbit.Remark: Do not mix the notation of an exactly k()-transitive permutationgroup with that of a sharply k()-transitive permutation group (the latter isde�ned, e. g., in [10], p.210).For t � 2 a simple t-(v; k; �) design D de�ned on a set V with jV j = v is aset of blocks B � �Vk� such that each T 2 �Vt � is contained in exactly � blocks4



of D. The maximal value of � is �v�tk�t�. A design with this value of � is calledthe complete design, otherwise it is an incomplete design. The trivial designconsists of no blocks. If � is just half of the maximal value, the design is calleda halving of the complete design. Generally, the k-subsets not in a design Dalso form a design, called the complementary design �D of D.For the rest of the paper we denote X = f1; 2; : : : ; ng for some n 2 N , andV = �X2�. A subset E � V is considered as the set of edges of an undirectedgraph with vertex set X. A graphical t-(v; k; �) design D is a simple t-(v; k; �)design admitting S [2]n as a group of automorphisms.3 Polynomial Kramer-Mesner matricesA group A of automorphisms of a design D, or more exactly a subgroup A ofthe automorphism group of a t-(v; k; �) design D acting on the point set Vhas orbits on the set of blocks of the design. Thus, the design is a collectionof A-orbits on �Vk�. If a t-subset T is contained in m(T;KA) elements of theorbit KA of K 2 �Vk� then also each T a for a 2 A is contained in the samenumber of elements of that orbit. For a collection of A-orbits on �Vk� one onlyhas to test for a set of representatives of the t-orbits if they appear in exactly� elements of the selected orbits. This observation has been formalized byKramer and Mesner [17].Theorem 1 (Kramer, Mesner 1976) A t-(v; k; �) design exists with A � Svas a group of automorphisms if and only if there is a f0; 1g-solution vector uto the diophantine system of equationsXj m(Ti; KAj )uj = �where the Ti and the Kj run through a system of representatives of the t-orbitsand k-orbits of A, respectively.If only one k-orbit already forms a design, i.e. u has only one nonzero entry, thedesign is called block-transitive. In this paper we consider the case of A = S [2]nwhere V = �X2� for X = f1; 2; : : : ; ng. These designs are graphical, since theycan be visualized by graphs. We give an example of a block-transitive graphical2-(10,4,2) design, which is taken from [9].
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Each pair of edges of the complete labelled graph on 5 vertices appears exactlytwice in the following 15-element set of graphs with 4 vertices.c ccc c cc c c cc cccc c c ccc cc cc cccc c cc ccc cc ccc c c ccc cc cc c
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2 35Under the action of S [2]5 on the set of labelled graphs on 5 vertices the showngraphs form one orbit. This is therefore just an isomorphism class of graphswhich can be represented by an unlabelled graph.c cc c ���BBB cIf a graphical design is formed by more than one orbit we have to draw a graphfor each orbit. A �rst example of this kind has been attributed to R. M. Wilsonby Kramer and Mesner [17]. It has the parameters 3-(10,4,1) and is shown inthe next �gure. We denote this design by D(3; 4).The 3-(10; 4; 1) design D(3; 4)���@@@ c AAA���@@@���The design D(3; 4) and some other cases appear in [3] and [21] as a niceillustration of the notion of a design. Further examples can be found in Hand-book of Combinatorial designs [8] or be constructed by DISCRETA. We havelisted many such designs in Section 6. These usually have so many orbits thatdrawing the graphs is not feasible. 6



Instead of computing a Kramer-Mesner matrix for each (�n2�; k; t) we nowintroduce Kramer-Mesner matrices whose entries are polynomials in n. So foreach k and t we have only one matrix covering all in�nitely many n � 2k.The basic tool goes back to Alltop (1966). We give a slightly di�erent versionhere. For T 2 �Vt � and B 2 �Vk� we usem(T;BG) = f(T;K)jK 2 BG; T � Kgand m0(TG; B) = f(S;B)jS 2 TG; S � Bg:Counting the pairs in f(S;K)jS 2 TG; K 2 BG; S � Kgin two ways and using jBGj � jNG(B)j = jGj one obtains the following relation.Lemma 2 (Alltop [1])m(T;BG)� jNG(B)j = m0(TG; B)� jNG(T )j:Consider an orbit KG where G = S [2]n . Then K is a k-subset of V = �X2�,where X = f1; 2; : : : ; ng. Since there are usually several vertices not incidentwith any edge in K, we denote bysupp(K) = fij9fi; jg 2 Kgthe set of vertices which are incident with an edge of K. The following lemmais evident.Lemma 3 With the above notationAut(K) = A� S(X n supp(K));where A is a permutation group on supp(K) which does not depend on X.So, for graphical designs in Alltop's Lemma we can replace NG(B) and NG(T )by these automorphism groups of the corresponding graphs.In order to compute the Kramer-Mesner matrix for graphical t-(v; k; �) de-signs we can �rst determine for each pair of isomorphism types of graphs K7



and T with k and t edges, respectively, the number of embeddings of T inK; i.e. m0(TG; B): This can be done for a �xed n; say n = jsupp(K)j: Thenfrom Alltop's Lemma one obtains the entries m(T;BG) for all values of n:As an alternative one can start from a Kramer-Mesner matrix M for a �xedn; as computed by DISCRETA, and then use Alltop's Lemma to �rst de-termine m0(TG; B) in each case, before proceeding as above. The resultingKramer-Mesner matrix has entries which are polynomials in n with rationalcoe�cients and which take only integer values for all integers n: We com-puted the polynomial Kramer-Mesner matrices given in the appendix usingDISCRETA without any hand calculation.We demonstrate this approach with a �rst polynomial Kramer-Mesner ma-trix which we need in the next section. Let t = 2 and k = 3. We form thepolynomial Kramer-Mesner matrix for n � 6.K1 K2 K3 K4 K5
T1 (n�4)(n�5)2 4(n� 4) 4 0 0T2 0 (n�3)(n�4)2 2(n� 3) 1 n� 3As an example we compute m(T2; KG2 ), where G = S [2]n . We have thatjsupp(T2)j = 3; Aut(T2) �= S2 � Sn�3 :So, jAut(T2)j = 2 � (n � 3)!. Similarly, jAut(K2)j = 4 � (n � 5)!. T2 can beembedded in only one way into K2, hence m0(TG2 ; K2) = 1. Alltop's formulayieldsm(T2; KG2 ) = m0(TG2 ; K2) � jNG(T2)jjNG(K2)j = 1 � 2 � (n� 3)!4 � (n� 5)! = (n� 3)(n� 4)2 :In our tables we use the shorter notation [n � 3]2 of falling factorials for theterm (n� 3)(n� 4). For n = 8 the columns K1 and K3 have in each row theconstant sum 10. So, taking the orbits KG1 and KG3 results in a graphical 2-(28,3,10) design. For each of the 25 subsets of fK1; K2; : : : ; K5g one obtains asystem of Diophantine equations whose solutions give all graphical 2-(�n2�; 3; �)designs for n � 6. The smaller values of n can be handled directly. In the next8



section all solutions for this case are listed. For t = 3, k = 4 there is only onegraphical design, the 3-(10,4,1) design D(3; 4) we showed above.4 Overgroups of S [2]n in S(n2)With the help of graphical 2-designs we showTheorem 4 (Klin (1970, 1974) [14,15]) Let n � 9 or n = 7. Then(1) S [2]n <max S(n2) if n is odd,(2) S [2]n <max A(n2) if n is even.Corollary 5 For n � 9 or n = 7 all graphical t-designs are pairwise noniso-morphic.The exceptional cases are covered by the following result.Theorem 6 (Klin (1974) [15]) Up to complementary designs there existexactly the following nontrivial graphical 2-(�n2�; 3; �) and 3-(�n2�; 4; �) designsD with automorphism group Aut(D), obtained from the polynomial Kramer-Mesner matrices in the �rst two tables in the appendix.n D t�(v; k; �) Aut(D) k()�trans:5 D(3; 4) 3�(10; 4; 1) Aut(S6) 35 K3 2�(10; 3; 4) S6 26 K1 [K4 2�(15; 3; 1) PSL(4; 2) �= A8 28 K1 [K4 [K5 2�(28; 3; 6) S [2]8 18 K1 [K3 2�(28; 3; 10) Sp(6; 2) 211 K1 [K3 [K4 [K5 2�(55; 3; 25) S [2]11 1The listed automorphism groups and S4�S2 in case n = 4 are the only properovergroups of S [2]n in S(n2), besides A(n2) if n is even.Remark 7 Chee 1991, see [8], also independently found that only the graph-ical designs in Theorem 6 are possible for 2-(v; 3; �) and 3-(v; 4; �).Remark 8 The 2-(10,3,4) design is a halving of the complete design. Thisdesign is isomorphic to its complement.9



It is easy to deduce the Corollary 5 from Theorem 4. Since in the listedcases S [2]n is a maximal subgroup of S(n2) or A(n2), any incomplete graphi-cal t-(�n2�; k; �) design must have S [2]n as its full automorphism group. Anyg 2 S(n2) mapping one incomplete graphical t-(�n2�; k; �) design D1 onto an-other D2 must map Aut(D1) onto Aut(D2) via conjugation. But we haveAut(D1) = S [2]n = Aut(D2) such that g normalizes S [2]n . Again, since S [2]n is amaximal subgroup it coincides with its normalizer such that g 2 S [2]n . Thus, gis an automorphism of D1 and D1 = D2. This argument is just a special caseof a theorem in Schmalz [22], see also Laue [19].The proof of Theorem 4 is reduced to an existence problem of graphical t-designs using the following general observation.Lemma 9 Let G be a permutation group of a set X with a totally symmetrick()-orbit � for some k � 2. Suppose that G < A < S(X) and that A is exactly(k � 1)()-transitive. Then for some appropriate � there exists an incomplete(k � 1)-(jXj; k; �) design admitting A as a group of automorphisms.PROOF. By assumption we have a totally symmetric k()-orbit� = (x1; x2; : : : ; xk)G. Then the k()-orbit (x1; x2; : : : ; xk)A will also be to-tally symmetric, since NG(fx1; x2; : : : ; xkg)=CG(fx1; x2; : : : ; xkg) is embeddedinto NA(fx1; x2; : : : ; xkg)=CA(fx1; x2; : : : ; xkg) and thus both factor groupsare isomorphic to Sk. We also know that A is not k()-transitive. So thereexists a k-tuple (y1; y2; : : : ; yk) 62 (x1; x2; : : : ; xk)A. We will show that thenalso fy1; y2; : : : ; ykg 62 fx1; x2; : : : ; xkgA. Otherwise for some a 2 A we wouldhave fy1; y2; : : : ; ykga = fx1; x2; : : : ; xkg and (x1; x2; : : : ; xk) could be mappedby permuting the components onto (ya1 ; ya2 ; : : : ; yak). But such a permutationis already contained in NA(fx1; x2; : : : ; xkg) such that (x1; x2; : : : ; xk) and(y1; y2; : : : ; yk) would be in the same orbit of A. This contradicts to our selec-tion of (y1; y2; : : : ; yk).So we can form a Kramer-Mesner matrix for the (k � 1)fg-orbits and the kfg-orbits of A. Since A is (k � 1)fg-transitive, this matrix has just one row. Aswe have just shown there are at least two kfg-orbits resulting in at least twodi�erent columns of the Kramer-Mesner matrix. Taking any column of thematrix then yields an incomplete (k � 1)-(jXj; k; �) design with A as a groupof automorphisms. 2Assuming Theorem 6 to be true we can now prove Theorem 4.PROOF. For n � 1 � t � 2 the group S [2]n always has a totally symmetrict()-orbit, i.e. the orbit of the star graph10



t n

1
2

3 (f1; ng; f2; ng; : : : ; ft; ng)S[2]n .So we can take S [2]n as the group G in Lemma 9. For n > 4 also S [2]n has two 2()-orbits besides the diagonal and is the full automorphism group of the graphsrepresenting these 2()-orbits by the Whitney-Jung theorem, see [23,13,12].Therefore, each overgroup A of S [2]n in S(n2) has to fuse these orbits.Each overgroup A thus is 2()-transitive. If A is not 3()-transitive then byLemma 9 A must be an automorphism group of an incomplete graphical 2-(�n2�; 3; �) design.By Theorem 6 such a design does not exist if n is not equal to 5, 6, 8, 11.For n = 11 there exist 2-(�n2�; 3; �) designs. But these have S [2]n as their fullautomorphism group. Thus, also in this case A cannot exist.So A must be 3()-transitive. Assume that A is not 4()-transitive. Then againby the lemma we must �nd an incomplete graphical 3-(�n2�; 4; �) design. FromTheorem 6 we see that for n = 7 and n > 9 such an overgroup A does notexist.So we are left with the case of S [2]n < A < S(n2) and A 4()-transitive, where theBochert-Manning theorem [24] yields n � 7. So only n = 7 remains which canbe handled directly. 2For the proof of Theorem 6 the polynomial Kramer-Mesner matrices are used.In the cases when there is no proper overgroup a consideration of some in-tersection numbers of the designs shows that di�erent orbits of S[2] can notbe merged into one orbit of a suitable overgroup. In other cases DISCRETAat least shows that the overgroups are groups of automorphisms of these t-designs. It again has to be shown like before that they are full automorphismgroups. The transitivity results follow from Lemma 9.5 Finiteness theorems for graphical designsThe polynomial Kramer-Mesner matrix can be analysed to deduce nonexis-tence results for in�nitely many parameter sets of graphical designs.Theorem 10 There exist only �nitely many graphical nontrivial incomplete11



t-(v; k; �) designs for any �xed pair (t; k) in each of the following cases:� k = t+ 1;� t = 2,� 2 � t < k � 6:PROOF. The cases 2-(v; 3; �); 2-(v; 4; �); 3-(v; 4; �); 4-(v; 5; �) are reportedin [8]. We thus concentrate on the remaining cases.In the proof of this theorem we always consider the matrix in its transposedversion, due to the printing format. That makes it easier to compare the stepsof the proof with the polynomial Kramer-Mesner matrices displayed in thetables of the appendix. We always refer to the corresponding tables in ourproof. The columns are indexed by the t-set orbits and the rows are indexedby the k-set orbits. A graphical t-(v; k; �) design corresponds to a selection ofrows such that in each column the sum over the entries of the selected rowsis exactly �: We thus refer to these rows as forming the designs and composethe design out of selected rows. For any such design D all rows which do notbelong to D also form a design, the complementary design �D. This is clear,since the total sum in each column is �v�tk�t�. We thus may assume without lossof generality that one selected row belongs to D:For t = 3 and k = 5 we obtain a 26 � 5 matrix, see Table 5. Let D be agraphical 3-(v; 5; �) design, corresponding to some rows of the matrix. So, forsome �xed value of n the entries in each column from those rows sum up tothe same value of �. We claim that for a big enough number of points n such acommon sum value � is possible only if either D or �D is the complete design.To see this we �rst notice that each column contains exactly one entry whichis a polynomial of degree 4 in n: A polynomial of degree 4 grows faster thanthe sum of all polynomials of degree 4�1 or less of any other column. Assumethat a row with a polynomial entry of degree 4 belongs to D: Let n be bigenough such that the same sum � can only be obtained from selected entriesin every column if also in each column the polynomial of degree 4 contributesto this sum. Thus, all rows containing an entry of degree 4 have to belong toD: Then the last column has only entries of degree 2 or less not yet in rows ofdesign D: Now we in turn consider the design �D. This design has a value of �which must be a sum of these remaining entries of degree 2 or less in the lastcolumn. So, also in each other column this value of � for �D for large enoughn must not come from any polynomial of a degree higher than 2. Thus allrows containing any polynomial of degree higher than 2 have to belong to D.Assigning these rows to D then results in row candidates for �D which haveconstant entries in the last column. Repeating our argument assigns all rowswith non constant entries to D such that D has to be the complete design.12



The same arguments can be applied in the cases k = 6; t = 3; Table 7, and k= 6; t = 4; Table 8. Also here each polynomial of maximal degree appears justonce in each column. As before we may assume that the corresponding rowsbelong to the design D. After eliminating all rows which contain an entry ofmaximal degree, in the remaining matrix each entry in the last column is apolynomial of a degree less than the maximal degree in its row. So, recursively,we have to assign each row to D if n is large enough. The assumed design istherefore the complete design.Next consider the case t = 2; see Table 1 to Table 4. We have a �xed kbut may choose the number of points n as large as needed. There are onlytwo columns to be considered. By Alltop's Lemma a matrix entry is 0 if andonly if the t-subset is not contained in any k-subset of the considered k-orbit.If the graph consisting of two incident edges and isolated points cannot beembedded in a graph with k edges then the k edges are pairwise non-incident.The isomorphism type of this graph is thus uniquely determined and we havejust one 0 entry in the �rst column, located in the last row, say. So, with onlyone exception, whenever the other graph with two edges can be embeddedinto a k-edge graph, also this graph is embeddable.The graph consisting of two non-incident edges has one isolated point less thanthe graph consisting of two incident edges. Therefore, by Alltop's Lemma, foreach k-graph, i.e. graph with exactly k edges, the polynomial entries of thegeneral Kramer-Mesner matrix in the corresponding row have degrees di�eringby 1 unless an entry is 0. Thus, for each row the entry in the �rst column eitherhas a degree strictly greater than the degree in the second column unless theentry in the �rst column is 0. Since the sum of all polynomials in both columnsmust be the same, this last row must contain the only entry of maximal degreein the second column. Now assume a graphical 2-(v; k; �) design D containingthe graph of the last row. We argue as above that for large enough n the designD must contain all graphs of the other rows with a polynomial entry of thisdegree. By our observation that the second column always has an entry of adegree 1 less than the �rst column with the only exeption of 0-polynomials, weobtain that all entries of second maximal degree in the second column belongto rows which are assigned to D: Thus all rows with an entry of that degreemust also belong to D: We can now proceed by induction to see that D mustbe the complete design.The case k = t+1 is quite similar to the above, compare Table 6. We assumethat k > 4; since the smaller cases are already known. The graph I(t), con-sisting of t pairwise non intersecting edges, is contained only in such graphswith t+1 edges that result from adding one edge (in the examples this graphalways corresponds to the last column). The new edge may again be isolated,or intersect just one edge, or intersect exactly two edges. So, the polynomialKramer-Mesner matrix contains non-zero entries in the column of I(t) only13



in the rows of these three graphs with t + 1 edges. Because t + 1 > 3 each ofthese graphs has an isolated edge.Let us look at the entries of the matrix in this column in the corresponding 3rows.By Alltop's Lemma the degree of the polynomials is just the di�erence be-tween the sizes of the supports of the graphs considered. So, in the case of anadditional isolated edge the support grows by two points such that we get apolynomial of degree 2. If the new edge intersects only one existing edge justone point is added and if the new edge intersects two edges no point is added.So we get a linear polynomial and a constant entry in these cases, respectively.Both of the last two rows also contain an entry of degree 2 in other columns.The graphs of these columns are easily obtained by removing an isolated edgefrom the graph on t + 1 edges considered. We assume a graphical design Dcontaining the graph corresponding to the entry of degree 2 in the last column.For large enough n all rows with an entry of degree 2 correspond to D: So,then all rows belong to D which have a non-zero entry in the last column.Then �D must be the trivial design and D is the complete design. 2We conjecture that indeed the stronger result than �niteness holds for the �rstcase of the theorem, i. e. for 4 � t no graphical t-(v; t + 1; �) designs exist.This is known to hold for t = 4 [8], [6], and we add the case t = 5 here.Theorem 11 There exists no incomplete graphical 5-(v; 6; �) design.PROOF. We refer to the polynomial Kramer-Mesner matrix of which the�rst 7 columns are displayed in Table 6 in the appendix, see further commentsin Section 7. As in the preceding proof we start with the observation thatthe last column 26 has only three entries not zero, namely 1=2(n � 10)(n �11); 10(n� 10); 40:An incomplete design D must not contain all graphs corresponding to the rowswith these entries. Since either D or �D contains the graph of the row withentry 1=2(n� 10)(n� 11), we assume w. l. o. g. that D does not contain thisgraph. So, � has the form � = a40 + b10(n� 10); where a; b 2 f0; 1g and notboth values are 0. We have to consider three cases for �: In each case we �rstexamine the �rst column. There results a linear combination of the non-zeroentries which has to add up to the chosen value of � in each case.I. � = 40: There we have to solvex1 + x21=2(n� 4)(n� 5) + x32(n� 4) + x42(n� 4) = 4014



with xi 2 f0; 1g: If x2 = 1 then n � 13: Checking these values leaves one casen = 10; but then 40 = �max such that D is the complete design. Thus x2 = 0:Division by two yields that x1 = 0 and (x3 + x4)(n � 4) = 20: We are leftwith the cases n = 14 and n = 24: Consider column number 5. There n = 24is not possible, but for n = 14 there exist the row combinations (4; 12) and(4; 8; 16): Since row 14 has a non-zero entry in column 5, in both cases row 14must not belong to D. Looking at column number 4 we can exclude as wellrow 13. Now column 3 has no solutions for � = 40 left.II. � = 10(n� 10): There we have to solvex1 + x21=2(n� 4)(n� 5) + x32(n� 4) + x42(n� 4) = 10n� 100with xi 2 f0; 1g: For x2 = 1 we get a quadratic equationn2 � 29n+ 220 + 2y = 0where y is some natural number. This equation has no solution in naturalnumbers, since n2 � 29n + 220 has a positive minimal value as a polynomialin n. For x2 = 0 we also have x1 = 0 and we can divide by 2.(x3 + x4)(n� 4) = 5n� 50:So, 5 divides n� 4: Substituting n = 5z + 4 yields(x3 + x4)5z = 25z � 30;and (x3 + x4)z = 5z � 6:There is only one solution, namely z = 2; x3 = x4 = 1: This means n = 14; � =40; but � = 40 had been ruled out in the previous case.III. � = 10(n� 10) + 40: There we have to solvex1 + x21=2(n� 4)(n� 5) + x32(n� 4) + x42(n� 4) = 10(n� 10) + 40with xi 2 f0; 1g:For x2 = 1 we get a quadratic equationn2 � 29n+ 140 + 2x1 + 4(x3 + x4)(n� 4) = 0:15



The equation n2 � 29n + 140 + 2x1 = 0 has no integer solutions. Thereforex3 + x4 2 f1; 2g:For x3 + x4 = 1 the formula reduces ton2 � 25n+ 124 + 2x1 = 0:This equation has integer solutions only for x1 = 1 and then n = 18 or n = 7.Thus, either � = 120 or � = 10: Column 7 has no solution in both cases.If x3 + x4 = 2 the formula reduces ton2 � 21n+ 108 + 2x1 = 0:This equation has the solutions n = 10; n = 11 for x1 = 1 and n = 9; n = 12for x1 = 0 in natural numbers. Thus � 2 f120; 130; 140; 150g: Column 4 thenhas too small entries with these values of n to reach these values of �:For x2 = 0 we get the linear equationx1 + 2(x3 + x4)(n� 4) = 10(n� 10) + 40:Then x1 = 0 and the equation reduces to(5� (x3 + x4))n = 30� 4(x3 + x4);which has neither for x3 + x4 = 1 nor for x3 + x4 = 2 any solution in naturalnumbers. 2From the polynomial Kramer-Mesner matrices for t = 2 and k = 5 one obtainseasily all isomorphism types of block transitive graphical 2-(v; 5; �) designs.The parameter sets for v � 36 are already listed in the preceding table. Inaddition there exist 2 isomorphism types for 2-(171; 5; 131040) and one iso-morphism type for 2-(741; 5; 29216880):From this we see that �niteness does not mean small numbers in our theo-rems. In fact, for non-block transitive graphical 2-(55; 5; �) designs there existsolutions for all � 2 f4512; 4540; 4652; 5212; 5352; 5576; 5912; 7312; 7256;7900; 7942; 8572; 8712; 8600; : : :g: Thus we expect quite many solutions forlarger v: 16



6 Sporadic graphical designsIn this section we present a huge number of various graphical designs whichwere found using DISCRETA. The following tables give parameter sets forgraphical designs found. The headline for each column in the tables shows thenumber of isomorphism types. Each table entry in this column lists the valuesof � for which this number of isomorphism types exists. Generally, the dotsindicate that the computation was not pursued to larger values of �: The rowscorrespond to the values of n and k. In some cases there exist block transitivedesigns which are shown in a separate row. For some values of k there are somany designs that we restricted only to block transitive designs. For k= 10there are no block transitive graphical designs on 7 points. For 2-(28; 9; �) thereexist many further values of � with not block transitive graphical designs.2-Designs1 2 3 4 5 6 7 � 82-(21,5,�)blocktransitive 12, 60 120 - - - - - -2-(21,5,�) 7, 12, 19, 22, 34,60, 64, 79, 94 35, 47, 50, 52, 55,57, 62, 69, 70, 72,77, 84, 89, 95, 67, 82, 100, . . .2-(21,6,�) 13, 30, 48, 50, 55,61, 68, 70, . . . 38, 45, 51, 58, 63 602-(21,7,�) 63, 78, 105, . . . 42 842-(21,8,�)blocktransitive - 84 - - 336, 672 168 - -2-(21,9,�)blocktransitive 12, 54, 108 216 - 72, 864 - - 432 -2-(21,10,�) 99, 162 189, . . . 1802-(28,5,�) 60, 140 100 160, 200, 240,260, 300, 340,360, . . .2-(28,6,�) 25, 40, 50, 70, 80,90 65, 100, . . .2-(28,7,�) 16 140 156 182 1982-(28,8,�) 70, 210, . . .2-(28,9,�)blocktransitive 40, 160, 640 - 320 - - - 480 960, 1920,38402-(36,5,�)blocktransitive 60, 80, 240, 480,720 - - - - - - -2-(36,5,�) 140, 164, 244, . . . 180, 224 2402-(36,6,�)blocktransitive 20, 45, 240, 540,720, 2160, 4320 - 120, 1080 - - - - -2-(36,7,�) 246, 372, 462, 210, 336 546 456 . . . 420
17



The block transitive 2-(21; 5; �) designs for � = 12; 60; 120 are depicted inthe next �gure. The �rst is Alltop's example.
AAA��� ��� AAAHHH���a a���@@@���LLL aa @@@���� = 12 � = 120 � = 120 � = 60We also show the block transitive 2-(21; 8; �) designs:� = 84 aaa aaa a aa a ������HHHHHHaaa a���HHH���HHH JJJ


 ���@@@���@@@

� = 168 .��HH HH��HH����� BBB ZZZ��@@��HH��HH SS����@@@@�� ����TTTT ��SSa
� = 336 ������ @@@������ @@@��� a��� ���JJJ
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t-Designs, t � 31 2 3 4 5 6 7 8 � 93-(21,5,�) 3 [16], 30, 33 48 39, 75 693-(21,6,�) 68,108 100 136 128,140,148,156,160,168,176,180,188,196,200,. . .3-(21,7,�) 105 120,210,225,315, . . .3-(21,8,�) 168, 252, 336,420, . . .3-(28,5,�) 30 [7], 1503-(28,6,�) 80,180 120 220 240,260,. . .3-(28,7,�) 225 210 245 240,275,. . .3-(28,8,�) 168 378 672 . . .3-(28,9,�) 280, . . .3-(36,5,�) 180 270 . . .4-(28,6,�) 1325-(28,7,�) 93 - - - - - - - -5-(28,8,�) 756, 791, 840, 875. . .5-(36,7,�) 165 . . .It should be noticed that at least the 5-designs have new parameter sets evenwhen compared to general simple t-designs, see Kreher's list in the CRC hand-book of combinatorial designs [18]. There exists only one graphical 5-(28; 7; �)design and then � = 93. It seems remarkable that this parameter set can alsobe obtained by deriving the newly found 8-(31,10,93) designs three times [2].The designs are found as solutions to the Kramer-Mesner diophantine systemof linear equations. For example, there are more than 10 million solutions forgraphical 5-(28; 8; 756) designs. Similar to the proof of Corollary 5 it is notnecessary to do pairwise isomorphism testing, since the overgroups of S [2]n areknown in these cases.For example, S [2]8 is not a maximal subgroup of S28. There exists an overgroupisomorphic to Sp(6; 2) in S28. This group is transitive on 2-sets and thus hasa Kramer-Mesner matrix consisting of only one row. Taking any single k-orbitthen results in a block-transitive 2-design. Any combination of them givesanother 2-design.DISCRETA shows that this overgroup is admitted as an automorphism groupof only a few t-designs with the listed parameters. These parameters are2-(28; 5; �) where � is a sum of the numbers 160; 200; 640; 800; 800, and 2-(28; 6; �) where � is a sum of the numbers 40; 50, 80; 200, 480; 900, 1200,2400, 2400, 7200, 2-(28; 7; �) where � is a sum of the numbers 16; 420; 560,672; 1120; 1120, 1680; 1680, 4032; 5760, 5040; 6720, 10080; 10080, 10080, and 2-(28; 8; �) where � is a sum of the numbers 70; 448; 1120; 1120; � � � : So, some ofthe graphical designs with k = 5 have the larger automorphism group Sp(6; 2):The number of isomorphism types could only be in doubt for 2-(28; 5; �) where� 2 f160; 200g. There are actually 10 solutions for � = 160 and 19 solutionsfor � = 200: In both cases DISCRETA computed their intersection numbers19



and showed that the designs are pairwise non-isomorphic. For k � 6 the num-ber of isomorphism types in the table is unchanged if the automorphism groupis actually larger than S [2]8 : It is remarkable that for the small � = 16 in casek = 7 the design turns out to be block-transitive under Sp(6; 2):The situation is di�erent for t � 3, for then t-designs with automorphismgroup Sp(6; 2) have values of � larger than those listed in our table of graphicaldesigns. Therefore, for t � 3 all graphical designs with these parameters haveS[2]8 as full automorphism group and are pairwise non-isomorphic.We are pleased to acknowledge the anonymous referees for numerous helpfulremarks and improvements.
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7 Appendix: Polynomial Kramer-Mesner matricesThe graphs with 2 to 5 edges are used in the order shown in the followingpictures.K21 to K22 ; K31 to K35K41 to K411
K51 to K526

. ��@@ @@�� @@�� ..��@@ @@�� @@��@@�� @@��@@�� @@���� @@�� @@�� @@��CC��
@@����@@ @@�� @@�� @@�� @@����� @@��@@�� @@�� @@��@@�� ���
������ @@�� @@��@@�� ��� @@�� ��������� @@�� @@�� @@��AA�� @@��AA��In the following tables [n]i = n(n� 1) : : : (n� i + 1) are the falling factorialsof n of length i; S = support, AS = automorphism group restricted to thesupport. In the case t = 5; k = 6 we have displayed only the �rst 7 out of 26columns and also only the �rst 23 out of 68 rows, since the �rst 7 columns havenon-zero entries only in these rows. Our proof that no incomplete non-trivialgraphical 5-(v; 6; �) design exists needs only this part of the matrix and oneadditional column, as described in the proof.
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Table 13n2 1 2jSj 3 4jAS j 6 41 3 6 1 02 5 4 1=2[n � 3]2 4[n� 4]3 4 2 2[n � 3] 44 4 6 1[n � 3] 05 6 48 0 1=2[n� 4]2Table 24n2 1 2jSj 3 4jAS j 2 121 4 2 5[n � 3] 42 5 12 1=2[n � 3]2 2[n� 4]3 6 8 1=2[n � 3]3 4[n� 4]24 5 2 3[n� 3]2 12[n � 4]5 5 2 4[n� 3]2 8[n� 4]6 7 16 1=8[n � 3]4 5=2[n� 4]37 6 4 1[n� 3]3 8[n� 4]28 6 12 1=2[n � 3]3 2[n� 4]29 4 8 1[n � 3] 210 5 24 1=2[n � 3]2 011 8 384 0 1=8[n� 4]4Table 35n2 1 2jSj 3 4jAS j 4 41 4 4 4[n � 3] 42 6 4 5=2[n � 3]3 10[n � 4]23 5 2 6[n � 3]2 16[n � 4]4 5 2 7[n � 3]2 12[n � 4]5 5 4 4[n � 3]2 4[n� 4]6 6 12 2=3[n � 3]3 4[n � 4]27 7 48 1=8[n � 3]4 7=6[n � 4]38 7 12 2=3[n � 3]4 4[n � 4]39 6 2 5[n � 3]3 20[n � 4]210 6 8 3=2[n � 3]3 4[n � 4]211 7 4 3=2[n � 3]4 14[n � 4]312 6 2 4[n � 3]3 24[n � 4]213 8 16 1=4[n � 3]5 4[n � 4]414 5 2 6[n � 3]2 16[n � 4]15 5 10 1[n � 3]2 4[n� 4]16 7 4 3=2[n � 3]4 14[n � 4]317 6 2 5[n � 3]3 20[n � 4]218 7 4 2[n � 3]4 12[n � 4]319 6 6 7=3[n � 3]3 4[n � 4]220 9 96 1=48[n � 3]6 3=4[n � 4]521 8 16 1=4[n � 3]5 4[n � 4]422 8 48 1=8[n � 3]5 7=6[n � 4]423 6 16 1=2[n � 3]3 3[n � 4]224 7 48 1=4[n � 3]4 2=3[n � 4]325 6 120 1=6[n � 3]3 026 10 3840 0 1=48[n � 4]6

Table 46n2 1 2jSj 3 4jAS j 24 81 4 24 1[n� 3] 12 6 8 2[n� 3]3 7[n� 4]23 5 2 10[n� 3]2 20[n� 4]4 5 2 11[n� 3]2 16[n� 4]5 7 4 3[n� 3]4 18[n � 4]36 6 2 7[n� 3]3 32[n � 4]27 6 1 16[n� 3]3 56[n � 4]28 6 2 9[n� 3]3 24[n � 4]29 8 16 5=8[n� 3]5 5[n� 4]410 7 4 3[n� 3]4 18[n � 4]311 7 4 7=2[n� 3]4 16[n � 4]312 7 8 2[n� 3]4 7[n� 4]313 5 2 9[n� 3]2 24[n� 4]14 5 8 5=2[n� 3]2 5[n� 4]15 6 4 4[n� 3]3 14[n � 4]216 6 2 10[n� 3]3 20[n � 4]217 6 6 3[n� 3]3 8[n� 4]218 6 12 2[n� 3]3 2[n� 4]219 7 36 1=3[n� 3]4 2[n� 4]320 6 72 1=6[n� 3]3 1[n� 4]221 7 12 5=6[n� 3]4 20=3[n � 4]322 8 24 1=3[n� 3]5 11=3[n � 4]423 9 288 1=48[n � 3]6 1=3[n � 4]524 8 48 7=24[n � 3]5 4=3[n � 4]425 7 6 8=3[n� 3]4 28=3[n � 4]326 7 12 3=2[n� 3]4 4[n� 4]327 8 4 5=2[n� 3]5 20[n � 4]428 7 2 6[n� 3]4 36[n � 4]329 7 8 7=4[n� 3]4 8[n� 4]330 9 24 1=3[n� 3]6 11=3[n � 4]531 8 12 5=6[n� 3]5 20=3[n � 4]432 8 72 1=6[n� 3]5 1[n� 4]433 6 4 9=2[n� 3]3 12[n � 4]234 7 1 12[n� 3]4 72[n � 4]335 6 2 7[n� 3]3 32[n � 4]236 6 4 4[n� 3]3 14[n � 4]237 8 4 5=2[n� 3]5 20[n � 4]438 7 2 7[n� 3]4 32[n � 4]339 6 2 8[n� 3]3 28[n � 4]240 8 16 3=4[n� 3]5 9=2[n � 4]441 7 16 5=8[n� 3]4 5[n� 4]342 8 4 2[n� 3]5 22[n � 4]443 7 2 5[n� 3]4 40[n � 4]344 9 8 3=4[n� 3]6 12[n � 4]545 8 8 1[n� 3]5 11[n � 4]446 6 2 7[n� 3]3 32[n � 4]247 6 12 1[n� 3]3 6[n� 4]248 8 4 2[n� 3]5 22[n � 4]449 9 48 1=8[n� 3]6 2[n� 4]550 10 64 1=16[n � 3]7 13=8[n � 4]651 5 12 3=2[n� 3]2 4[n� 4]52 7 4 3[n� 3]4 18[n � 4]353 7 20 1=2[n� 3]4 4[n� 4]354 7 6 2[n� 3]4 12[n � 4]355 9 16 3=8[n� 3]6 6[n� 4]556 8 4 5=2[n� 3]5 20[n � 4]457 7 4 4[n� 3]4 14[n � 4]358 9 16 1=2[n� 3]6 11=2[n � 4]559 8 12 7=6[n� 3]5 16=3[n � 4]460 7 24 11=12[n � 3]4 4=3[n � 4]361 11 768 1=384[n � 3]8 7=48[n � 4]762 10 96 1=24[n � 3]7 13=12[n � 4]663 10 288 1=48[n � 3]7 1=3[n � 4]664 8 64 1=8[n� 3]5 11=8[n � 4]465 9 192 1=16[n � 3]6 3=8[n � 4]566 8 240 1=12[n � 3]5 1=6[n � 4]467 7 720 1=24[n � 3]4 068 12 46080 0 1=384[n � 4]822



Table 55n3 1 2 3 4 5jSj 3 5 4 4 6jAS j 4 4 2 2 41 4 4 3[n � 3] 0 3 3 02 6 4 3=2[n � 3]3 5[n� 5] 1[n� 4]2 3=2[n � 4]2 123 5 2 3[n� 3]2 8 4[n� 4] 3[n� 4] 04 5 2 3[n� 3]2 4 5[n� 4] 6[n� 4] 05 5 4 3=2[n � 3]2 1 2[n� 4] 6[n� 4] 06 6 12 1=2[n � 3]3 3[n� 5] 0 0 07 7 48 1=8[n � 3]4 1=2[n� 5]2 0 0 3[n � 6]8 7 12 0 3[n� 5]2 0 1=2[n � 4]3 09 6 2 0 12[n � 5] 3[n� 4]2 3[n � 4]2 010 6 8 0 2[n� 5] 1[n� 4]2 3=2[n � 4]2 011 7 4 0 7[n� 5]2 1=2[n� 4]3 0 24[n � 6]12 6 2 0 12[n � 5] 3[n� 4]2 0 2413 8 16 0 3=2[n� 5]3 0 0 12[n � 6]214 5 2 0 6 6[n� 4] 3[n� 4] 015 5 10 0 2 1[n� 4] 0 016 7 4 0 5[n� 5]2 1[n� 4]3 0 36[n � 6]17 6 2 0 8[n� 5] 4[n� 4]2 3[n � 4]2 2418 7 4 0 5[n� 5]2 1[n� 4]3 3=2[n � 4]3 24[n � 6]19 6 6 0 2[n� 5] 1[n� 4]2 4[n � 4]2 020 9 96 0 1=8[n� 5]4 0 0 7=2[n � 6]321 8 16 0 1[n� 5]3 1=8[n� 4]4 0 15[n � 6]222 8 48 0 1=2[n� 5]3 0 1=8[n � 4]4 3[n � 6]223 6 16 0 1[n� 5] 1=2[n� 4]2 0 624 7 48 0 1=2[n� 5]2 0 1=2[n � 4]3 025 6 120 0 0 0 1=2[n � 4]2 026 10 3840 0 0 0 0 1=8[n � 6]4Table 66n5 1 2 3 4 5 6 7jSj 4 6 5 5 5 6 7jAS j 24 8 2 2 4 2 11 4 24 1 0 0 0 0 0 02 6 8 1=2[n � 4]2 2 0 0 0 0 03 5 2 2[n � 4] 0 2 2 0 0 04 5 2 2[n � 4] 0 0 2 4 0 05 7 4 0 2[n� 6] 0 0 0 3[n � 6] 06 6 2 0 2 1[n� 5] 0 0 6 07 6 1 0 4 2[n� 5] 2[n� 5] 0 0 08 6 2 0 2 1[n� 5] 0 2[n � 5] 0 09 8 16 0 1=2[n� 6]2 0 0 0 0 3[n � 7]10 7 4 0 1[n� 6] 1=2[n� 5]2 0 0 0 1211 7 4 0 2[n� 6] 0 1=2[n � 5]2 0 0 012 7 8 0 1[n� 6] 0 0 1=2[n � 5]2 0 013 5 2 0 0 2 1 0 0 014 5 8 0 0 1 0 1 0 015 6 4 0 0 1[n� 5] 0 0 3 016 6 2 0 0 0 2[n� 5] 2[n � 5] 0 017 6 6 0 0 0 1[n� 5] 0 0 018 6 12 0 0 0 0 1[n � 5] 0 019 7 36 0 0 0 0 0 1[n � 6] 020 6 72 0 0 0 0 0 1 021 7 12 0 0 0 0 0 2[n � 6] 422 8 24 0 0 0 0 0 1=2[n � 6]2 4[n � 7]23 9 288 0 0 0 0 0 0 1=2[n � 7]2
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Table 76n3 1 2 3 4 5jSj 3 5 4 4 6jAS j 24 8 2 2 41 4 24 1[n� 3] 0 1 1 02 6 8 3=2[n� 3]3 4[n � 5] 3=2[n � 4]2 3=2[n � 4]2 123 5 2 6[n� 3]2 10 10[n � 4] 9[n� 4] 04 5 2 6[n� 3]2 6 10[n � 4] 15[n� 4] 05 7 4 3=2[n� 3]4 14[n � 5]2 1[n � 4]3 3=2[n � 4]3 24[n � 6]6 6 2 3[n� 3]3 24[n � 5] 5[n � 4]2 3[n� 4]2 247 6 1 6[n� 3]3 36[n � 5] 14[n � 4]2 12[n � 4]2 488 6 2 3[n� 3]3 14[n � 5] 7[n � 4]2 12[n � 4]2 249 8 16 3=8[n� 3]5 5=2[n � 5]3 1=4[n � 4]4 3=8[n � 4]4 18[n� 6]210 7 4 3=2[n� 3]4 10[n � 5]2 2[n � 4]3 3=2[n � 4]3 48[n � 6]11 7 4 3=2[n� 3]4 9[n� 5]2 5=2[n � 4]3 3[n� 4]3 36[n � 6]12 7 8 3=4[n� 3]4 9=2[n � 5]2 1[n � 4]3 3[n� 4]3 12[n � 6]13 5 2 3[n� 3]2 14 10[n � 4] 6[n� 4] 014 5 8 3=2[n� 3]2 3 2[n � 4] 3[n� 4] 015 6 4 3=2[n� 3]3 11[n � 5] 3[n � 4]2 3[n� 4]2 016 6 2 3[n� 3]3 12[n � 5] 8[n � 4]2 15[n � 4]2 017 6 6 1[n� 3]3 4[n � 5] 3[n � 4]2 3[n� 4]2 818 6 12 1=2[n� 3]3 1[n � 5] 1[n � 4]2 5[n� 4]2 019 7 36 1=6[n� 3]4 2[n� 5]2 0 1=6[n � 4]3 020 6 72 1=6[n� 3]3 1[n � 5] 0 0 021 7 12 1=2[n� 3]4 5[n� 5]2 1=6[n � 4]3 0 12[n � 6]22 8 24 1=4[n� 3]5 13=6[n � 5]3 0 0 12[n� 6]223 9 288 1=48[n � 3]6 1=8[n � 5]4 0 0 5=3[n� 6]324 8 48 0 4=3[n � 5]3 0 1=2[n � 4]4 025 7 6 0 8[n� 5]2 4=3[n � 4]3 4[n� 4]3 026 7 12 0 3[n� 5]2 1[n � 4]3 5=2[n � 4]3 027 8 4 0 13[n � 5]3 1[n � 4]4 3=2[n � 4]4 48[n� 6]228 7 2 0 26[n � 5]2 4[n � 4]3 3[n� 4]3 48[n � 6]29 7 8 0 7[n� 5]2 1[n � 4]3 3=2[n � 4]3 030 9 24 0 13=6[n � 5]4 0 1=4[n � 4]5 12[n� 6]331 8 12 0 5[n� 5]3 1=6[n � 4]4 1=2[n � 4]4 12[n� 6]232 8 72 0 1[n� 5]3 0 1=6[n � 4]4 033 6 4 0 8[n � 5] 4[n � 4]2 6[n� 4]2 034 7 1 0 44[n � 5]2 10[n � 4]3 6[n� 4]3 144[n � 6]35 6 2 0 22[n � 5] 7[n � 4]2 3[n� 4]2 2436 6 4 0 10[n � 5] 4[n � 4]2 3[n� 4]2 037 8 4 0 11[n � 5]3 3=2[n � 4]4 3=2[n � 4]4 60[n� 6]238 7 2 0 20[n � 5]2 6[n � 4]3 6[n� 4]3 48[n � 6]39 6 2 0 16[n � 5] 9[n � 4]2 6[n� 4]2 2440 8 16 0 5=2[n � 5]3 1=2[n � 4]4 3=4[n � 4]4 12[n� 6]241 7 16 0 3[n� 5]2 1=2[n � 4]3 0 12[n � 6]42 8 4 0 12[n � 5]3 1[n � 4]4 0 72[n� 6]243 7 2 0 24[n � 5]2 4[n � 4]3 0 96[n � 6]44 9 8 0 5[n� 5]4 1=4[n � 4]5 0 54[n� 6]345 8 8 0 6[n� 5]3 1=2[n � 4]4 0 36[n� 6]246 6 2 0 18[n � 5] 8[n � 4]2 3[n� 4]2 4847 6 12 0 4[n � 5] 1[n � 4]2 0 848 8 4 0 10[n � 5]3 3=2[n � 4]4 0 84[n� 6]249 9 48 0 1[n� 5]4 0 0 8[n� 6]350 10 64 0 1=2[n � 5]5 0 0 9[n� 6]451 5 12 0 2 2[n � 4] 1[n� 4] 052 7 4 0 9[n� 5]2 3[n � 4]3 3=2[n � 4]3 48[n � 6]53 7 20 0 2[n� 5]2 1=2[n � 4]3 0 12[n � 6]54 7 6 0 6[n� 5]2 2[n � 4]3 1[n� 4]3 32[n � 6]55 9 16 0 2[n� 5]4 1=4[n � 4]5 0 30[n� 6]356 8 4 0 9[n� 5]3 2[n � 4]4 3=2[n � 4]4 72[n� 6]257 7 4 0 8[n� 5]2 3[n � 4]3 6[n� 4]3 24[n � 6]58 9 16 0 9=4[n � 5]4 1=4[n � 4]5 3=8[n � 4]5 24[n� 6]359 8 12 0 10=3[n � 5]3 1=2[n � 4]4 2[n� 4]4 12[n� 6]260 7 24 0 1[n� 5]2 1=3[n � 4]3 5=2[n � 4]3 061 11 768 0 1=48[n � 5]6 0 0 1[n� 6]562 10 96 0 1=4[n � 5]5 1=48[n � 4]6 0 13=2[n � 6]463 10 288 0 1=8[n � 5]5 0 1=48[n � 4]6 5=3[n� 6]464 8 64 0 1=2[n � 5]3 1=8[n � 4]4 0 6[n� 6]265 9 192 0 1=4[n � 5]4 0 1=8[n � 4]5 1[n� 6]366 8 240 0 1=6[n � 5]3 0 1=4[n � 4]4 067 7 720 0 0 0 1=6[n � 4]3 068 12 46080 0 0 0 0 1=48[n � 6]624



Table 8a6n4 1 2 3 4 5 6jSj 4 5 6 5 5 7jAS j 24 8 2 2 4 21 4 24 1 0 0 0 0 02 6 8 1[n� 4]2 3[n� 5] 0 0 0 03 5 2 5[n� 4] 6 0 4 4 04 5 2 6[n� 4] 0 0 2 5 05 7 4 1=2[n � 4]3 6[n � 5]2 10[n � 6] 0 0 46 6 2 1[n� 4]2 12[n � 5] 12 4[n � 5] 1[n� 5] 07 6 1 4[n� 4]2 12[n � 5] 8 8[n � 5] 6[n� 5] 08 6 2 2[n� 4]2 6[n� 5] 0 2[n � 5] 5[n� 5] 09 8 16 1=8[n � 4]4 3=2[n � 5]3 0 0 0 5[n� 7]10 7 4 1=2[n � 4]3 6[n � 5]2 0 1[n� 5]2 1=2[n� 5]2 1611 7 4 1[n� 4]3 3[n � 5]2 0 1=2[n � 5]2 1[n� 5]2 812 7 8 1=2[n � 4]3 3=2[n � 5]2 0 0 1=2[n� 5]2 213 5 2 2[n� 4] 6 0 7 4 014 5 8 1[n� 4] 3 0 1 1 015 6 4 1=2[n � 4]2 6[n� 5] 6 2[n � 5] 2[n� 5] 016 6 2 3[n� 4]2 0 4 2[n � 5] 7[n� 5] 017 6 6 1[n� 4]2 0 0 1[n � 5] 2[n� 5] 018 6 12 1=2[n � 4]2 0 0 0 1[n� 5] 019 7 36 0 1[n � 5]2 2[n � 6] 0 0 020 6 72 0 1[n� 5] 1 0 0 021 7 12 0 3[n � 5]2 4[n � 6] 0 0 422 8 24 0 3=2[n � 5]3 1[n � 6]2 0 0 6[n� 7]23 9 288 0 1=8[n � 5]4 0 0 0 1=2[n� 7]224 8 48 0 0 1[n � 6]2 0 0 025 7 6 0 0 4[n � 6] 1[n� 5]2 1[n� 5]2 026 7 12 0 0 2[n � 6] 0 3=2[n� 5]2 027 8 4 0 0 8[n � 6]2 0 1=2[n� 5]3 16[n � 7]28 7 2 0 0 16[n � 6] 3[n� 5]2 1[n� 5]2 829 7 8 0 0 5[n � 6] 1[n� 5]2 1=2[n� 5]2 030 9 24 0 0 1[n � 6]3 0 0 6[n� 7]231 8 12 0 0 4[n � 6]2 0 0 4[n� 7]32 8 72 0 0 1[n � 6]2 0 0 033 6 4 0 0 2 2[n � 5] 3[n� 5] 034 7 1 0 0 16[n � 6] 6[n� 5]2 4[n� 5]2 3235 6 2 0 0 8 7[n � 5] 2[n� 5] 036 6 4 0 0 4 3[n � 5] 2[n� 5] 037 8 4 0 0 2[n � 6]2 1[n� 5]3 1=2[n� 5]3 24[n � 7]38 7 2 0 0 8[n � 6] 2[n� 5]2 5[n� 5]2 839 6 2 0 0 4 4[n � 5] 6[n� 5] 040 8 16 0 0 1=2[n � 6]2 0 1=2[n� 5]3 4[n� 7]41 7 16 0 0 2[n � 6] 0 0 242 8 4 0 0 6[n � 6]2 1=2[n � 5]3 0 28[n � 7]43 7 2 0 0 12[n � 6] 3[n� 5]2 0 2444 9 8 0 0 2[n � 6]3 0 0 16[n � 7]245 8 8 0 0 4[n � 6]2 0 0 8[n� 7]46 6 2 0 0 4 4[n � 5] 3[n� 5] 047 6 12 0 0 2 1[n � 5] 0 048 8 4 0 0 2[n � 6]2 1[n� 5]3 0 24[n � 7]49 9 48 0 0 1=2[n � 6]3 0 0 4[n� 7]250 10 64 0 0 1=8[n � 6]4 0 0 5=2[n� 7]351 5 12 0 0 0 1 1 052 7 4 0 0 0 1[n� 5]2 1[n� 5]2 1253 7 20 0 0 0 1=2[n � 5]2 0 454 7 6 0 0 0 1[n� 5]2 1[n� 5]2 855 9 16 0 0 0 1=8[n � 5]4 0 7[n� 7]256 8 4 0 0 0 1=2[n � 5]3 1[n� 5]3 16[n � 7]57 7 4 0 0 0 1=2[n � 5]2 3[n� 5]2 458 9 16 0 0 0 0 1=8[n� 5]4 6[n� 7]259 8 12 0 0 0 0 1=2[n� 5]3 4[n� 7]60 7 24 0 0 0 0 1=2[n� 5]2 061 11 768 0 0 0 0 0 1=8[n� 7]462 10 96 0 0 0 0 0 1[n� 7]363 10 288 0 0 0 0 0 1=2[n� 7]364 8 64 0 0 0 0 0 1[n� 7]65 9 192 0 0 0 0 0 1=2[n� 7]266 8 240 0 0 0 0 0 067 7 720 0 0 0 0 0 068 12 46080 0 0 0 0 0 025



Table 8b6n4 7 8 9 10 11jSj 6 6 4 5 8jAS j 1 2 16 4 41 4 24 0 0 1 0 02 6 8 3 3 1[n � 4]2 0 03 5 2 0 0 4[n � 4] 0 04 5 2 0 0 4[n � 4] 12 05 7 4 4[n� 6] 6[n� 6] 0 0 06 6 2 6 6 0 0 07 6 1 12 12 0 0 08 6 2 6 6 0 12[n � 5] 09 8 16 1[n� 6]2 3=2[n � 6]2 0 0 2410 7 4 4[n� 6] 3[n� 6] 0 0 011 7 4 5[n� 6] 6[n� 6] 0 0 012 7 8 2[n� 6] 6[n� 6] 0 3[n� 5]2 013 5 2 0 0 4[n � 4] 0 014 5 8 0 0 0 3 015 6 4 0 3 0 0 016 6 2 0 6 0 12[n � 5] 017 6 6 2 0 0 0 018 6 12 0 1 0 10[n � 5] 019 7 36 0 1[n� 6] 0 0 020 6 72 0 0 0 0 021 7 12 1[n� 6] 0 0 0 022 8 24 0 0 0 0 023 9 288 0 0 0 0 4[n� 8]24 8 48 0 2[n � 6]2 0 1=2[n � 5]3 025 7 6 0 10[n � 6] 0 4[n� 5]2 026 7 12 0 2[n� 6] 0 2[n� 5]2 027 8 4 4[n� 6]2 6[n � 6]2 0 0 028 7 2 8[n� 6] 12[n � 6] 0 0 029 7 8 0 6[n� 6] 0 0 030 9 24 0 3=2[n � 6]3 0 0 031 8 12 1[n� 6]2 3[n � 6]2 0 0 032 8 72 0 1[n � 6]2 0 0 033 6 4 0 6 2[n � 4]2 6[n � 5] 034 7 1 20[n� 6] 12[n � 6] 0 0 035 6 2 6 6 0 0 036 6 4 0 6 2[n � 4]2 0 037 8 4 3[n� 6]2 6[n � 6]2 0 0 038 7 2 8[n� 6] 6[n� 6] 0 0 039 6 2 6 0 4[n � 4]2 0 040 8 16 1[n� 6]2 3=2[n � 6]2 0 0 041 7 16 2[n� 6] 0 1=2[n � 4]3 0 042 8 4 4[n� 6]2 0 0 0 043 7 2 12[n� 6] 0 0 0 044 9 8 3=2[n � 6]3 0 0 0 96[n � 8]45 8 8 3[n� 6]2 0 0 0 4846 6 2 12 0 4[n � 4]2 0 047 6 12 2 0 0 0 048 8 4 5[n� 6]2 0 0 0 9649 9 48 0 0 0 0 050 10 64 0 0 0 0 24[n � 8]251 5 12 0 0 2[n � 4] 0 052 7 4 6[n� 6] 3[n� 6] 2[n � 4]3 0 053 7 20 1[n� 6] 0 0 0 054 7 6 4[n� 6] 0 0 0 055 9 16 1[n� 6]3 0 0 0 72[n � 8]56 8 4 6[n� 6]2 3[n � 6]2 0 0 9657 7 4 4[n� 6] 6[n� 6] 0 6[n� 5]2 058 9 16 1[n� 6]3 3=2[n � 6]3 0 0 48[n � 8]59 8 12 1[n� 6]2 5[n � 6]2 0 2[n� 5]3 060 7 24 0 2[n� 6] 0 5[n� 5]2 061 11 768 0 0 0 0 9=2[n� 8]362 10 96 1=8[n � 6]4 0 0 0 24[n � 8]263 10 288 0 1=8[n � 6]4 0 0 4[n� 8]264 8 64 1=2[n � 6]2 0 1=8[n � 4]4 0 1265 9 192 0 1=2[n � 6]3 0 1=8[n � 5]4 066 8 240 0 1=2[n � 6]2 0 1=2[n � 5]3 067 7 720 0 0 0 1=2[n � 5]2 068 12 46080 0 0 0 0 1=8[n� 8]426
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