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Abstract

Kramer-Mesner matrices have been used as a powerful tool to construct ¢-designs.
In this paper we construct Kramer-Mesner matrices for fixed values of £ and ¢ in
which the entries are polynomials in n the number of vertices of the underlying
graph. From this we obtain an elementary proof that with a few exceptions ST[?} is a

maximal subgroup of S () Ot A(n) We also show that there are only finitely many
2 2

graphical incomplete ¢-(v, k, A) designs for fixed values of 2 < ¢ and k at least in the
cases k =t+1,¢t =2, and 2 < t < k < 6. All graphical ¢t-designs are determined
by the program DISCRETA for various small parameters. Most parameter sets are
new for graphical designs, some also for general simple ¢-designs. The largest value
of ¢ for which graphical designs were found is ¢ = 5. Some of the smaller designs
which are block transitive are drawn as graphs.

Key words: Graphical ¢-designs, maximal subgroups of symmetric groups,
polynomial Kramer-Mesner matrices

1 Introduction

Consider the action of the symmetric group S,, on the set V' = ()2() where

X ={1,2,---,n}. This defines an embedding of S,, into S(n) with image group
2

SPI. Any subset K of V can be considered as a labelled graph with edge set
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K and vertex set X. The orbits of S’E} on 2V are just the isomorphism classes
of graphs and thus such an orbit can be described by drawing an unlabelled
graph. If a collection of these orbits for a fixed k£ forms a ¢-design then this
design is called a graphical design (on n points).

We give appropriate collections of isomorphism classes of graphs such that
the resulting collections of subsets of V' form a t-design. The condition for a
design that each t-subset of V' be contained in the same number A of blocks
in this context means that each labelled graph 7" with ¢ edges and vertex set
X occurs exactly A times as a subgraph in the selected collection of labelled
graphs. We don’t allow a multiple occurrence of the same graph, i.e. we only
consider simple designs. Usually, we also are not interested in the complete
design consisting of all graphs with £ edges or the empty design. So, without
explicit mentioning we mean by a design an incomplete non-empty design.

There are a few papers considering this special kind of designs. It seems that
W. O. Alltop [1] first constructed graphical 2—((;), k, \)-designs, where K is
the set of edges of a cycle of length &k and n =2 x k — 3.

Our approach uses Kramer-Mesner matrices which are named after an in-
fluential paper [17]. In fact, the method is a systematic version of finding a
tactical decomposition of a structure by means of the automorphism group of
the structure. Similar approaches have a long history which we do not want
to trace back here. We only report that in the early 70’s M. H. Klin [15]
already used Kramer-Mesner matrices (as they are called now) with polyno-
mial entries to describe graphical 2- and 3-designs for showing that SI? is a
maximal subgroup of S@ with only a few small exceptions. A new version of
this result is part of the present paper. Besides the note [14] with the finite-
ness theorem which was published in a local journal not known even in the
former USSR his results never were published. A similar approach of poly-
nomial matrices for another class of groups can also be found in the report
of L. H. M. E. Driessen [11]. Moreover, Driessen gave graphical 3-(10, 5, 6),
3-(10,4,1), and 3-(15, 5, 30) designs. In [5], Chee also shows 3 Kramer-Mesner
matrices with polynomial entries for graphical ¢-designs. Only, there is no
indication in that paper how these matrices can be found.

Important contributions to the theory of graphical designs were made by L. G.
Chouinard IT, E. S. Kramer, and D.L. Kreher [9], who determined the graphical
designs for A =1, 2.

P. J. Cameron and C. E. Praeger [4, example 1.4], obtain a flag-transitive
graphical 2-(78,15, \) design from the Petersen graph, enlarged by 3 isolated
vertices. Two further examples for graphical designs have been published by
E. S. Kramer [16] and Y. M. Chee [7]. Kramer’s design has parameters 3-
(21,5,3) and Chee’s design has parameters 3-(28, 5,30). Additional material



has been reported by Y. M. Chee [8].

Starting from Alltop’s approach [1] we show how polynomial Kramer-Mesner
matrices can be obtained. We use our program DISCRETA to construct such
matrices for smaller cases. The graphical designs obtained for 2-(v,3,\) and
3-(v,4,\) are used in an elementary way to determine all overgroups of S[
in S(';) following Klin [14,15]. Nowadays this result can also be obtained from

the classification of finite simple groups [20].

From the polynomial Kramer-Mesner matrices we obtain some results on
graphical designs for infinitely many parameter sets. It was known that there
exist only finitely many graphical designs with parameter sets of type 2-
(v,3,A), 2-(v,4,\), 3-(v,4, A), and none for 4-(v, 5, \), [8], [6]. We show that
there is also no graphical 5-(v, 6, \) design and, more generally, for each k there
exist only finitely many graphical ¢-(v, k, \) designs in each of the following
cases:

e k=1t+1,
o1 =2,
e 2<t<k<6.

The proof leads to conjecture that such a finiteness result might hold for
all fixed pairs (¢, k). Then, there would exist only sporadic graphical designs
for these parameters. We thus determine many such sporadic designs and,
surprisingly, find examples even for ¢ = 5. The results are reported in two
tables in Section 6.

2 Preliminaries
If X is any finite set and k£ a natural number then

(¥)={K | K C X,|K| =k},
XF={(21,29,..., 1) | 7, € X for all 4}.

A tuple (21,29, ...,7;) € X* is injective if all components are pairwise differ-
ent. We denote
XPi={(z1,22,.... ) | (x1,22,...,2) injective tuple from X*}.

Let G be a group acting on X. In particular, there is always the full symmetric
group S(X) on X. We denote the image of x € X under ¢ € G by z9. Then



G also acts on ()k() by K9 = {29 | z € K} for K € ()k(), and on X by
(z1,T9,. .., 24)7 = (29,23, ...,2]) for (x1,29,...,2) € X*. We denote by G
the permutation group induced by G on ()2{) Especially we will use this for
G = S,, the symmetric group on {1,2,...,n}. A, is the alternating group on

{1,2,...,n}.

The set Xi’;j is closed under G, since each g € G acts as a bijective function
on X. Therefore we have a mapping

gp:Xi];j — ()k() c(my, 29, my) {2, Ty )

which commutes with the action of G. We denote by k(-orbits and ky-orbits

the respective orbits of G on Xi’gj and ()k() Usually kgy-orbits are also denoted
as k-orbits. We will follow this convention when no misunderstanding is likely.

A kp-orbit @ of injective k-tuples is totally symmetric, if with each
(v1,T9,...,2) € ® also each (zyx,Tor,...,x4=) € ® for each permutation
7 of the k& components. Thus, for a totally symmetric k(-orbit ® we have

| = k! |p(P)].
For a K € ()k() the setwise stabilizer of K in G is

Ne(K)={g | ge G, forallz € K 29 € K}.

It is clear that Ng (K) = Aut(T'), where Aut(T") is the automorphism group
of a graph ' = (X, K). We also call this the normalizer of K in G. Then the
pointwise stabilizer of K in G is

Co(K)={g|geG,forall z € Kz=uz}.

We also call this the centralizer of K in G. The centralizer of K is just the
kernel of the permutation representation of Ng(K) defined by the restriction
of the action to K. ® is totally symmetric if and only if for each K € ®
Ng(K)/Cq(K) = Si. G is called k(-transitive (or simply k-transitive), if
there exists only one k(y-orbit. If G is k(-transitive but not (k +1)()-transitive
then G is called ezactly k(-transitive. G is called k-homogeneous if there exists
only one kg-orbit.

Remark: Do not mix the notation of an exactly k(-transitive permutation
group with that of a sharply k(-transitive permutation group (the latter is
defined, e. g., in [10], p.210).

For t > 2 a simple t-(v, k, \) design D defined on a set V' with |V| = v is a
set of blocks B C (‘]:) such that each T € (‘t/) is contained in exactly A blocks



of D. The maximal value of A is (Z:i) A design with this value of A is called
the complete design, otherwise it is an incomplete design. The trivial design
consists of no blocks. If A is just half of the maximal value, the design is called
a halving of the complete design. Generally, the k-subsets not in a design D

also form a design, called the complementary design D of D.

For the rest of the paper we denote X = {1,2,... ,n} for some n € N, and
V= ()2() A subset E C V is considered as the set of edges of an undirected
graph with vertex set X. A graphical ¢-(v, k, \) design D is a simple ¢-(v, k, \)
design admitting S!? as a group of automorphisms.

3 Polynomial Kramer-Mesner matrices

A group A of automorphisms of a design D, or more exactly a subgroup A of
the automorphism group of a ¢-(v, k, A) design D acting on the point set V/
has orbits on the set of blocks of the design. Thus, the design is a collection
of A-orbits on (‘;) If a t-subset T is contained in m(7T, K*) elements of the

orbit K4 of K € (Z) then also each T° for a € A is contained in the same

number of elements of that orbit. For a collection of A-orbits on (Z) one only
has to test for a set of representatives of the t-orbits if they appear in exactly
A elements of the selected orbits. This observation has been formalized by

Kramer and Mesner [17].

Theorem 1 (Kramer, Mesner 1976) A t-(v,k, \) design exists with A < S,
as a group of automorphisms if and only if there is a {0, 1}-solution vector u
to the diophantine system of equations

> m(T;, Kf)uj =A

J

where the T; and the K; run through a system of representatives of the t-orbits
and k-orbits of A, respectively.

If only one k-orbit already forms a design, i.e. u has only one nonzero entry, the
design is called block-transitive. In this paper we consider the case of A = S!?!
where V = ()2{) for X = {1,2,...,n}. These designs are graphical, since they
can be visualized by graphs. We give an example of a block-transitive graphical
2-(10,4,2) design, which is taken from [9].



Each pair of edges of the complete labelled graph on 5 vertices appears exactly
twice in the following 15-element set of graphs with 4 vertices.
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Under the action of SE} on the set of labelled graphs on 5 vertices the shown

graphs form one orbit. This is therefore just an isomorphism class of graphs
which can be represented by an unlabelled graph.
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If a graphical design is formed by more than one orbit we have to draw a graph
for each orbit. A first example of this kind has been attributed to R. M. Wilson
by Kramer and Mesner [17]. It has the parameters 3-(10,4,1) and is shown in
the next figure. We denote this design by D(3,4).

The 3-(10,4,1) design D(3,4)

Ao\/

The design D(3,4) and some other cases appear in [3] and [21] as a nice
illustration of the notion of a design. Further examples can be found in Hand-
book of Combinatorial designs [8] or be constructed by DISCRETA. We have
listed many such designs in Section 6. These usually have so many orbits that
drawing the graphs is not feasible.



Instead of computing a Kramer-Mesner matrix for each ((g),k,t) we now
introduce Kramer-Mesner matrices whose entries are polynomials in n. So for
each £ and ¢ we have only one matrix covering all infinitely many n > 2k.

The basic tool goes back to Alltop (1966). We give a slightly different version
here. For T' € (‘t/) and B € (Z) we use

m(T, BY) = {(T,K)|K € B, T c K}

and

m'(T% B) = {(S,B)|S € T“, S C B}.

Counting the pairs in

{(S,K)|SeT" K e B“ ScK}

in two ways and using |B¢|-|Ng(B)| = |G| one obtains the following relation.
Lemma 2 (Alltop [1])

m(T, BY) x |Na(B)| = n/(T°, B) x [Na(T)|.
Consider an orbit K% where G = SI?. Then K is a k-subset of V = ()2(),

where X = {1,2,...,n}. Since there are usually several vertices not incident
with any edge in K, we denote by

supp(K) = {il3{i. j} € K}
the set of vertices which are incident with an edge of K. The following lemma

is evident.

Lemma 3 With the above notation

Aut(K) = A x S(X \ supp(K)),

where A is a permutation group on supp(K) which does not depend on X.

So, for graphical designs in Alltop’s Lemma we can replace Ng(B) and Ng(T)
by these automorphism groups of the corresponding graphs.

In order to compute the Kramer-Mesner matrix for graphical ¢-(v, k, \) de-
signs we can first determine for each pair of isomorphism types of graphs K



and T with k£ and ¢ edges, respectively, the number of embeddings of T" in
K, i.e. m'(T%, B). This can be done for a fixed n, say n = |[supp(K)|. Then
from Alltop’s Lemma one obtains the entries m (T, BY) for all values of n.
As an alternative one can start from a Kramer-Mesner matrix M for a fixed
n, as computed by DISCRETA, and then use Alltop’s Lemma to first de-
termine m/(T%, B) in each case, before proceeding as above. The resulting
Kramer-Mesner matrix has entries which are polynomials in n with rational
coefficients and which take only integer values for all integers n. We com-
puted the polynomial Kramer-Mesner matrices given in the appendix using
DISCRETA without any hand calculation.

We demonstrate this approach with a first polynomial Kramer-Mesner ma-
trix which we need in the next section. Let ¢ = 2 and k£ = 3. We form the
polynomial Kramer-Mesner matrix for n > 6.

Kl K2 K3 K4 K5
T, [ [ 0D 4(n—4) | 4 0 0
Tj 0 |BeBiom—3) 1 | n-3

As an example we compute m(Ty, K§'), where G = SI2l. We have that

\supp(Tg)| =3, Aut(TQ) =S X Sn—3 .

So, |Aut(Ty)| = 2 - (n — 3)!. Similarly, |Aut(K3)| = 4- (n — 5)l. Ty can be
embedded in only one way into K5, hence m/(T¥, K;) = 1. Alltop’s formula
yields

Ne(T)l _

2
m(To, Ky') = m' (T3, 1) - Ne(K>)| 4+ (n—5)! 2

In our tables we use the shorter notation [n — 3]y of falling factorials for the
term (n — 3)(n — 4). For n = 8 the columns K; and K3 have in each row the
constant sum 10. So, taking the orbits K and K§ results in a graphical 2-
(28,3,10) design. For each of the 2° subsets of { Ky, K», ..., K5} one obtains a
system of Diophantine equations whose solutions give all graphical 2-( (;‘) ,3, M)
designs for n > 6. The smaller values of n can be handled directly. In the next



section all solutions for this case are listed. For t = 3, k = 4 there is only one
graphical design, the 3-(10,4,1) design D(3,4) we showed above.

4 Overgroups of S/ in S(n)
2

With the help of graphical 2-designs we show

Theorem 4 (Klin (1970, 1974) [14,15]) Let n > 9 or n =7. Then
(1) SI max S(n) if nis odd,

(2) S max A(n) if n is even.

Corollary 5 Forn > 9 orn =7 all graphical t-designs are pairwise noniso-
morphic.

The exceptional cases are covered by the following result.

Theorem 6 (Klin (1974) [15]) Up to complementary designs there exist
exactly the following nontrivial graphical 2—((’;) ,3,A) and 3—((’;) ,4, ) designs
D with automorphism group Aut(D), obtained from the polynomial Kramer-
Mesner matrices in the first two tables in the appendiz.

n D t—(v, k, \) Aut(D) k(—trans.
5 D(3,4) 3—(10,4,1) | Aut(Ss) 3
5 K 2—(10,3, 4) Se 2
6 K, UK, 2—(15,3,1) [PSL(4,2) = Ag| 2
8] K/ UK,UKs |2—(28,3,6) S 1
8 K, UK, 2-(28,3,10)|  Sp(6,2) 2
11K, U K3 U Ky U K5|2— (55,3, 25) s 1

The listed automorphism groups and S, x Sy in case n = 4 are the only proper
overgroups of S in S(n), besides A(n) if n s even.
2 2

Remark 7 Chee 1991, see [8], also independently found that only the graph-
ical designs in Theorem 6 are possible for 2-(v,3,\) and 3-(v,4, \).

Remark 8 The 2-(10,3,4) design is a halving of the complete design. This
design 1s isomorphic to its complement.



It is easy to deduce the Corollary 5 from Theorem 4. Since in the listed

cases S,[f} is a maximal subgroup of S(n) or A(n), any incomplete graphi-
2 2

cal t—((g),k,)\) design must have S as its full automorphism group. Any

g € S( ) mapping one incomplete graphical t—((g),k, A) design D; onto an-

other 12)2 must map Aut(D;) onto Aut(D,) via conjugation. But we have
Aut(D;) = SIZ = Aut(D,) such that g normalizes S[2/. Again, since SI? is a
maximal subgroup it coincides with its normalizer such that g € S[2/. Thus, g
is an automorphism of D; and D; = D,. This argument is just a special case

of a theorem in Schmalz [22], see also Laue [19].

The proof of Theorem 4 is reduced to an existence problem of graphical ¢-
designs using the following general observation.

Lemma 9 Let G be a permutation group of a set X with a totally symmetric
ko-orbit ® for some k > 2. Suppose that G < A < S(X) and that A is exactly
(k — 1)(-transitive. Then for some appropriate X there exists an incomplete
(k—1)-(|X|,k,\) design admitting A as a group of automorphisms.

PROOF. By assumption we have a totally symmetric Fk-orbit
® = (z1,%2,...,24)% Then the ky-orbit (w1, 2s,...,24)" will also be to-
tally symmetric, since Ng({z1,xa,...,2})/Ca({x1, 2, ..., x1}) is embedded
into Na({x1,29,...,2})/Cal{x1,29,...,2,}) and thus both factor groups
are isomorphic to S;. We also know that A is not k(-transitive. So there
exists a k-tuple (yi,vo,...,yk) & (T1,72,...,74)". We will show that then
also {y1,y2,...,ur} € {x1,79,..., 71", Otherwise for some a € A we would
have {y1, v, ..., yx}* = {®1, 22, ..., 2} and (xq, 29, ..., zx) could be mapped
by permuting the components onto (y{,45,...,ys). But such a permutation
is already contained in N4({z1,xs,...,2x}) such that (z1,zs,...,2;) and
(y1,Y2, - - -, yg) would be in the same orbit of A. This contradicts to our selec-

tion of (y1,v2, ..., Yk)-

So we can form a Kramer-Mesner matrix for the (k — 1)g-orbits and the k-
orbits of A. Since A is (k — 1)-transitive, this matrix has just one row. As
we have just shown there are at least two kyy-orbits resulting in at least two
different columns of the Kramer-Mesner matrix. Taking any column of the
matrix then yields an incomplete (k — 1)-(|X |, k, A) design with A as a group
of automorphisms. O

Assuming Theorem 6 to be true we can now prove Theorem 4.

PROOF. For n — 1 >t > 2 the group SI?! always has a totally symmetric
t(y-orbit, i.e. the orbit of the star graph

10



n

1
AL ?
t .

({1,n},{2.n), ..., {t.n})5".

So we can take S?) as the group G in Lemma 9. For n > 4 also S/Z has two 2()-
orbits besides the diagonal and is the full automorphism group of the graphs
representing these 2(-orbits by the Whitney-Jung theorem, see [23,13,12].
Therefore, each overgroup A of S}f} in S(g) has to fuse these orbits.

Each overgroup A thus is 2()-transitive. If A is not 3()-transitive then by
Lemma 9 A must be an automorphism group of an incomplete graphical 2-

((3)3,A) design.

By Theorem 6 such a design does not exist if n is not equal to 5, 6, 8, 11.
For n = 11 there exist 2—(@), 3, ) designs. But these have S/ as their full
automorphism group. Thus, also in this case A cannot exist.

So A must be 3()-transitive. Assume that A is not 4()-transitive. Then again

by the lemma we must find an incomplete graphical 3—((’2’),4, A) design. From
Theorem 6 we see that for n = 7 and n > 9 such an overgroup A does not
exist.

So we are left with the case of SI2 < A < S(n) and A 4(y-transitive, where the
2

Bochert-Manning theorem [24] yields n < 7. So only n = 7 remains which can
be handled directly. O

For the proof of Theorem 6 the polynomial Kramer-Mesner matrices are used.
In the cases when there is no proper overgroup a consideration of some in-
tersection numbers of the designs shows that different orbits of Sy can not
be merged into one orbit of a suitable overgroup. In other cases DISCRETA
at least shows that the overgroups are groups of automorphisms of these t-
designs. It again has to be shown like before that they are full automorphism
groups. The transitivity results follow from Lemma 9.

5 Finiteness theorems for graphical designs

The polynomial Kramer-Mesner matrix can be analysed to deduce nonexis-
tence results for infinitely many parameter sets of graphical designs.

Theorem 10 There exist only finitely many graphical nontrivial incomplete

11



t-(v, k, \) designs for any fized pair (t,k) in each of the following cases:

o k=1t+1,
o =2,
e 2<t<k<6.

PROOF. The cases 2-(v,3, ), 2-(v,4, \), 3-(v,4, ), 4-(v, 5, \) are reported
in [8]. We thus concentrate on the remaining cases.

In the proof of this theorem we always consider the matrix in its transposed
version, due to the printing format. That makes it easier to compare the steps
of the proof with the polynomial Kramer-Mesner matrices displayed in the
tables of the appendix. We always refer to the corresponding tables in our
proof. The columns are indexed by the ¢-set orbits and the rows are indexed
by the k-set orbits. A graphical ¢-(v, k, A) design corresponds to a selection of
rows such that in each column the sum over the entries of the selected rows
is exactly A\. We thus refer to these rows as forming the designs and compose
the design out of selected rows. For any such design D all rows which do not
belong to D also form a design, the complementary design D. This is clear,
since the total sum in each column is (Z:i) We thus may assume without loss
of generality that one selected row belongs to D.

For t = 3 and k£ = 5 we obtain a 26 x 5 matrix, see Table 5. Let D be a
graphical 3-(v, 5, \) design, corresponding to some rows of the matrix. So, for
some fixed value of n the entries in each column from those rows sum up to
the same value of A\. We claim that for a big enough number of points n such a
common sum value ) is possible only if either D or D is the complete design.
To see this we first notice that each column contains exactly one entry which
is a polynomial of degree 4 in n. A polynomial of degree 4 grows faster than
the sum of all polynomials of degree 4 — 1 or less of any other column. Assume
that a row with a polynomial entry of degree 4 belongs to D. Let n be big
enough such that the same sum A can only be obtained from selected entries
in every column if also in each column the polynomial of degree 4 contributes
to this sum. Thus, all rows containing an entry of degree 4 have to belong to
D. Then the last column has only entries of degree 2 or less not yet in rows of
design D. Now we in turn consider the design D. This design has a value of )
which must be a sum of these remaining entries of degree 2 or less in the last
column. So, also in each other column this value of A for D for large enough
n must not come from any polynomial of a degree higher than 2. Thus all
rows containing any polynomial of degree higher than 2 have to belong to D.
Assigning these rows to D then results in row candidates for D which have
constant entries in the last column. Repeating our argument assigns all rows
with non constant entries to D such that D has to be the complete design.

12



The same arguments can be applied in the cases k = 6, t = 3, Table 7, and &
= 6, t = 4, Table 8. Also here each polynomial of maximal degree appears just
once in each column. As before we may assume that the corresponding rows
belong to the design D. After eliminating all rows which contain an entry of
maximal degree, in the remaining matrix each entry in the last column is a
polynomial of a degree less than the maximal degree in its row. So, recursively,
we have to assign each row to D if n is large enough. The assumed design is
therefore the complete design.

Next consider the case t = 2, see Table 1 to Table 4. We have a fixed k
but may choose the number of points n as large as needed. There are only
two columns to be considered. By Alltop’s Lemma a matrix entry is 0 if and
only if the t-subset is not contained in any k-subset of the considered k-orbit.
If the graph consisting of two incident edges and isolated points cannot be
embedded in a graph with £ edges then the k£ edges are pairwise non-incident.
The isomorphism type of this graph is thus uniquely determined and we have
just one 0 entry in the first column, located in the last row, say. So, with only
one exception, whenever the other graph with two edges can be embedded
into a k-edge graph, also this graph is embeddable.

The graph consisting of two non-incident edges has one isolated point less than
the graph consisting of two incident edges. Therefore, by Alltop’s Lemma, for
each k-graph, i.e. graph with exactly &k edges, the polynomial entries of the
general Kramer-Mesner matrix in the corresponding row have degrees differing
by 1 unless an entry is 0. Thus, for each row the entry in the first column either
has a degree strictly greater than the degree in the second column unless the
entry in the first column is 0. Since the sum of all polynomials in both columns
must be the same, this last row must contain the only entry of maximal degree
in the second column. Now assume a graphical 2-(v, k, \) design D containing
the graph of the last row. We argue as above that for large enough n the design
D must contain all graphs of the other rows with a polynomial entry of this
degree. By our observation that the second column always has an entry of a
degree 1 less than the first column with the only exeption of 0-polynomials, we
obtain that all entries of second maximal degree in the second column belong
to rows which are assigned to D. Thus all rows with an entry of that degree
must also belong to D. We can now proceed by induction to see that D must
be the complete design.

The case k =t + 1 is quite similar to the above, compare Table 6. We assume
that & > 4, since the smaller cases are already known. The graph I(¢), con-
sisting of ¢ pairwise non intersecting edges, is contained only in such graphs
with ¢+ 1 edges that result from adding one edge (in the examples this graph
always corresponds to the last column). The new edge may again be isolated,
or intersect just one edge, or intersect exactly two edges. So, the polynomial
Kramer-Mesner matrix contains non-zero entries in the column of 7(t) only

13



in the rows of these three graphs with ¢ 4+ 1 edges. Because ¢ + 1 > 3 each of
these graphs has an isolated edge.

Let us look at the entries of the matrix in this column in the corresponding 3
rOWS.

By Alltop’s Lemma the degree of the polynomials is just the difference be-
tween the sizes of the supports of the graphs considered. So, in the case of an
additional isolated edge the support grows by two points such that we get a
polynomial of degree 2. If the new edge intersects only one existing edge just
one point is added and if the new edge intersects two edges no point is added.
So we get a linear polynomial and a constant entry in these cases, respectively.

Both of the last two rows also contain an entry of degree 2 in other columns.
The graphs of these columns are easily obtained by removing an isolated edge
from the graph on ¢ + 1 edges considered. We assume a graphical design D
containing the graph corresponding to the entry of degree 2 in the last column.
For large enough n all rows with an entry of degree 2 correspond to D. So,
then all rows belong to D which have a non-zero entry in the last column.
Then D must be the trivial design and D is the complete design. O

We conjecture that indeed the stronger result than finiteness holds for the first
case of the theorem, i. e. for 4 < ¢ no graphical ¢-(v,t + 1, \) designs exist.
This is known to hold for ¢ = 4 [8], [6], and we add the case t = 5 here.

Theorem 11 There exists no incomplete graphical 5-(v,6, \) design.

PROOF. We refer to the polynomial Kramer-Mesner matrix of which the
first 7 columns are displayed in Table 6 in the appendix, see further comments
in Section 7. As in the preceding proof we start with the observation that

the last column 26 has only three entries not zero, namely 1/2(n — 10)(n —
11), 10(n — 10), 40.

An incomplete design D must not contain all graphs corresponding to the rows
with these entries. Since either D or D contains the graph of the row with
entry 1/2(n — 10)(n — 11), we assume w. 1. 0. g. that D does not contain this
graph. So, A has the form A\ = a40 + 10(n — 10), where a,b € {0,1} and not
both values are 0. We have to consider three cases for \. In each case we first
examine the first column. There results a linear combination of the non-zero
entries which has to add up to the chosen value of A\ in each case.

I. A = 40. There we have to solve

1+ x91/2(n—4)(n — 5) + 232(n — 4) + 242(n — 4) =40
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with z; € {0,1}. If 25 = 1 then n < 13. Checking these values leaves one case
n = 10, but then 40 = \,,,; such that D is the complete design. Thus x5 = 0.
Division by two yields that ;7 = 0 and (z3 + z4)(n — 4) = 20. We are left
with the cases n = 14 and n = 24. Consider column number 5. There n = 24
is not possible, but for n = 14 there exist the row combinations (4,12) and
(4,8,16). Since row 14 has a non-zero entry in column 5, in both cases row 14
must not belong to D. Looking at column number 4 we can exclude as well
row 13. Now column 3 has no solutions for A = 40 left.

II. A = 10(n — 10). There we have to solve

1+ 221/2(n—4)(n — 5) + 232(n — 4) + 242(n — 4) = 10n — 100

with x; € {0,1}. For 5 = 1 we get a quadratic equation
n? —29n 4+ 220 + 2y =0
where gy is some natural number. This equation has no solution in natural

numbers, since n? — 29n + 220 has a positive minimal value as a polynomial
in n. For 9 = 0 we also have z; = 0 and we can divide by 2.

(x3 4+ z4)(n — 4) = 5n — 50.

So, 5 divides n — 4. Substituting n = 5z 4 4 yields

(x5 4+ x4)52 = 252 — 30,

and
(x5 +x4)2 = bz — 6.
There is only one solution, namely z = 2,23 = x4 = 1. This means n = 14, A =
40, but A = 40 had been ruled out in the previous case.
III. A = 10(n — 10) + 40. There we have to solve

1+ x91/2(n —4)(n — 5) + 232(n — 4) + 242(n — 4) = 10(n — 10) + 40

with x; € {0,1}.
For x5 = 1 we get a quadratic equation

n? — 29n + 140 + 2z, + 4(a3 + 24)(n — 4) = 0.
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The equation n? — 29n + 140 + 2z; = 0 has no integer solutions. Therefore
T3+ T4 € {1, 2}

For x5 + x4 = 1 the formula reduces to

n? — 25n + 124 + 22, = 0.

This equation has integer solutions only for xy = 1 and then n =18 or n = 7.
Thus, either A = 120 or A = 10. Column 7 has no solution in both cases.

If x5 + x4 = 2 the formula reduces to

n? — 21n + 108 + 2z, = 0.

This equation has the solutions n =10, n =11 forz; =1 and n =9, n =12
for 2y = 0 in natural numbers. Thus X € {120,130, 140, 150}. Column 4 then
has too small entries with these values of n to reach these values of A.

For x5 = 0 we get the linear equation

z1 + 2(z3 + 24)(n — 4) = 10(n — 10) + 40.

Then z; = 0 and the equation reduces to

(5 — ($3 + 1'4))7L =30 — 4(1‘3 + $4),

which has neither for x3 + 4 = 1 nor for x3 + x4 = 2 any solution in natural
numbers. O

From the polynomial Kramer-Mesner matrices for ¢ = 2 and k£ = 5 one obtains
easily all isomorphism types of block transitive graphical 2-(v, 5, A) designs.
The parameter sets for v < 36 are already listed in the preceding table. In
addition there exist 2 isomorphism types for 2-(171,5,131040) and one iso-
morphism type for 2-(741, 5, 29216880).

From this we see that finiteness does not mean small numbers in our theo-
rems. In fact, for non-block transitive graphical 2-(55, 5, A) designs there exist
solutions for all A € {4512, 4540, 4652, 5212, 5352, 5576, 5912, 7312, 7256,
7900, 7942, 8572,8712,8600, . ..}. Thus we expect quite many solutions for
larger v.
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6 Sporadic graphical designs

In this section we present a huge number of various graphical designs which
were found using DISCRETA. The following tables give parameter sets for
graphical designs found. The headline for each column in the tables shows the
number of isomorphism types. Each table entry in this column lists the values
of A for which this number of isomorphism types exists. Generally, the dots
indicate that the computation was not pursued to larger values of A. The rows
correspond to the values of n and k. In some cases there exist block transitive
designs which are shown in a separate row. For some values of k there are so
many designs that we restricted only to block transitive designs. For k= 10
there are no block transitive graphical designs on 7 points. For 2-(28,9, \) there
exist many further values of A with not block transitive graphical designs.

2-Designs
I | 1 2 3 | « [ 5 [ef 7 [ >s |
2-(21,5,\)
block 12, 60 120 B B . . B B
transitive
) o 35, 47, 50, 52, 55,
2-(21,5,0) |0 1e 10 22 3 157 62, 69, 70, 72, |67, 82, 100, ...
» 64, 79, 77, 84, 89, 95,
2-(21,6,\) éf gg: ‘;ﬁ: 50: 35,138, 45, 51, 58, 63 60
2-(21,7,A) |63, 78, 105, ... 42 84
2-(21,8,\)
block - 84 . - |336, 672|168 - .
transitive
2-(21,9,A)
block 12, 54, 108 216 B 72, 864| - S| 432 .
transitive
2-(21,10,)) 99, 162 189, ... 180
160, 200, 240,
2-(28,5,\) 60, 140 100 260, 300, 340,
360, ...
2-(28,6,\) gg’ 40, 50, 70, 80,| g5 1qp, ...
2-(28,7,\) 16 140 156 182 198
2-(28,8,\) 70, 210, ...
2-(28,9,1)
block 40, 160, 640 , 320 B B ~ | 480 22261920’
transitive
2-(36,5.1) |50, g0, 240, 480,
block 720 - - - - - - -
transitive
2-(36,5,\) | 140, 164, 244, ... 180, 224 240
2-(36,6,A) |20, 45, 240, 540
block 720, 2160, 4320 - 120, 1080 - - - - -
transitive
2-(36,7,A) | 246, 372, 462, 210, 336 546 456 ... 420
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The block transitive 2-(21,5, A) designs for A = 12, 60, 120 are depicted in
the next figure. The first is Alltop’s example.

D W VA Y

A=12 A =120 A =120 A =60

We also show the block transitive 2-(21, 8, \) designs:

<0

A =168 . X
f £ |

A = 336

A =672
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t-Designs, t > 3

| | ] E s [ a5 [ e [r]s | >0 |
3-(21,5,\) | 3[16], 30, 33 48 39, 75 69
128,140,148,
3-(21,6,)) 68,108 100 | 136 }ig’}gg’}gg’
196,200,. . .
3-(21,7,)) 105 éfg,210,225,
3-(21,8,)) igg, 252, 336,
3-(28,5,)) 30 [7], 150
3-(28,6,)) 80,180 120 220 240,260,. . .
3-(28,7,)) 225 210 245 240,275, ..
3-(28,8,)) 168 378 672 ...
3-(28,9,)) 280, ...
3-(36,5,)) 180 270 . ..
4-(28,6,)) 132
5-(28,7,)\) 93 -
5.(28,8,)) 756, 791, 840, 875
5-(36,7,)\) 165 ...

It should be noticed that at least the 5-designs have new parameter sets even
when compared to general simple ¢-designs, see Kreher’s list in the CRC hand-
book of combinatorial designs [18]. There exists only one graphical 5-(28,7, \)
design and then A\ = 93. It seems remarkable that this parameter set can also
be obtained by deriving the newly found 8-(31,10,93) designs three times [2].
The designs are found as solutions to the Kramer-Mesner diophantine system
of linear equations. For example, there are more than 10 million solutions for
graphical 5-(28,8, 756) designs. Similar to the proof of Corollary 5 it is not
necessary to do pairwise isomorphism testing, since the overgroups of ST[LQ} are
known in these cases.

For example, Sé[f} is not a maximal subgroup of S,g. There exists an overgroup
isomorphic to Sp(6,2) in Syg. This group is transitive on 2-sets and thus has
a Kramer-Mesner matrix consisting of only one row. Taking any single k-orbit
then results in a block-transitive 2-design. Any combination of them gives
another 2-design.

DISCRETA shows that this overgroup is admitted as an automorphism group
of only a few t-designs with the listed parameters. These parameters are
2-(28,5,\) where \ is a sum of the numbers 160, 200, 640, 800, 800, and 2-
(28,6,\) where A is a sum of the numbers 40,50, 80,200, 480,900, 1200,
2400, 2400, 7200, 2-(28,7,\) where \ is a sum of the numbers 16,420, 560,
672,1120, 1120, 1680, 1680, 4032, 5760, 5040, 6720, 10080, 10080, 10080, and 2-
(28,8, ) where \ is a sum of the numbers 70,448, 1120, 1120, - - -. So, some of
the graphical designs with & = 5 have the larger automorphism group Sp(6, 2).
The number of isomorphism types could only be in doubt for 2-(28,5, ) where
A € {160,200}. There are actually 10 solutions for A = 160 and 19 solutions
for A = 200. In both cases DISCRETA computed their intersection numbers
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and showed that the designs are pairwise non-isomorphic. For k£ > 6 the num-
ber of isomorphism types in the table is unchanged if the automorphism group
is actually larger than 55[32}. It is remarkable that for the small A = 16 in case
k =7 the design turns out to be block-transitive under Sp(6,2).

The situation is different for ¢ > 3, for then t¢-designs with automorphism
group Sp(6, 2) have values of A larger than those listed in our table of graphical
designs. Therefore, for ¢ > 3 all graphical designs with these parameters have
551 as full automorphism group and are pairwise non-isomorphic.

We are pleased to acknowledge the anonymous referees for numerous helpful
remarks and improvements.
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7 Appendix: Polynomial Kramer-Mesner matrices

The graphs with 2 to 5 edges are used in the order shown in the following
pictures.

2 2 3 3
K1 to K2, Kl to K5

NN N
\VVMQX N LN T AN
SE R A

= IRV s B I

-
A\

— < v o Y Y

In the following tables [n]; = n(n — 1)...(n — i+ 1) are the falling factorials
of n of length i, S = support, As = automorphism group restricted to the
support. In the case t =5, £ = 6 we have displayed only the first 7 out of 26
columns and also only the first 23 out of 68 rows, since the first 7 columns have
non-zero entries only in these rows. Our proof that no incomplete non-trivial
graphical 5-(v, 6, \) design exists needs only this part of the matrix and one
additional column, as described in the proof.
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Table 4

6\2 1 2
S| 3 4
|Ag| 24 8
1 4 24 1ln — 3] 1
2 6 8 2[n — 3]3 7[n — 4]2
3 5 2 10[n — 3]s 20[n — 4]
Table 1 4 5 2 11[n — 3]2 16[n — 4]
3\2 1 2 5 7 4 3[n — 3)4 18[n — 4]3
S| 3 1 6 6 2 7[n — 313 32(n — 4]
[Ag] 6 4 7 6 1 16[n — 33 56[n — 4]
1 3 p 1 5 8 6 2 9[n — 3]s 24[n — 4],
) 5 4 1/20n — 3] A — 4] 9 8 16 5/8[n — 3]s 5[n — 44
3 4 9 2in — 3] 4 w0 | 7 4 3[n — 34 18[n — 4]3
4 4 6 lin — 3] 0 11 7 4 7/2[n — 314 16[n — 4]3
5 6 18 o 1/20n — 4] 12 | 7 8 2[n — 34 7[n — 4]3
13| s 2 9[n — 3]s 24[n — 4]
14 | s 8 5/2[n — 3]o 5[n — 4]
Table 2 15 6 4 4[n — 3]3 14[n — 4]p
4\2 1 2 16 | 6 2 10[n — 33 20[n — 4]s
S| 3 4 17 6 6 3[n — 3]3 8[n — 4]»
|As| 2 12 18 6 12 2[n — 3]5 2n — 4]
1 4 2 5(n — 3] 4 19 | 7 36 1/3[n — 34 2[n — 43
2 5 12 1/2[n — 3]s 2[n — 4] 20 | 6 72 1/6[n — 313 1n — 4]
3 6 8 1/2[n — 3]z 4[n — 4]s 21 7 12 5/6[n — 3]s 20/3[n — 4]3
4 5 2 3[n — 3]s 12[n — 4] 2 | s 24 1/3[n — 3]5 11/3[n — 44
5 5 2 4ln — 315 8[n — 4] 23 | o 288 1/48n — 3¢ 1/3[n — 43
6 7 16 1/8[n — 314 5/2[n — 4]3 24 | 8 48 7/24[n — 3]5 4/3[n — 4]4
7 6 4 1n — 33 8[n — 4]s 25 | 7 8/3[n — 34 28/3[n — 4]3
8 6 12 1/2[n — 33 2[n — 4]s 2 | 7 12 3/2[n — 34 4[n — 4]3
9 4 8 1[n — 3] 2 27 | 8 4 5/2[n — 3]s 20[n — 4]y
10 | s 24 1/2[n — 3a 0 28 | 7 2 6[n — 3]4 36(n — 4]3
11 8 | 384 0 1/8[n — 414 20 | 7 8 7/4[n — 34 8[n — 4]3
30 | o 24 1/3[n — 3]g 11/3[n — 4]5
Table 3 31 8 12 5/6[n — 3]s 20/3[n — 4]4
5\2 T 5 32 | 8 72 1/6[n — 315 1n — 414
S 3 " 33 | 6 4 9/2[n — 313 12[n — 45
s - T 34 | 7 1 12[n — 3], 72[n — 43
s | 6 2 7[n — 3]s 32[n — 45
1 4 4 4[n - 3] 4 36 6 4 4fn — 3]3 14[n — 4],
2 6 4 5/2[n - 3]3 10[n — 4]2 37 8 4 5/2[n — 35 20[n — 4]4
3 5 2 6[n — 3]z 16[n — 4] 38 7 2 7ln = 3]4 32[n — 4]3
4 5 2 7[n — 3]2 12[n — 4] 39 6 2 8[n — 3]s 28[n — 4]»
5 5 4 4[n — 3]2 4[n — 4] 40 g 16 3/4[n — 3]s 9/2[n — 4]4
6 6 12 2/3[n - 3]3 4n — 4]z a1 7 16 5/8[n — 34 5[n — 43
7 7 48 1/8(n — 3]s 7/6[n — 4] o | s 4 3n — 3]s 29[ — 4]
8 7 12 2/3[n — 314 4ln — 413 U ) 5[ — 314 40[n — 4]s
9 6 2 5[n — 3]3 20[n — 4]2 44 9 8 3/4[n — 3]s 12[n — 4]5
0 | s 8 3/2[n — 313 4ln — 4]5 PR s 1n — 315 n - 4]
11 7 4 3/2[n — 314 14[n — 43 6 | 6 ) T — 3]s 350 — 4]
12 6 4[n - 33 24[n — 4]2 a7 6 12 1[n — 3]3 6[n — 4]2
13 | 8 16 1/4[n — 3]3 4ln — 4]y PP 4 on — 3]s 29[ — 4]
14 5 2 6[n — 3]2 16[n — 4] 49 9 48 1/8[n — 3]s 2n — 4]5
15 5 10 Hn - 3]z 4[n — 4] 50 | 10 64 1/16[n — 3]7 13/8[n — 46
16 7 3/2ln — 34 1d[n — 4]3 51 5 12 3/2[n — 3]s 4[n — 4]
17 | s 2 5[n — 33 20[n — 4] I 4 3[n — 31 18[n — 4]s
18 7 4 2[n — 3l 12[n — 4]3 53 7 20 1/2[n — 3]a 4fn — 4]3
19 | s 6 7/3[n — 3]3 4ln — 4]5 I 6 o[ — 34 120 — 4]5
20 | 9 96 1/48[n — 3l 3/4[n — 43 55 | o 16 3/8n — 3g 6[n — 4]
21 8 16 1/4[n — 315 Aln — 414 U 4 5/20n — 315 20[n — 4]
2 | s 48 1/8[n — 3]s 7/6[n — 4]y 57 | - 4 A — 3], 14[n — 4]s
23 6 16 1/2[n — 3]3 3[n —4]2 58 9 16 1/2[n — 3]s 11/2[n — 4]5
24 7 48 1/4[n = 3l 2/3[n — 4]3 59 8 12 7/6[n — 35 16/3[n — 4]4
25 6 120 1/6[n — 3l3 0 60 7 24 11/12[n — 3]s 4/3[n — 4]3
26 | 10 | 3840 0 1/48[n — 4]s 61 | 11 768 1/384[n — 3]s 7/48[n — 4]7
62 | 10 96 1/24[n — 3] 13/12[n — 4d]g
63 | 10 | 288 1/48[n — 3]7 1/3[n — 4]
64 | 8 64 1/8[n — 315 11/8[n — 414
65 | o 192 1/16(n — 3¢ 3/8[n — 4]5
66 | s 240 1/12[n — 35 1/6[n — 4lg
67 | 7 720 1/24[n — 3]y 0
68 | 12 | 46080 0 1/384[n — 4]g
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Table 5

5\3 1 2 3 4 5
|S| 3 5 4 4 6
|[Ag| 4 4 2 2 4
1 4 4 3[n — 3] 0 3 3 0
2 6 4 3/2[n — 3]3 5[n — 5] 1[n — 4]o 3/2[n — 4]s 12
3 5 2 3[n — 3]a 8 4[n — 4] 3[n — 4] 0
4 5 2 3[n — 3]a 4 5[n — 4] 6[n — 4] 0
5 5 4 3/2[n — 3]a 1 2[n — 4] 6[n — 4] 0
6 6 12 1/2[n — 3]3 3[n — 5] 0 0 0
7 7 48 1/8[n — 34 1/2[n — 5]a 0 0 3[n — 6]
8 7 12 0 3[n — 5]s 0 1/2[n — 4]3 0
9 6 p 0 12[n — 5] 3[n — 4] 3[n — 4]2 0
10 6 8 0 2[n — 5] 1[n — 4]2 3/2[n — 4]2 0
11 7 4 0 7[n — 5]a 1/2[n — 4]3 0 24[n — 6]
12 6 2 0 12[n — 5] 3[n — 4] 0 24
13 8 16 0 3/2[n — 5]3 0 0 12[n — 6]s
14 5 2 0 6 6[n — 4] 3[n — 4] 0
15 5 10 0 2 1[n — 4] 0 0
16 7 4 0 5[n — 5]a 1[n — 4]3 0 36[n — 6]
17 6 2 0 8[n — 5] 4[n — 4] 3[n — 4]2 24
18 7 4 0 5[n — 5]a 1[n — 4]3 3/2[n — 4]3 24[n — 6]
19 6 6 0 2[n — 5] 1[n — 4]2 4[n — 4]s 0
20 9 96 0 1/8[n — 5]4 0 0 7/2[n — 6]3
21 8 16 0 1[n — 5]3 1/8[n — 4]4 0 15[n — 6]a
22 8 48 0 1/2[n — 5]3 0 1/8[n — 4]a 3[n — 6]
23 6 16 0 1[n — 5] 1/2[n — 4]a 0 6
24 7 48 0 1/2[n — 5]a 0 1/2[n — 4]3 0
25 6 120 0 0 0 1/2[n — 4]s 0
26 10 3840 0 0 0 0 1/8[n — 6]4
Table 6
6\5 1 2 3 4 5 6 7
|S| 4 6 5 5 5 6 7
|[Ag| 24 8 2 2 4 2 1
1 4 24 1 0 0 0 0 0 0
2 6 8 1/2[n — 4]s 2 0 0 0 0 0
3 5 2 2[n — 4] 0 2 2 0 0 0
4 5 2 2[n — 4] 0 0 2 4 0 0
5 7 4 0 2[n — 6] 0 0 0 3[n — 6] 0
6 6 2 0 2 1[n — 5] 0 0 6 0
7 6 1 0 4 2[n — 5] 2[n — 5] 0 0 0
8 6 2 0 2 1[n — 5] 0 2[n — 5] 0 0
9 8 16 0 1/2[n — 6]a 0 0 0 0 3[n — 7]
10 7 4 0 1[n — 6] 1/2[n — 5]a 0 0 0 12
11 7 4 0 2[n — 6] 0 1/2[n — 5]o 0 0 0
12 7 8 0 1[n — 6] 0 0 1/2[n — 5]a 0 0
13 5 2 0 0 2 1 0 0 0
14 5 8 0 0 1 0 1 0 0
15 6 4 0 0 1[n — 5] 0 0 3 0
16 6 2 0 0 0 2[n — 5] 2[n — 5] 0 0
17 6 6 0 0 0 1[n — 5] 0 0 0
18 6 12 0 0 0 0 1[n — 5] 0 0
19 7 36 0 0 0 0 0 1[n — 6] 0
20 6 72 0 0 0 0 0 1 0
21 7 12 0 0 0 0 0 2[n — 6] 4
22 8 24 0 0 0 0 0 1/2[n — 6]a 4[n — 7]
23 9 288 0 0 0 0 0 0 1/2[n — 7]a
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Table 7

6\3 1 2 3 4 5
S| 3 5 4 4 6
[Ag| 24 8 2 2 4
1 4 24 1[n — 3] 0 1 1 0
2 6 8 3/2[n — 3]3 4[n — 5] 3/2[n — 4o 3/2[n — 4] 12
3 5 2 6[n — 3]a 10 10[n — 4] 9ln — 4] 0
4 5 2 6[n — 3]a 6 10[n — 4] 15[n — 4] 0
5 7 4 3/2[n — 3]4 14[n — 5]s 1[n — 4]5 3/2[n — 4]3 24[n — 6]
6 6 2 3[n — 3]3 24[n — 5] 5[n — 4] 3[n — 4]s 24
7 6 1 6[n — 3]3 36[n — 5] 14[n — 4]o 12[n — 4] 48
8 6 2 3[n — 3]3 14[n — 5] 7[n — 4]s 12[n — 4]s 24
9 8 16 3/8[n — 3]5 5/2[n — 5]3 1/4[n — 4]4 3/8[n — 44 18[n — 6]s
10 7 4 3/2[n — 3]4 10[n — 5]» 2[n — 4] 3/2[n — 4]3 48[n — 6]
11 7 4 3/2[n — 3]4 9[n — 5]a 5/2[n — 43 3[n — 4]3 36[n — 6]
12 7 8 3/4[n — 3]4 9/2[n — 5o 1[n — 4]3 3[n — 4]3 12[n — 6]
13 5 2 3[n — 3]s 14 10[n — 4] 6n — 4] 0
14 5 8 3/2[n — 3]o 3 2[n — 4] 3[n — 4] 0
15 6 4 3/2[n — 3]3 11[n — 5] 3[n — 4o 3[n — 4]s 0
16 6 2 3[n — 3]3 12[n — 5] 8[n — 4o 15[n — 4] 0
17 6 6 1[n — 33 4[n — 5] 3[n — 4o 3[n — 4]s 8
18 6 12 1/2[n — 3]3 1[n — 5] 1[n — 4]» 5ln — 4], 0
19 7 36 1/6[n — 3]4 2[n — 5]a 0 1/6[n — 4] 0
20 6 72 1/6[n — 313 1[n — 5] 0 0 0
21 7 12 1/2[n — 34 5[n — 5]a 1/6[n — 4]5 0 12[n — 6]
22 8 24 1/4[n — 3]s 13/6[n — 5]3 0 0 12[n — 6]s
23 9 288 1/48[n — 3]g 1/8[n — 5]4 0 0 5/3[n — 6]z
24 8 48 0 4/3[n — 5]3 0 1/2[n — 4]4 0
25 7 6 0 8[n — 52 4/3[n — 4]3 4n — 4]3 0
26 7 12 0 3[n — 5]a 1[n — 4]5 5/2[n — 4]3 0
27 8 4 0 13[n — 5]3 1[n — 4]4 3/2[n — 44 48[n — 6],
28 7 2 0 26[n — 5]a 4[n — 4]3 3[n — 4]3 48[n — 6]
29 7 8 0 7[n = 52 1[n — 4]3 3/2[n — 43 0
30 9 24 0 13/6[n — 54 0 1/4[n — 4]5 12[n — 6]3
31 8 12 0 5[n — 53 1/6[n — 4]4 1/2[n — 4]4 12[n — 6]s
32 8 72 0 1[n — 5]3 0 1/6[n — 4]4 0
33 6 4 0 8[n — 5] 4[n — 4] 6[n — 4]o 0
34 7 1 0 44[n — 5]o 10[n — 4]3 6ln — 4]3 144[n — 6]
35 6 2 0 22[n — 5] 7[n — 4]s 3[n — 4]s 24
36 6 4 0 10[n — 5] 4ln — 4o 3[n — 4]s 0
37 8 4 0 11[n — 5]3 3/2[n — 44 3/2[n — 4]4 60[n — 6]o
38 7 2 0 20[n — 5]o 6[n — 4]z 6[n — 4]3 48[n — 6]
39 6 2 0 16[n — 5] oln — 4] 6ln — 4o 24
40 8 16 0 5/2[n — 5]3 1/2[n — 4]4 3/4[n — 44 12[n — 6]s
41 7 16 0 3[n — 5]a 1/2[n — 4]3 0 12[n — 6]
42 8 4 0 12[n — 5] 1[n — 4]4 0 72[n — 6]o
43 7 2 0 24[n — 5] 4ln — 43 0 96[n — 6]
44 9 8 0 5[n — 54 1/4[n — 4]5 0 54[n — 6]3
45 8 8 0 6[n — 53 1/2[n — 4]4 0 36[n — 6],
46 6 2 0 18[n — 5] 8[n — 4o 3[n — 4]s 48
47 6 12 0 4[n — 5] 1[n — 4]o 0 8
48 8 4 0 10[n — 5]3 3/2[n — 44 0 84[n — 6],
49 9 48 0 1[n — 5]a 0 0 8[n — 6]3
50 10 64 0 1/2[n — 5]5 0 0 9[n — 6l4
51 5 12 0 2 2(n — 4] 1[n — 4] 0
52 7 4 0 9[n — 5]a 3[n — 43 3/2[n — 4]3 48[n — 6]
53 7 20 0 2[n — 5]a 1/2[n — 4]3 0 12[n — 6]
54 7 6 0 6[n — 5]o 2[n — 4]3 1[n — 4]3 32[n — 6]
55 9 16 0 2[n — 54 1/4[n — 4]5 0 30[n — 6]3
56 8 4 0 9[n — 5]3 2n — 4] 3/2[n — 4]4 72[n — 6]o
57 7 4 0 8[n — 5]a 3[n — 43 6ln — 4]3 24[n — 6]
58 9 16 0 9/4[n — 54 1/4[n — 4]5 3/8[n — 4]5 24[n — 6]3
59 8 12 0 10/3[n — 53 1/2[n — 4]4 2n — 4]y 12[n — 6]o
60 7 24 0 1[n — 5]» 1/3[n — 4]3 5/2[n — 4]z 0
61 11 768 0 1/48[n — 5g 0 0 1[n — 6]5
62 10 96 0 1/4[n — 5]5  1/48[n — 4]g 0 13/2[n — 6l4
63 10 288 0 1/8[n — 5]5 0 1/48[n — 4lg 5/3[n — 64
64 8 64 0 1/2[n — 5]3 1/8[n — 4]4 0 6[n — 6]
65 9 192 0 1/4[n — 5]4 0 1/8[n — 4] 1[n — 6]3
66 8 240 0 1/6[n — 5]3 0 1/4[n — 4]4 0
67 7 720 0 0 0 1/6[n — 4]3 0
68 12 | 46080 0 0 0 0 1/48[n — 6lg
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Table 8a

6\4 1 2 3 4 5 6
S| 4 5 6 5 5 7
[Ag| 24 8 2 2 4 2
1 4 24 1 0 0 0 0 0
2 6 8 1[n — 4]5 3[n — 5] 0 0 0 0
3 5 2 5[n — 4] 6 0 4 4 0
4 5 2 6[n — 4] 0 0 2 5 0
5 7 4 1/2[n — 4]3 6[n — 5o 10[n — 6] 0 0 4
6 6 2 1[n — 4]5 12[n — 5] 12 4[n — 5] 1[n — 5] 0
7 6 1 4[n — 4]o 12[n — 5] 8 8[n — 5] 6[n — 5] 0
8 6 2 2n — 4]s 6[n — 5] 0 2[n — 5] 5[n — 5] 0
9 8 16 1/8[n — 4]ls  3/2[n — 5]3 0 0 0 5[n — 7]
10 7 4 1/2[n — 4]3 6[n — 52 0 1[n — 5]» 1/2[n — 5]a 16
11 7 4 1[n — 4]5 3[n — 5]a 0 1/2[n — 5]a 1[n — 5o 8
12 7 8 1/2[n — 4]s  3/2[n — 5o 0 0 1/2[n — 5]o 2
13 5 2 2[n — 4] 6 0 7 4 0
14 5 8 1[n — 4] 3 0 1 1 0
15 6 4 1/2[n — 4]o 6[n — 5] 6 2[n — 5] 2[n — 5] 0
16 6 2 3[n — 4] 0 4 2[n — 5] 7[n — 5] 0
17 6 6 1[n — 4]5 0 0 1[n — 5] 2[n — 5] 0
18 6 12 1/2[n — 4]5 0 0 0 1[n — 5] 0
19 7 36 0 1[n — 5]» 2[n — 6] 0 0 0
20 6 72 0 1[n — 5] 1 0 0 0
21 7 12 0 3[n — 5a 4ln — 6] 0 0 4
22 8 24 0 3/2[n — 5]3 1[n — 6]o 0 0 6[n — 7]
23 9 288 0 1/8[n — 5]4 0 0 0 1/2[n = 7]»
24 8 48 0 0 1[n — 6o 0 0 0
25 7 6 0 0 4[n — 6] 1[n — 5]» 1[n - 5o 0
26 7 12 0 0 2[n — 6] 0 3/2[n — 5]a 0
27 8 4 0 0 8[n — 6o 0 1/2[n — 53 16[n — 7]
28 7 2 0 0 16[n — 6] 3[n — 5]a 1[n - 5o 8
29 7 8 0 0 5[n — 6] 1[n — 5]» 1/2[n — 5]a 0
30 9 24 0 0 1[n — 6]3 0 0 6[n — 7]a
31 8 12 0 0 4ln — 6o 0 0 4[n — 7]
32 8 72 0 0 1[n — 6o 0 0 0
33 6 4 0 0 2 2[n — 5] 3[n — 5] 0
34 7 1 0 0 16[n — 6] 6[n — 5o 4ln — 5]s 32
35 6 2 0 0 8 7[n — 5] 2[n — 5] 0
36 6 4 0 0 4 3[n — 5] 2[n — 5] 0
37 8 4 0 0 2[n — 6] 1[n — 53 1/2[n — 5]3 24[n — 7]
38 7 2 0 0 8[n — 6] 2[n — 5]a 5[n — 5o 8
39 6 2 0 0 4 4[n — 5] 6[n — 5] 0
40 8 16 0 0 1/2[n — 6]5 0 1/2[n — 5]3 4[n — 7]
41 7 16 0 0 2[n — 6] 0 0 2
42 8 4 0 0 6[n — 6o 1/2[n — 5]3 0 28[n — 7]
43 7 2 0 0 12[n — 6] 3[n — 5]a 0 24
44 9 8 0 0 2[n — 6]3 0 0 16[n — 7]a
45 8 8 0 0 4ln — 6o 0 0 8[n — 7]
46 6 2 0 0 4 4[n — 5] 3[n — 5] 0
47 6 12 0 0 2 1[n — 5] 0 0
48 8 4 0 0 2[n — 6]y 1[n — 5]3 0 24[n — 7]
49 9 48 0 0 1/2[n — 6]3 0 0 4[n — 7]
50 10 64 0 0 1/8[n — 6]4 0 0 5/2[n — 7]3
51 5 12 0 0 0 1 1 0
52 7 4 0 0 0 1[n — 5]s 1[n — 5o 12
53 7 20 0 0 0 1/2[n — 5]o 0 4
54 7 6 0 0 0 1[n — 5]» 1[n - 5o 8
55 9 16 0 0 0 1/8[n — 5]4 0 7n = 7l
56 8 4 0 0 0 1/2[n — 5]3 1[n - 53 16[n — 7]
57 7 4 0 0 0 1/2[n — 5]o 3[n — 5]a 4
58 9 16 0 0 0 0 1/8[n — 5]a 6[n — 7]a
59 8 12 0 0 0 0 1/2[n — 5]3 an -7
60 7 24 0 0 0 0 1/2[n — 5]a 0
61 11 768 0 0 0 0 0 1/8[n — 74
62 10 96 0 0 0 0 0 1[n — 7]3
63 10 288 0 0 0 0 0 1/2[n — 73
64 8 64 0 0 0 0 0 1[n — 7]
65 9 192 0 0 0 0 0 1/2[n = 7)o
66 8 240 0 0 0 0 0 0
67 7 720 0 0 0 0 0 0
68 12 46080 0 0 0 0 0 0
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Table 8b

6\ 4 7 8 9 10 11
S| 6 6 5 8
|Ag| 1 2 16 4 4
1 4 24 0 0 1 0 0
2 6 8 3 3 1[n — 4]o 0 0
3 5 2 0 0 4[n — 4] 0 0
4 5 2 0 0 4[n — 4] 12 0
5 7 4 4[n — 6] 6[n — 6] 0 0 0
6 6 2 6 6 0 0 0
7 6 1 12 12 0 0 0
8 6 2 6 6 0 12[n — 5] 0
9 8 16 1[n — 6]2 3/2[n — 6]2 0 0 24
10 7 4 4[n — 6) 3[n — 6] 0 0 0
11 7 4 5[n — 6] 6[n — 6] 0 0 0
12 7 8 2[n — 6] 6[n — 6] 0 3[n — 52 0
13 5 2 0 0 4[n — 4] 0 0
14 5 8 0 0 0 3 0
15 6 4 0 3 0 0 0
16 6 2 0 6 0 12[n — 5] 0
17 6 6 2 0 0 0 0
18 6 12 0 1 0 10[n — 5] 0
19 7 36 0 i[n — 6] 0 0 0
20 6 72 0 0 0 0 0
21 7 12 1[n — 6] 0 0 0 0
22 8 24 0 0 0 0 0
23 9 288 0 0 0 0 4[n — 8]
24 8 48 0 2[n — 6]a 0 1/2[n — 5]3 0
25 7 6 0 10[n — 6] 0 4[n — 5]a 0
26 7 12 0 2[n — 6] 0 2[n — 5]a 0
27 8 4 4[n — 6]y 6[n — 6]2 0 0 0
28 7 2 8[n — 6] 12[n — 6] 0 0 0
29 7 8 0 6[n — 6] 0 0 0
30 9 24 0 3/2[n — 6]3 0 0 0
31 8 12 1[n — 6]2 3[n — 6]a 0 0 0
32 8 72 0 1[n — 62 0 0 0
33 6 4 0 6 2[n — 4]y 6[n — 5] 0
34 7 1 20[n — 6] 12[n — 6] 0 0 0
35 6 2 6 6 0 0 0
36 6 4 0 6 2[n — 4]y 0 0
37 8 4 3[n — 6]2 6[n — 62 0 0 0
38 7 2 8[n — 6] 6[n — 6] 0 0 0
39 6 2 6 0 4ln — 4]y 0 0
40 8 16 1[n — 6]2 3/2[n — 6]2 0 0 0
41 7 16 2[n — 6] 0 1/2[n — 4]3 0 0
42 8 4 4[n — 6]y 0 0 0 0
43 7 2 12[n — 6] 0 0 0 0
44 9 8 3/2[n — 6]3 0 0 0 96[n — 8]
45 8 8 3[n — 6]z 0 0 0 48
46 6 2 12 0 A[n — 4]y 0 0
a7 6 12 2 0 0 0 0
48 8 4 5[n — 6]z 0 0 0 96
49 9 48 0 0 0 0 0
50 10 64 0 0 0 0 24[n — 8o
51 5 12 0 0 2[n — 4] 0 0
52 7 4 6[n — 6] 3[n — 6] 2[n — 4]z 0 0
53 7 20 1[n — 6] 0 0 0 0
54 7 6 4[n — 6) 0 0 0 0
55 9 16 1[n — 6]3 0 0 0 72[n — 8]
56 8 4 6[n — 6]2 3[n — 62 0 0 96
57 7 4 4[n — 6] 6[n — 6] 0 6[n — 52 0
58 9 16 1[n — 6]3 3/2[n — 6]3 0 0 48[n — 8]
59 8 12 1[n — 6o 5[n — 6]a 0 2[n — 5]3 0
60 7 24 0 2[n — 6] 0 5[n — 52 0
61 11 768 0 0 0 0 9/2[n — 8]3
62 10 96 1/8[n — 6]y 0 0 0 24[n — 8]
63 10 288 0 1/8[n — 6]4 0 0 4[n — 8]p
64 8 64 1/2[n — 6]a 0 1/8[n — 4]4 0 12
65 9 192 0 1/2[n — 6] 0 1/8[n — 5]4 0
66 8 240 0 1/2[n — 6]2 0 1/2[n — 5]3 0
67 7 720 0 0 0 1/2[n — 5]o 0
68 12 | 46080 0 0 0 0 1/8[n — 8]4
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