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Abstract

Recent years saw a dramatic increase in existence results for ¢-designs with large ¢, i.e. ¢t > 5.
Designs are now known to exist for several thousand parameter sets, mostly constructed by the
method of orbiting under a group. This note is a contribution to the classification of these
designs by parameters. We take an abstract look at admissible parameter sets in general. We
introduce a partial order, reflecting relationships between designs, and we analyze the structure
of the resulting posets. The parameter sets of known designs fall in no more than 100 categories,
which we call ancestor clans.

Keywords: t-design, parameter set, ancestor, family, clan.

1 Introduction

Let t, v, k and A be natural numbers. A t-(v, k,\) design is a pair D = (V, B) where V is a set of v
elements called points and B = {By,..., By} is a set of k-subsets of V — called blocks — such that
every t-element subset of V is contained in exactly A blocks. The quadruple of integers ¢-(v, k, \)
is called the parameter set of the design. The integer t is the point reqularity, v is the size of the
underlying point set, k is the block size and A is the index. The number of blocks, b, is determined
by t,v,k and X as b= )\(1;)/(';) A design with A = 1 is called Steiner System. Certain designs are
so obvious that one considers them as trivial. One of these is the complete design which consists of
all k-subsets. It is a t-design for all ¢ < k. The parameters as a k-design are k-(v, k, 1), with b = (Z)
Let us recall some more parameters of ¢-designs. For nonnegative integers ¢ and j with ¢ + j < ¢,
and for I and J fixed disjoint subsets of points of size ¢ and j, respectively, the number of blocks
containing I and disjoint from .J is a constant, denoted as ); ;. Ray-Chaudhuri and Wilson [6]

proved that
v—i—j
)
(k=)
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Aij =

fori+ 7 <t. (1)




We consider the following relationships between designs: Let D = (V, B) be a t-(v, k, A) design
with 1 <t <k < v. Then D yields further designs:

(i) The design D also is a (t — 1)-(v, k, Areq) design where Mg = Z:iﬁ We call it the design

with respect to smaller ¢, or simply the reduced design red D.

(ii) If z is a point of V, the derived design (with respect to the point z) is der, D = (V\{z}, Bz)
where B, = {B\{z} | B € B, x € B}. Each derived design has parameters (¢t — 1)-(v — 1,k —
1, A) (regardless of the choice of the point = € V). Put Ager = A.

(iii) If = is a point of V, the residual design (with respect to the point z) is res, D = (V\{z}, B®)

where B* = {B | B € B, = ¢ B}. Each residual design has parameters (¢t — 1)-(v — 1, k, Ares)

v—k
k—t+1

the residual design, the assumption k& < v is required. Note that

where Ajes = A (regardless of the choice of the point 2 € V). For the purpose of forming

)\red = >‘der + >\res =+ )\res- (2)

Since the parameter sets which we obtain are independent of the choice of z, we define the opera-
tors red, der and res in a more abstract way, namely as maps between parameter quadruples: For
t-(v, k, A), we let red t-(v, k, A), dert-(v, k, \) and rest-(v, k, A) be the parameter set of the reduced,
the derived and the residual design, respectively (provides these designs exist). Note that for pa-
rameters of designs, the operations derivation and forming the residual commute, since it makes no
difference in which order we delete the points. Also, the reduce operator commutes with these, since
considering a design as a lower ¢-design does not change the design itself. Hence for nonnegative

integers h, i and j with h+¢+ j <t and j < v — k, we can speak of the design parameter set
red” der’ res’ t-(v, k, \),

which is obtained from ¢-(v, k, A) by reducing h times, deriving i times and forming the residual j
times. For the rest of this article, we are going to exploit the structure which is induced by the

three operations red, der and res on the set of design parameter sets.

2 The poset of admissible design parameter sets

Not every quadruple of nonnegative integers ¢-(v, k, A) is a valid parameter set of a design. Certain

necessary conditions on the parameters are so fundamental, that parameter sets which satisfy these



have a special name. Before we give the definition, let us introduce

Amax (.0, ) = (Z _ i) (3)

which is the largest index A, which a ¢-(v,k, \) design may have (exactly the complete designs
attain this bound).

Definition 2.1 Let ¢, v, k and A be natural numbers. The parameter set ¢-(v,k,\) is called
admissible if (ADM1), (ADM2) and (ADM3-s) hold for 0 < s < ¢ where

(ADM1) t <k <,
(ADM2) 1 <X < Amax(t,0,k) = (379),

k—t
() _(v=s)w—s—1)--(v—t+1) s
(ADM3-s) A (];:ss) = A(k s k=it 1) As,0 = ALeqt—s is integral.

The last condition comes from the fact that in every ¢-design, and for any nonnegative integer s <,
the number Az of (1) is integral. This is also the index of the (¢ — s)-fold reduced design, A gt-s.

A parameter set which is the parameter set of an existing design is called realizable. Clearly
every t-design has admissible parameters but not every admissible parameter set is realizable. For
example, Kohler in [5] shows that the admissible parameter set 13-(32, 16, 3) is not realizable (other
examples would include the parameter sets of projective planes of order 6 and 10 which are known
not to exist).

For ¢t < k, the parameters of the complete design as a ¢ design are t-(v, k, Amax (¢, v, k)). Hence

for fixed ¢, v and k with ¢ < k < v there always is at least one admissible parameter set. The

A Amax(t, v, k) ( :b/(Z)),

which is a rational number between zero and one, describes how complete a ¢-(v, k, A) design is.

quotient

Lemma 2.2 Let D be one of the operators red, der, res, which is applicable to the admissible
parameter set t-(v,k,\). Let D(t-(v,k,\)) =t'-(v', k', \'). Then

A N

)\max(tava k‘) )‘max(t’;v’ak’) ‘

In particular, D(t—(v, k, )\)) is complete if and only if ¢-(v, k, \) is complete.

Lemma 2.3 If t-(v, k, \) is admissible with t > 1, then red t-(v, k, A\) and dert-(v, k,\) are admis-

sible, too. In addition, if k < v, then rest-(v,k, X) is admissible as well.



Proof: Let D be one of red, der and res, and put D(t-(v,k,\)) = #'-(v', k', X'). By Lemma 2.2,
1 <X < Apax(t, v, k) implies 1 < X < Apax (¥, 0", k'), which is (ADM?2).

(i) The parameters of red t-(v,k, ) = (t — 1)- (v,k, A%) are integral by (ADM3-(t — 1)).

Moreover, by induction the parameters of iterated reduced designs are integral as well:
red’red t-(v, k, \) = red"t! ¢-(v, k, \) is admissible for i < t — 1. Finally, t — 1 < k < v.

(ii) dert-(v,k,A) = (t—1)-(v—1,k—1,)). For 0 < i < t—1, red’ der t-(v, k, \) = derred t-(v, k, \)
is integral. (ADM1) is valid sincet —1 <k —-1<wv—1.

(iii) If k < v, the operator res is defined. We prove that rest-(v, k, A) = (t —1)- (v -1,k, )\%)
v—k

is admissible. Using (2) we get Apeg = )\m = Ared — A is integral. In addition, t — 1 <
k < v —1. Since (Ares)der = (Ader)res i integral by (ii), (ADM3) follows by induction.

We deduce:

Corollary 2.4 Let t-(v,k,\) be admissible. Then, for nonnegative integers h, i and j satisfying
h+i+j3<tandj<v-—k,

red"der’res’ t-(v, k,\) = (t —i — j — h)—(v —i—j,k—1, )\t,h,j,j)
s admissible
Hence the concept of a family makes sense:

Definition 2.5 (cf. Fig. 1) Let ¢-(v, k, \) be admissible. The family of design parameters generated
by t-(v, k, \) is

Family(t—(v,k, )\)) = {redh der'res’ t-(v,k,\) | hyi,j EN, h+i+j<t j<v—k }
We give some more information about family members:

Theorem 2.6 The parameter sets t'-(v', k', X') in the family generated by t-(v, k,\) are character-

ized by the following conditions:
(i) 0 <t <t,
(11) k' <v' <w,

(iii) ¢ <K <k,



red

res

der

Figure 1: The family of a t-(v, k, A)

(w) k—FkK <v—2v <t-t,
(v) N = Np—p 4t y—of =kt k-

Proof: Let t'-(v', k', \') be a parameter set satisfying (i)-(v). Theni := k—k" and j := v—v'—(k—k')
and h:=t—t' —i—j=t—1t — (v— ') are nonnegative integers with h +i+j =t — ¢ < t, and
j<v—k—(v'—Fk)<wv—k By Lemma 2.4,
red"der'res? t-(v,k,\) = (t —i —j — h)-(v =i — 5,k — i, N—h—j ;)
= t"-(", K Ay (k) o’ — (k—k7))

and thus ¢'-(v', &, ') € Family (¢-(v, k, A)). A routine check using Lemma 2.4 shows that all design

parameter sets contained in the family of a t-(v, k, \) satisfy (i)-(v). O

Consider the following question: given ¢, k and v, what are the possible values of X in admissible

t-(v, k, A\)? Before we can answer this, let us introduce the number

)
ged ((522), (722)

Amamky:km{ Ogsgt} (4)

Then

ANt v, k) =AX(t,v,v — k),
AXNk,v,k)=AX0,v,k) = AX(t,v,v) =1



for all £ < k < v. The following result gives a characterization of admissible parameter sets. In
particular, it shows that given ¢, £ and v, the smallest index A\ for an admissible parameter set
t-(v,k, A) is AX(t, v, k).

Proposition 2.7 Let t,v,k and A be nonnegative rationals with k < v. The following conditions

are equivalent:

(i) The parameter set t-(v, k,\) is admissible.

(i1) redit—(v, k, ) is integral for 0 <i <t, where t <k and 1 < XA < Apax(t, v, k).
(iii) t,v, kX €N, ANt v, k) |\, t <k and 1 < X < Apax(t, v, k).

(i) dert-(v,k, \) and rest-(v,k,\) are admissible.

(v) redt-(v,k,\) and dert-(v,k, \) are admissible.

(vi) redt-(v,k,A) and rest-(v,k,\) are admissible and t' < k' where rest-(v, k,\) = t'-(v', k', \').

Proof:
(i) < (ii) : As res't-(v,k, \) = s- (v, k, )\E}i:ss;) with s :=1¢ — 4, (i) and (i7) are equivalent.
t—s

(1) & (i42) : If t-(v, k, A) is admissible, then for 0 < s < ¢, the number Ag,ﬁiig
t—s
k—s
divides A(zt’:z) which implies that ﬁ divides A for all these s. Therefore A\ divides .
gc

b N s

is integral. Thus (’;:SS)

The other implication is clear.

(1) & (iv) : By Lemma 2.3, (i) implies (iv). On the other hand, assume that deri-(v,k,\) and
rest-(v,k, A\) are admissible. In particular, Aes = )\ﬁtfl) is integral. Then (2) implies A\jeq =
Ader + Ares 18 integral, so red¢-(v,k, \) is integral. It remains to show that X 4 is integral for
1 < i <t Ift =1, there is nothing to show. So assume ¢ > 2. We apply (2) to get A\ 42 =
(Ared)der + (Ared)res = (Ader)red + (Ares)reds Parameters which are integral by our assumption. So

Aeq? 1s integral. We can proceed by induction.

(1) & (v) : By Lemma 2.3, (i) implies (v). Now assume that redt-(v,k,\) and dert-(v,k,\) are
admissible. In particular, Ager = A is integral. Moreover, t < k since t — 1 < k — 1 holds for
the derived parameter set. Also, A < Amax(v,t, k) by Lemma 2.2. The conditions (ADM3-s) for
0 < s <t—1 are satisfied, and hence t-(v, k, \) is admissible.

(1) & (vi) : Again by Lemma 2.3, (i) implies (vi). Now assume that red ¢-(v, k, X) and rest-(v, k, \)
are admissible. By (2), A = Ager = Ared — Ares 18 integral which is (ADM3-¢). The assumption ¢’ < k'



implies t — 1 < k, hence t < k < v. (ADM2) follows by Lemma 2.2. The conditions (ADM3-s) for
0 < s <t—1 correspond to the conditions for the parameter set red ¢-(v, k, A) for s > 0.

Since the parameters of the complete design are admissible, the previous result implies that

AXt, v, k) | Amax(t, v, k). (5)

It is useful to introduce the poset of admissible design parameters, denoted as P, as the transitive
closure of the relationships induced by the operators der, red and res on admissible parameter sets.
This means that we have

t-('" K N) < t-(v,k, )

if and only if there is a sequence Dy, ..., D, of operators chosen from der, red and res such that
DT(' o (Dl (t'(va ka >‘)) e ) = t"(vla kla }")

Note that the families of Definition 2.5 are just the order theoretic ideal in the poset P.

The question arises whether there exists a largest family containing a given parameter set. In
terms of the poset P, this questions amounts to whether or not there always is a maximal element
above any given element. The purpose of this section is to settle this question. We note that the
complete design is the derived design of an infinite number of complete designs with larger block
size. This means we will have to exclude complete designs from our consideration.

We introduce the inverse operators red !, der ! and res~! (cf. Fig. 2). These are only partially

(t+1)-(v, ke, \E=1) t+1)-(+1Lk+1,0)  (t+1)-(v+ 1,k A2

v

red ! der™! res™!
t-(v, k, A)
red der res

(t= Dk ANESED) -1D-(w-1LE=1,0)  (t=1-(v =1k A7 )

Figure 2: The operators red™!, der*! and res™!

defined functions as we require the image to be admissible:



Definition 2.8 Let ¢-(v, k, ) be an admissible parameter set. Put

(i) red 't-(v, k) :

(t + 1)-(v, k, \E=1) if admissible

(ii) der 't-(v,k, \) :

(t+1)-(v+ 1,k + 1, ) if admissible and

(iii) res~'t-(v, k,A) = (£ +1)-(v + 1, k, A\-EFL) if admissible.

v+

If one of these functions is defined, we say that the given parameter set extends under that operator.

Let us return to the study of maximal elements in the poset P. A related — but much harder
— problem is to determine whether a design can be extended, i.e. whether there exists another
design whose derived design is the given one (for example, Cameron in [3] determines which square
designs are extendible). Of course, for a design to be extended, the parameter set of the extension
must be admissible, i.e. the operator red™! must be defined. Hence admissibility of parameter sets
give necessary conditions for extensions of designs. Let us quote two results in this context, which
were mentioned by Dembowski [4, p. 76, 77]. We should recall that the parameters A; ; of (1) are

integral for admissible parameter sets.

Lemma 2.9 Let t-(v,k,\) be an admissible t-design parameter set. Recall that b = Ao denotes

the number of blocks of a design, and r = X1 is the number of blocks on a point.
(i) A necessary condition for der™! to be defined is that b(v + 1) is divisible by k + 1.

(ii) Assume t > 2. A necessary condition for res—' to be defined is that Ao o(k — 2) is divisible by
v+1-—k.

Note that Alltop [1] describes further conditions under which ¢-designs can be extended.

The following analogue of Lemma 2.2 is easily proved:

Lemma 2.10 Let t-(v, k, X) be an admissible parameter set. Assume that D (t-(v,k, X)) = t'-(v', k', X')

is admissible for some D € {red™! der ! ,res™'}. Then

A N

Amax (£, 0, k) Amax(t', v/, ')

From this we deduce that

Ao Y % if D =red”",
x(t, v, . —
X = % = ft?),kﬂ where ft?;,k = 1 if D = der 1, (6)
max\bs Uy
vfik if D =res™!.

Note that ftDv i 1s just the factor by which the index changes under the operator D.

The next result follows from commutativity of the six operators {red*!, der™! res*'} :



Lemma 2.11 Let t-(v,k,\) be an admissible design parameter set, and assume that
red_hder_ires_j(t—(v,k,)\)) 15 admissible for some mnonnegative integers h, i and j. Then

red " der " res 7’ (t-(v, k., N)) is admissible for all nonnegative integers h' < h, i’ <i and j' < j.

Lemma 2.12 Let t-(v,k, X) be admissible, and assume that Dy (t—(v, k, )\)) and Doy (t—(v,k, )\)) are
defined for Dy, Dy € {red!,der !, vres™'}, Dy # Dy. In addition, if {D1, Dy} = {red !, res™ '} we
assume that A # Amax. Then DDy (t—(v,k, )\)) = Dy Dy (t—(v, k, )\)) is admissible, too.

Proof: We distinguish 3 cases according to Dy, Ds. Up to a reordering of Dy and D5 these are all

possible cases.

Dy =der ', Dy =res ! : We do not yet know if der 'res! (t—(v, k, )\)) is admissible, but the com-

mutativity of the operators allows to deduce
res(der'res™'t-(v, k, \)) = der™'t-(v, k, )
and
der(der™'res™'t-(v, k, X)) = res™'t-(v, k, )
are admissible by assumption. Hence by Proposition 2.7, (iv) < (i), der 'res 't-(v, k, A) is admis-

sible, 1. e. D1 D> (t—(v,k, )\)) is defined.

Dy =red™!, Dy = der™' : We can proceed in a similar way using Proposition 2.7, (v) < (i), respec-
tively, to get the result in that case.

Dy = redfl, Dy =res™! : In this case we have the additional assumption A\ # Apax which we need
to show that red™'res ™! (t-(v, k, \)) satisfies (ADM1): Deny this. Then t+1 = k and red™'#-(v, # +
LA) = (t+1)-(v,t + 1,A-1) and res™'t-(v,t + 1,A) = (t+ 1)-(v + 1,£ + 1, A-1-). But the last
two parameter sets are complete, hence t-(v,k, \) is complete by Lemma 2.10, contradicting the
assumption A # Amax. We conclude that ¢ < k — 2, so red ~'res™! (t—(v, k, )\)) satisfies (ADM1). We

proceed as usual:

res(red 'res 't-(v,k,\)) = red 't-(v, k, )
and

red (red 'res 't-(v,k, \)) = res 't-(v,k, )

are admissible by assumption. Moreover, t+1 < k, which means that the two parameter sets on the
right hand side satisfy the additional assumption of Proposition 2.7, (vi). Hence red™'res '¢-(v, k, \)
is admissible, 1. e. D1 D5 (t—(v, k, )\)) is defined. O



Lemma 2.13 Let t-(v,k, \) be an admissible design parameter set with X # (Z:i) Assume that for

nonnegative integers hq, ha, i1, 12, j1, jo the parameter sets
red ™" der=" res ™I t-(v, k, \) are admissible for £=1,2. (7)
Then red™ ™x(h1:h2) qor=max(iniz) peg=max(iri2) ¢_(y, k. \) is admissible as well.

Proof: First note that red™™in(huh2) qep—min(iniz) pog—min(ji.j2) t-(v,k,A) is admissible by
Lemma 2.11. Hence it suffices to prove the claim for the case that one of the corresponding
integers is zero, i. e. hihe = 0, 4199 = 0 and j1j2 = 0. The assumption is still given by (7). As-
sume that he # 0, hence hy = 0. In this case we pick red~! and use Lemma 2.12 to show that
red~'der~“res 7' t-(v, k, \) is admissible. By Lemma 2.11, der~“'res 7! (red_lt—(v, k, X)) is admis-
sible, as well as der™“2res=7 (red_lt—(v,k,)\)), i. e. the assumption (7) holds for red='t-(v, k, \)
instead of ¢-(v, k, \) and hy reduced by one. We proceed by induction. Similarly, we proceed with
the other operators. The assumption \ # (Z:i) is needed for applying Lemma 2.12. O

Theorem 2.14 Let t-(v, k, A) be an admissible parameter set with \ # (Z:i) Then there exists a
unique largest admissible parameter set, called Ancestor (t—(v, k, )\)), such that t-(v, k, \) is contained
in its family. More precisely, there exist nonnegative integers hmax, tmax 7d Jmax mazimal with

respect to the property that
Ancestor (t-(v, k, X)) = red ~fmax der~imax pegTImax (4, K, \)

is defined. The given parameter set is the hmax-fold reduction, imax-fold derived and jmax-fold
residual of its ancestor. A design parameter set which equals its own ancestor is called ancestor

parameter set. If Ancestor (t-(v,k, X)) = t'-(v/, k', X') then
N A

Amax (', 0, k') Amax(t, 0, k)

Hence the ancestor is again incomplete.

Proof: Fix an admissible parameter set ¢-(v, k, A) with A < (z:i) = Amax- We first have to show
that Ancestor (t—(v, k, )\)) is defined, i. e. that the integers Amax, imax and jmax €xist. Therefore, we
look at the parameters arising as results of the operations der™!, red™" and res™! (cf. Fig. 2). In
case of red~! and res !, the difference k — ¢ strictly decreases, s0 imax and jmax are both bounded
above by k — t. What can be said about the number of times that der™' can be applied? Assume
this is the case infinitely often and put

(tn)

(i)

b, = # of blocks of der " ¢-(v, k, \) = A

10



By (ADM3-0), b, is an integer. Note that

bnyr _ v+n+1
b, k+n+1

(8)

holds, even for the complete design with A = Apax (£, v, k). For simplicity, we write Amax instead of
Amax (£, v, k). Put

(tin)
+n
» = # of blocks of der™ " #-(v, k, Amax) = Amax—22 = .
¢n = # of blocks of der (v, ky Amax) a (k+n) (k-l—n)
t+n
By (8), the sequences of numbers (b,) and (c,) are proportional. Hence there exists a rational

number v with 0 <y < 1 and v = z—z for all n > 0. In particular,

_bo _ _
TR O e

Moreover,

for all integers n > 0. Let p be a prime dividing W (such a prime exists since 0 < A < Apmax
by assumption). We deduce that p divides (Zig) for all n. But this is impossible as for example
(i”mj_l) =TTl _, pmhfh Z 0 mod p for all 0 < j < p™ — 1 and arbitrary m : If the numerator is

divisible by p®, say, then the denominator is divisible by that number, too. Hence all factors p

cancel in the product. We conclude that the number of times that red ! can be applied is finite,
and we let hmax be maximal with respect to the property that res™max is defined.
Lemma 2.13 implies the uniqueness of the ancestor parameter set. The final two statements

follow by repeated application of Lemma 2.10. O
Example 2.15 There exist 5-(23,6,6) designs invariant under Hol(Csy3). We find that
der™25-(23,6,6) = 7-(25,8,6)

is ancestor. (Note that it is not known whether or not a 7-(25, 8, 6) design exists.) Figure 3 displays
the family of this parameter set. On the left, the pyramid of parameter sets with ¢ > 5 is shown
Note that in the bottom layer, there are three more design parameter sets. A more concise way
of displaying the family is indicated to the right, which shows the layers one after another. The

underlined parameter sets are known to be realizable. O

As an application, we evaluate the ancestor for Steiner systems S(¢,t + 1,v) with v — ¢ prime:

11



7-(25,8,6)

6-(25,8,57) 6-(24,8,51)

5-(25, 8, 380) 7-(25,8,6)

red (94 5-(23,8,272)

6-(25,8,57) 6-(24,8,51)
6-(24,7, 6)

5-(25,8,380) 5-(24.8,323) 5-(23,8,272)
5-(24,7,57)  5-(23,7,51)
5-(23,6,6)

Figure 3: The family of 7-(25, 8, 6)

Proposition 2.16 Let t and v be integers with v — t a prime. Then

Ancestor(t-(v,t + 1,1)) = der " t-(v,t +1,1) = (t + n) — (v +n,t+n+1, 1)
with n = v — 2(t + 1). In particular, if Ancestor(t-(v,t + 1,1)) =t'-(v', k', 1) then 5—: =1
Proof:

(i) We first show that (¢ 4+ n)-(v + n,t +n + 1,1) is admissible if and only if n < v — 2(t + 1).

We have the following equivalence:

(t+n)-(v+mn,t+n+1,1) is admissible
(ADM3-5) holds for 0 < s <t+mn

(ADM3-(t+n—s)) holds for 0 < s <t+mn

(w=—(t—=1))--(v—1(t—23)) _ 1 (v—i—t—l—s
2---(3+1) v—t s+1

117

) is integral for 0 < s <t +n.

v+1t+s

If s+ 1 < v—t then v — ¢ prime implies ged ((s + 1), v — ¢) = 1. Since ( +1
s

) is an
integer for all s,

(s+1! | (0= (E=1) (0= (t—5)

fors+1<v-—t&s<wv—t—2 Hence (t+n)-(v+n,t+n+1,1) is admissible for all n
satisfying t +n < v -t —2 < n < v —2(t — 1). On the other hand, if n = v — 2t — 1 then

12



the parameter set in question would be (v —¢ —1)-(2v =2t —1,v —¢,1), so (ADMB—O) would
require that
(2v—2t—-1—-(v—t—-2))---20—2t—-1) (v—t+1)---(2(v—1)—1)

w—t—(v—t—=2))-(v—t—0) B 2. (v—1t)

were integral. But the prime v—¢ divides none of the factors in the numerator, a contradiction.

(ii) Part (i) implies that der "¢ — (v,t + 1,1) = (¢t + n)-(v + n,t +n + 1,1) is defined for
n =uv —2(t + 1) and no larger n. We claim that it is not possible to apply red ™! or res™" to
this parameter set: If red ! were applicable, then (v +n) — (t+n —1) = v —t + 1 had to
divide 1-(t+n+1— (t+mn)) = 1 which it does not (since v —¢ # 0). If res~! were applicable,
then v +n+1—(t+n+1) = v —t had to divide 1 which it does not (since v —t # 1).
Hence, Ancestor(t — (v, t+1, 1)) =der "t — (v,t+1,1) with m = v — 2(¢ + 1). In particular,
if Ancestor(t — (v,t+1,1)) =¢' — (v',k',1) = (t+n)-(v + n,t + n+1,1), then

o t+n+l  w—t-1 1

o v+n  w—2—-2 2

For example, Ancestor(5—(244, 6, 1)) = der 232 (5—(244, 6, 1)) = 237-(476,238,1).

3 Which design parameter sets extend?

The ancestors of parameter sets differing only in the index can look quite different:

Example 3.1 Consider the collection of parameter sets of the form 5-(24,8,A) where 1 < X <
Amax(D,24,8) =969 = 3-17-19 (note that AX(5,24,8) =1). We get

Ancestor (5-(24,8,))) =

( 17-(36,18,m - 1) = red der '%res=25-(24,8,m -51) if \=m 51
15-(32,16,m - 1) = red ?der ®res=05-(24,8,m - 57)  if \=m 57
13-(32,16,m - 3) = red der ®res 05-(24,8,m - 3) if \=m -3, 511X 571\

6-(25,8,m -3) = red Oder Ores™'5-(24,8,m -17)  if A=m- 17,191\

6-(24,8,m -3) = red 'der %res™05-(24,8,m -19) if A=m 19,171 X

7-(25,8,m - 6) = red”'der Ores !5-(24,8,m -323) ifA=m 323 =17-19
5-(24,8,)\) = red ’der res™05-(24,8, \) otherwise

Note that the “otherwise” case is equivalent to

ged (,\, M)

AN 2L8) ) = 8ed(X,969/1) = ged (3,317 -19) = 1.
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In order to determine the ancestor, we have to find out which parameter sets extend under the

-1

operators red ™!, der™! or res~!. For this, we examine properties of the function AM.

Proposition 3.2 Let v and k be integers with k < v. Then

(i)
kE—t AX(t, v, k)
ANt +1,v,k) = . . — forall t <k, (9)
ged(v —t,k —t) ged (A)\(t,v, k), Wtﬁk—t))
(1)
(i1)
A)\(t—i—l,v—i—l,k—l—l)=lcm<A)\(t,v,k), AR R ) (10)
ged ((31)- (31))
(]tcill) ; (v+1)--(v—t4+1) . .
Note that ———-F"—— is the smallest natural number a such that Oy (1) 5 integral.
cd ((t+1)’(i+1))
Proof:

(i) By definition, AX(¢,v, k) is the smallest natural number such that (ADM3-0) A--- A (ADM3-
t) hold for the parameter set ¢- (v,k,A)\(t,v,k)). Consider the corresponding admissibility
condition for the parameters (¢ + 1)-(v,k, AX(t + 1,v,k)), which we denote by (ADM3’-0)
A--- A (ADM3’-(t+1)). (ADM3’-(¢+1)) just implies that AX(¢+1, v, k) is an integer. Write

v—t

v—t _ dm—thD
—t k—t
k—t ged(v—t,k—t)

v—t

with coprime numerator and denominator. Since (ADM3’-t) states that AXN(t 4+ 1,v, k)¥= is

E—t
integral, AX(t + 1,v, k) must be a multiple of ﬁ. Put
A+ 1, k)

k—t
ged(v—t,k—t)

Lt . €N

and consider the two sets of conditions in parallel. For 0 < s <t — 1, we have

ADN) = 830Gy ) <™

(ADM3’-5) <= AA(tJrlvk)((Z:gEZ:S:g;EZ:g €N

(w=s) (== 1) a7
(k—s)--(k=(t-1))

e L+, €N

14



Note that the additional factor =% in (ADM3’-s) does not depend on s. The last integrality

condition shows that

AX(t, v, k)
ged (AA(t, v, k), FM)
is the smallest solution for Lt+D) . Hence by definition of L+,
E_t AXt, v, k
ANt +1,0,k) = cdlv—t,k—1t) — t '
— — _
g ) ged (A)\(t,’v,k), gcd(vv—it,k—t)>

(ii) For 0 < s <'t, let (ADM3-s) be the admissibility condition for the ¢-(v, k, AX) design and for
0 <s<t+1,let (ADM3-s) be the admissibility condition for the (¢t + 1)-(v + 1,k + 1, \)
design. Note that (ADM3-s) <= (ADM3’-(s + 1)) for 0 < s < ¢ while (ADM3’-0) requires
that

(v+1)
t+1

(i)

ANt+1,v+1,k+1)

is integral. This last condition can be reworded as
k+1
(i11)
k+1y (v+1
ged ((t+1)’ (¥+1))

Hence AX(t 4+ 1,0 + 1,k + 1) is the least common multiple of AX(¢,v,k) and that number.

‘ AXt+ 1,0+ 1,k +1).

O
Example 3.3 (cf. Example 3.1) Consider the parameter set 5-(24,8,1) again. We have:
(1) AX(6,24,8) = —3-— - 1 = 3;
ged(19,3) ged (l’gcd(llgg,S))
(ii) AX(6,25,9) = lem(1,3) = 3 as %—5%%%%—1% = 2023411 hence 3 is the smallest natural

number making this fraction integral;

(iii) AX(6,25,8) = 3 since a = 3 is the smallest natural number such that all prefixing partial

products in ¢ - % . % . % . % . % . 28—5 evaluate to integers.

<

The question of whether an admissible design parameter set ¢-(v, k, A) extends under one of the
operators red !, der ! or res—! turns out to be equivalent to certain divisibility conditions for X in
terms of ¢, v and k. Our results are strongest in the case of the operators red™" and der™! since we

have the recursion formulae (9) and (10) of Proposition 3.2 in that cases.
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Proposition 3.4 Let t-(v,k, \) be an admissible design parameter set (hence m is an integer

by (4)). Then
(i) red=' t-(v, k, \) is defined if and only if

(a) t < k and

red~! A
(b) ct,’v,k W where

v—t
red ! ged(v—t,k—1)

Ct,v,k = ot .
ng <A>\(t, v, k), m)

(ii) der™'t-(v,k, \) is defined if and only if C?’ff’;l ‘m where

ey

ANt Lo+ LE+1) ged (1))

der L

Ctok = AN, 0, k)
ed (11
(iii) res ' t-(v,k, ) is defined if and only if
(a) t <k and
—1
(b) ci%x ‘m where

1 ANt+ 1,0+ 1,k)- (v+1—k)

res

ge (t,’U, )7g )(

)

0

ok = oed (AX(t+ 1,0+ Lk) - (v +1— k), A\(t, v, k) - (k— 1))

Proof:

(11)

(12)

(i) The operator D = red ! is not defined for parameter sets with ¢ = k. Hence assume t < k.

By (4), der™'t — (v,k,A) = (t+ 1) — (v, k, A\E=L) is admissible if and only if

k—t

v—1

(9) kE—t AX(t, v, k)

<= (v—1t)- . —
ng('U — t, k— t) ng (A)\(t,v, k), Wtﬁk—t))

ANE+1,v, k) ‘ A

PN gcd('::tt,kft) A
_ ANt 0, k)
ged (AA(t,v,k),Wf’k_t)) (t,0,k)
=

16
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(ii) Using (4) again, we find that der™" #-(v,k,\) = (¢ + 1)-(v + 1,k + 1, ) is admissible if and

only if
ANE+ 1,0+ 1,k +1) ‘ A
G
g0 AME+ Lo+l k+1) ged ((51).(111) ‘ A
- k+1 '
AX(t, v, k) gcd (A)\(t, 0, k), %) AX(t, v, k)
ged ((t+1)’(t+1))
=efery!

(iii) If ¢ = k, the operator res™! is not defined for ¢-(v,k,)). Hence assume t < k. By (4),
res Lt-(v,k,A) = (t + 1)-(v + 1, k, A\-—2=L) is admissible if and only if

v+1—k
k-t
A
= ANt+10+1k) (v+1-k) ‘ S AR (k=)
— ANE+ 1,0+ 1,k) - (v +1— k) A
ecd(AN(E+ Lo+ LE) - (0 -1 — k), ANE 0, k) - (k=) | Aa(t0,k)
1
::Ct,v,k

a

As the complete design extends under each of the operators (assuming ¢ < k for D = red™! or

D =res ') we get:

Corollary 3.5

D Amax(t,v,k)

Amaxl, U, ) 14
Lok | TAN(E, v, k) (14)

forall0 <t<k<wvand D€ {redfl, der! res '}. If D = red ' or D =res™ !, we require t < k.

Example 3.6 (cf. Examples 3.1, 3.3) For which X does the parameter set 5-(24, 8, \) extend under
D e {red_l, der_l,res_l}? As t < k, we get a result in all three cases. Using Proposition 3.4, we

compute

19
(i) cgfg;; = — U9 — 19, hence red”' 5-(24,8,19) = 6-(24,8,19 - ) = 6-(24,8,3) is
ged (l,m)
admissible. This is in accordance with AX(6,24,8) = 3 (cf. Example 3.3).

17



(i) g%, g = m = 3, hence der™' 5-(24,8,3) = 6-(25,9,3) is admissible. This is in accordance

with AX(6,25,9) = 3 (cf. Example 3.3).

(iii) cgf;;,lg = m = 17, hence res™!5-(24,8,17) = 6-(25,8,3) is admissible. This is in
accordance with AX(6,25,8) = 3 (cf. Example 3.3).

4 Clans of design parameter sets

In the previous section, we encountered collections of design parameter sets with equal ¢, v and &
and whose set of indices form multiples of a certain number. We call that a clan (recall from (5)
that AX(t,v, k) divides Apax(t, v, k)):

Definition 4.1 The clan of the parameter quadruple (¢, v, k, s) with AX(¢,v,k) | s | Amax(t, v, k) is

Amax (¢, v, k

Clan(t,v,k,5) = {t-(v. k,m ) | m €N, 1 <m < ﬂ}
s

i. e. the set of admissible design parameters for ¢, v and k& whose index is a multiple of s. The full

clan is Clan(t,v,k) = Clan(t,v, k, AX(t,v, k)) A clan is trivial if it consists of just one element.

Amax(t,v,k)

For a natural number c | .

, put
¢ Clan(t,v, k, s) := Clan(t,v, k, cs). (15)
For s; and s with AX | s; | Amax(t,v, k) for i = 1,2 we have
Clan(t,v,k,sl) C Clan(t,v,k,SQ) <= 59| 1, (16)

in which case we call Clan(t, v, k, sl) a subclan of Clan(t,v, k, 32). For fixed ¢, v and k, the ordered
set of clans Clan(t,v,k,s) where AX(t,v,k) | s | Amax(t,v, k) is anti-isomorphic to the lattice of

divisors of %. A short notation for Clan(t, v, k, s) is

t-(v kM 8) | Amax(twk) - (17)
Let us get back to the situation of Proposition 3.4:

Proposition 4.2 Consider Clan(t,v,k), i. e. the set of admissible design parameter sets of the

form t-(v, kym - AX(t, v, k)) with 1 < m < pelloh),

(i) For any D € {red !, der !, res™'}, the set of elements of Clan(t,v,k) for which D is defined

is either empty or forms a subclan cfv’k -Clan(t,v, k) (recall the notation of (15)) where cfv’k

is as in (11), (12) or (13). The set is empty if and only ift = k and D = red™" or D = res™".

18



(ii) For D € {red™' der™',ves™'}, assume there exists a natural number ¢ such that

D(t-(v,k,cAX(t,v.k))) is defined. Take c to be minimal, i. e. ¢ = Cfv,k as in (i). Then

D(t-(v,k,cAX(t,v, k) = t'-(v", k', X') with X' = AX(t',v', k"). Therefore the mapping
D : c-Clan(t,v, k) — Clan(#,v', k'), (18)
D(t-(v.k,m-c- AXt,v,k))) =t'-('" k', m - AX(t', 0", k"))
for all natural numbers m with 1 < m < % s surjective, hence bijective. In other
words, the operator D induces a bijection between the subclan c- Clan(t,v, k) and the full clan

Clan(t',v',k"). On the other hand, if ¢ is an integer such that
D(t-(v,k,c- AX(t,v,k))) =t -(v' k', AN, 0" k')

then ¢ is minimal, i. e. D(t-(v,k,d . A)\(t,v,k))) is defined for mo integer d less than c.

Moreover
Amax(t, 0, k) AXN# 0" E) AN E) (19)
 Dmax(,0K) ANt k) ANt E) - R,
with ft%’k as in (6).
Proof:

(i) Follows from Proposition 3.4. Note that Corollary 3.5 implies ¢ | W, hence
¢ - Clan(t, v, k) is defined.

(ii) In order to avoid confusion, write D~! for the chosen operator of the set {red !, der !, res~'}.
We abbreviate AN = AX(t,v,k), AN = AN, 0", k'), Amax = Amax(t,v,k) and A, =

Amax (t', 0" k') Let D™ t-(v,k,c - AN) = t-(v/, k', \') with ¢ minimal, i. e. ¢ = ct’?v’k. We
are going to prove that X' = A)N : If there exists

t-(v' K, u') € Clan(t',v',k',A)\') \D_l(Clan(t—(v,k,c . A)\)))

then Dt'-(v', k', u') = t-(v,k,n) € Clan(¢, v, k, AX) implies AX | u. Moreover, the operator
D! is defined for ¢-(v, k, ;1) and therefore by (i), ¢ | £ which implies

t'-(' k' pu') e D71 (Clan(t—(v, k,c- AA))),

a contradiction. Hence D~! induces a bijection of the subclan ¢ - Clan(¢, v, k) onto the full

clan Clan(#,v', k"), namely the map described in (18). We conclude using (6)

Al A A AN AN
! ! ! _ . max — max — max —
‘Clan(t,v,k)‘ = ‘c Clan(t,v,k)‘ = \ T AN = c NS A'ft%’k'

a
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More informally, the previous result tells us that immediate relations in the poset of admissible
design parameter sets always come as bijections between a subclan ¢ - Clan(¢, v, k) and a full clan

Clan(#',v', k"). Consider our standard example once again:

Example 4.3 (cf. Examples 3.3, 3.6) Having the corresponding values of AX at hand, the compu-

tations of Example 3.6 can be simplified using Proposition 4.2:

: red—! _ A)‘(672478) _ 3 _ -1 _ . = 0O- .
(1) 558 = SG2AS) ] T TS 19. Hence red™" 5-(24,8,m - 19) = 6-(24,8,m - 3) for all m
]

with 1 < m < 51 induces a bijection between 19 - Clan(5,24,8) and Clan(6, 24, 8).

(ii) 0(51?5;; = % = % = 3. Hence der ! 5-(24,8,m - 3) = 6-(25,9,m - 3) for all m with
124,8) 15 24,8

1 < m < 323 induces a bijection between 3 - Clan(5, 24, 8) and Clan(6, 25, 9).

-1 AX(6,25,8 _
(iii) %55 = M(Mi—%)u_; = é = 17. Hence res ' 5-(24,8,m - 17) = 6-(25,8,m - 3) for all m
j

with 1 < m < 57 induces a bijection between 17 - Clan(5,24,8) and Clan(6, 25, 8).

In Figure 4, we show the parameters sets which extend once again. Note that the m in that figure

is not the m in the previous calculations. O
6_(247 87 % : 3)%§51 6_(257 97 % 3)%§323 6_(253 87 % ) 3)%§57
der™!
red™! 3/m res !
19|m 17|m

5'(24: 8,m - 1)m§969

Figure 4: The immediate relations above 5-(24,8, \)

Our aim is to describe the relations between admissible parameter sets in terms of the parameters
t, v and k only. So far, we have seen that this works for immediate relations. It will turn out shortly

that this is true in general. We introduce another relation defined on the set of clans as follows:
Definition 4.4 For integers t < k <o and ¢/ < k' <o/, put
Clan(t,v,k) < Clan(t',v',k') — AN (v, k) <-( KN, (20)

where A = aAX < A\pax, N = /AN < AL .. for some positive integers a and o’ and for A\ =

max

AX(t, v, k), AN = AN,V E'), Amax = Amax(t, 0, k), Al ax = Amax(t', 0, K).
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Note that the numbers A and )\’ in the previous definition mutually determine each other. Hence
we can speak about the minimal X satisfying (20). The corresponding A’ will then also be minimal.
In case of immediate relations, Proposition 4.2 gives us the number ci)v’k, which determines the
smallest solution and at the same time the subclan of all solutions of (20). We call that number
the associated subclan generator. We may put it as a subscript to the relation symbol as in the

following example:

Example 4.5 (cf. Examples 3.1, 4.3) Proposition 4.2 yields the following inclusions for the
clan of 5-(24,8,\) designs: Clan(5,24,8) <19 Clan(6,24,8), Clan(5,24,8) <3 Clan(6,25,9) and
Clan(5, 24, 8) <17 Clan(6, 25, 8). O

The general case of relations between admissible parameter sets is dealt with in the following

proposition:

Proposition 4.6 Assume Clan(t,v,k) < Clan(t',v', k'), i. e. there exist nonnegative integers h, 1,
g and X\, X such that

red " der “res ™’ (t—(v,k,)\)) =t'-(v' k' \) (21)

for admissible parameter sets. Abbreviate AN = AX(t,v,k), Amax = Amax(t,v, k) and similarly
AN = AN, 0" Ky ALk = Amax(t, 0", k). Write A = ¢ - A

max

(i) If X and X' are minimal with respect to (21) then c | 2pax and X' = AN'. Hence red ™" der~" res—J

induces a bijection between the subclan c - Clan(t,v, k) and the full clan Clan(t',v', k') :

red " der res 7 : ¢-Clan(t,v, k) — Clan(t',v', k'), (22)
red™" der ™ ves ™ (t-(v, k,m - ¢ - AN)) = t'-(v/, k', m - AN')

for all natural numbers m with 1 < m < é’g—a}’\‘. Moreover,

Amax AN

c= .
AMoax AN

On the other hand, if ¢ is an integer such that
red " der "res 7 (t-(v,k,c- AN)) = t'-(v', k', AN)

then ¢ is minimal, i. e. red " der " res™J (t-(v,k,d . A)\)) is defined for no integer d less
hoiyj
than c. We write Clan(t, v, k) (<Cj) Clan(t',v', k') and call (h,i,7) the path information of the

relation.
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(ii) The set of clans is ordered with respect to the relation “<7”. The path information is additive

and the subclan generator multiplicative with respect to transitivity of that relation.

(hyisg)
(111) For Clan(t,v,k) <. Clan(t',v',k") where Clan(t,v,k) is considered fized, the associated
subclan generator together with the path information and Clan(t',v', k') mutually determine

each other:

(a) (1) ' =t+h+i+7,
(2) v =v+i+7,
(3) k' =k +1,
(4) AN =c- AX

) (1) =K~k
(2) j=v"—v—i
(3) h=t'—t—i—j

Ca) O AN A
AN '

k

—~

’EE) (k_.;_h) =c- A)\)‘;nax

h ) (v+§.—k) Amax

v

—~

~
Y
N—
o
Il
>
i
—
B
=
o~
S—
—
>
|
~
|
B
-

max
Proof:

(i) Let us apply the operators red~"der'res~7 one by one in succession, thereby reducing to
the case of immediate relations and using Proposition 4.2 for each of the individual steps.
Moreover, we assume that minimality forces A’ = AX (this will be justified later). Consider

the operators

1

red 1o ored! o der'o---oder™ oresto.--ores!

~~

h times i times j times

which we are applying one after another from right to left to the parameter set t-(v, k, c- AX).

For convenience, put
res™! if 0< <,
Dy=X der! if j<t<i+j,
red™" if i+j<l<h+i+].
Applying Do, D1, ..., Dyyiyj—1 to t-(v, k,c: AX) we obtain a sequence of admissible parameter
sets
htitj
(tf'(vfa kg, e - A)\E))E:U : (24)
with
to-(vo, ko, co - AXxg) = t-(v, k,c- AX)
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and
ts-(vs, ksycs - AXg) = t'-(v' k', 1 AN, 0" K'))

for s=h+i+ 7 and ANy = AX(tg, vp, k). The parameter sets are connected by
Do(te-(ve, ke, ceAN)) = tog1-(vesrs kosrs o1 Ddeyr)  for £=10,1,...,h+i+5—1. (25)
We solve these equations for the unknowns ¢; backwards, i. e. by solving
Dyt (tm1-(ve—t, ko—1,com1 - AX—1)) = te-(vg, ke, co - Ag)

for £ = h+i+j,...,2,1. Our initial choice is ¢j4;4; = 1. Using Proposition 4.2 (i), we get

g = Pt c
=1 to—1,ve—1,ke—1 "~ OO
hence
htitj—1
_ _ D,
=0t = H Cop vk
=0

We have proved that
red ™" der~'res™ (t-(v, k, c - AN)) = t'-(v/, k', AN

holds for that c. As A) is the smallest solution for A’ we can have, this justifies the assumption

made initially. The bijection (22) results from this. Therefore, using (6),

!/
Clan(t', o' k)| = |¢ - Clan(t, v, k)| <= Zmax _ Amax

AN c- A
Amax AN AN
— c= = —— : (26)
AN N AN-TIEG gD
(h1,i1,71) (ha,i2,j2)

We only verify transitivity of “<”: Assume Clan(ti,v1,k1) <.,  Clan(to,ve,ks) <,
Clan(ts, vs, k3). We then have two bijections of the form (22), induced by
red™" der™ res 71 (tl—(vl, k1,mq - c1 - AX(ty, 01, kl))) = to-(vg, ko, m1 - AX(t2,v9, k2)),
red_h2 der_” res_72 (tg-(’vg, kQ, mg - Co - A)\(tg, V2, kg))) = t3-(1)3, k3, mgo - A)\(tg,, V3, k3)),
)\max(tlyvl:kl)

e ANt v,ke)
equations arriving at

where 1 < my < for £ = 1,2. Putting m; = ¢o and my = 1 we can combine the

red*(h”h?) der*(ilm) res*(j”j?) (tl—(vl, kl, c1Cg - A)\(tl, U1, kl))) = t3-(1)3, k3, A)\(tg, V3, k3))

By (i), c1c9 is minimal in establishing a relation between Clan(¢1,v1, k1) and Clan(ts, vs, k3).
(h1+hai1+iz,j1+]2) . (e
Hence Clan(ty,v1, k1) <ec1e Clan(ts, vs, k3), thereby also proving additivity of the

path information and multiplicativity of the subclan generator.
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(iii) This follows from (26) in the proof of (i). The middle term with the binomial coefficients

comes from evaluating the product of the ft?‘;l Ky

a

Example 4.7 (cf. Example 3.1) Proposition 4.6 yields the following inclusion for parameter sets
of the form 5-(24,8,\) with 323 | \:

5-(24,8,m - 323) < 7-(25,8,m - 6) = red ! res ! 5-(24,8,m - 323)
for 1 < m < 3. We express this as

1,0,1
Clan(5, 24, 8) (-<323) Clan(7,25, 8).

(1,0,0) (0,0,1) (0,0,1)
Note that we have Clan(5,24,8) <19 Clan(6,24,8) <17 Clan(7,25,8) and Clan(5,24,8) <17

(1,0,0)
Clan(6,25,8) <19 Clan(7,25,8) (cf. Fig. 5). &
7-(25,8, 22 - 6) <5
re(/ \1
323|m 323/m

6-(25,8, 7% - 3) m <57 6-(24,8, 75 - 3)%351

res”? red !
17|m 19|m

5-(24,8.m - 1)<069

Figure 5: Some clans above 5-(24, 8, \)

Example 4.8 The numbers c?v  heed not be prime:
(15070) . red’l
Clan(5,32,8) <9 Clan(6,32,8) (i.e. c535 =9),
(05071) . I‘6871
Clan(S, 41, 10) '<4 Clan(g, 42, 10) (1. €. 08,41,10 = 4)

They even need not be relatively prime:

(19050) . d71
Clan(5,32,8) <o Clan(6,32,8) (i.e. c535=19),

(09150) . d -1
Clan(5,32,8) <3 Clan(6,33,9) (i.e. c555 = 3).
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Another result about the clans above a given clan is the following:

Proposition 4.9 If

h1,1,j ho,i2,]
Clan(t, v, k) %" Clan(ty, v1, k1) and Clan(t, v, k) 22" Clan(ty, v, k)

and lem(cq, co) # W then there is a clan Clan(ts,vs, k3) such that

(max(h1 ,hg),max(il ,iQ),maX(jl,jQ))

Clan(t, v, k) =<lem(er,e2) Clan(tg, 3, k3)
The parameters of the clan Clan(ts,vs, ks) are determined by Proposition 4.6 (iv)(a).

Proof: Put AX = AX(t,v, k) and Amax = Amax(t, v, k). Then t-(v, k, lem(cy, c2) AN) € ¢p-Clan(t, v, k)

since ¢ | lem(eq, ¢o) for £ =1,2. Hence
red " der~¥resI¢¢-(v, k,lem(cy, c)AN) is admissible for £ =1,2.
By assumption, ¢-(v, k,lem(cq, c9)AX) is not complete, hence by Lemma 2.13,

red mx(h1h2) qop— max(in,iz) peg— max(jidz)y(y k. lem(cy, c2)AN) is admissible.

It remains to prove that lem(cy,¢y) is the smallest integer d < /\’A“j\" with respect to the property
that

red~ max(hihz) qop— max(iniz)yog— max(ind2)g (4, dAN)

is defined. Consider such a number d and fix £ € {1,2}. Then hy < max(hi, h2), iy < max(iy,i2),
jo < max(ji,js) imply that red "¢ der “res J¢¢-(v, k,dAN) is defined (using Lemma 2.11). By

minimality of ¢y, this implies ¢; | d. Thus lem(eq, c2) | d and the statement is proved. O
5 The families of a clan
A clan gives rise to a set of families, generated by the elements of the clan:

Definition 5.1 The parameterized set of families of Clan(t, v, k) is the set

F(t,v, k) = {fm(t,’l),k) ‘ 1<m< )\max(t,v,k)}

=M E) 0

where F,(t,v, k) = Family(¢-(v, k,m - AX). For (h,i,j) € N? satisfying the conditions h +i +j < t
and j < v — k, the elements

. , max(t, v, k
{redh der’ res’ t-(v, k,m - AX) ‘ 1<m< %} (28)
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are corresponding members of F(t,v, k). The family

Tkmax(tavak) (t’ v, k)

AN(E,0,k)

is called complete. Tt consists only of complete parameter sets.
Corresponding members of a parameterized set of families form subclans:

Theorem 5.2 The corresponding members of the set of families F(t,v,k) form subclans c -

Clan(t',v', k"), characterized by the following conditions:
(i) 0 <t <t,

(11) k' <v' <w,

(iii) ¢ < K <k,

(w) k=K <v—v <t-1t,

(v) € = Axprarmm a2

The parameter sets of ¢ - Clan(t',v', k') correspond bijectively to the families F(t,v, k) :

Amax(ta /U7 k)

T e ANE Y K 1< < .
Fo(v' Kome e ANE VLK) € Fin(t0.k) for 1 <m < S50

(29)

Proof: We proceed as in the proof of Theorem 2.6. Let t', v, ' and ¢ be integers satisfying (i)-(v).
Theni:=k—Fk and j:=v—v' —(k—Fk)and h:=t—t'—i—j=t—t' — (v—1') are nonnegative
integers with h+i4+j =t —t' <tand j=v—k— (v' — k') < v — k. Hence red” der’ res’ is defined
for t-(v, k, AX(t,v,k)). The equation

red” der’ res? t-(v, k, mAX(t,v, k) = t'-(v', k', m)\) (30)
holds for all positive integers m < W and some (fixed) \. By Proposition 4.6, \ =

cAXN(t',v' k') for the ¢ given in (v). Hence we have a pairing between Clan(¢,v,k) and mem-
bers of the subclan ¢ - Clan(t',v', k'). By (30), those members are corresponding members in the
parameterized set of families F (¢, v, k), with inclusion as in (29).

Conversely, a pairing between ¢ - Clan(#',v',k') and Clan(t,v,k) is equivalent to
(hi,5)

Clan(t',v', k") <. Clan(t,v,k) for some nonnegative integers (h,4,j). By Proposition 4.6 (with

AX(tw,k) M

max

AN W k") Amax
Hence t =t/ + h+i+j5 >t and v = v +4+ 5 > v'. Moreover, k = k' + 1 > k'. Finally

k—k=i<v—-v=i+5j<t—t'=h+i+]. O

reversed roles of variables), i =k —k,j=v—-v —i,h=t—t —i—jand c =
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Example 5.3 Consider the family of 7-(25,8,6), a member of F(7,25,8). The other families are
Family(7-(25, 8,12)) and Family(7-(25, 8,18)). We draw the set of families as in Table 1, restricting
to the layers of ¢t-design parameter sets with ¢ > 5. The index is written as a product m - c¢- A\
where c is as in Theorem 5.2. If ¢ is one, the middle factor is omitted. The upper bound for m,

i. e. the number W is indicated as a subscript of the topmost clan. O

7-(25,8,m - 6)m<s

6-(25,8,m - 19 - 3) 6-(24,8,m - 17 - 3)
6-(24,7,m - 6)

5-(25,8,m - 19 - 20) 5-(24,8,m - 323 - 1) 5-(23,8,m - 34 - 8)
5(24,7,m - 19-3) 5-(23,7,m - 17 - 3)

5-(23,6,m - 6)

Table 1: The parameterized set of families F (7,25, 8)

6 Ancestor clans

It may happen that a relation between clans is trivial is the sense that the associated subclan
generator is one, for instance
(h.i.g)
Clan(t,v,k) <1 Clan(t, v’ k")
and h + ¢+ 7 > 0. Hence the parameter sets of the two clans correspond bijectively under the
operation der " res~*red™/. It turns out that trivial relations are quite frequent, for example all

but the first of the chain

(0,1,0) (0,1,0) (0,1,0)
Clan(5,24,8) <3 Clan(6,25,9) <; Clan(7,26,10) <; Clan(8,27,11)
(0,1,0) (0,1,0) (0,1,0)
<1 Clan(9,28,12) <3 Clan(10,29,13) <; Clan(11,30,14)
(0,1,0) 0,1

; (0,1,0)
<1 Clan(12,31,15) <) Clan(13,32, 16).

Why does this happen? Of course, the first parameter set of Clan(t, v, k), i. e. the parameter set
t-(v, k, AX(t,v, k)) must extend for this to be possible. The other way round, if ¢-(v, k, AA(t, v, k))

is ancestor then no trivial relation can exist above Clan(¢,v, k). Hence we define:
Definition 6.1 A clan Clan(t, v, k) is called ancestor clan if neither red ™! nor der™! nor res~! can

be applied to the parameter set t-(v, k, AX(t, v, k)).
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In particular, ancestor clans are always full and never trivial. Ancestor clans are easy to obtain:

Proposition 6.2 If Ancestor(t-(v, k, X)) = t'-(v/, k', \') for some admissible incomplete parameter

set t-(v, k, A) then Clan(t',v', k') is ancestor clan.

Proof: Assume the contrary. Then there are nonnegative integers h, ¢ and 7, not all zero, such that
red™" der~res=7 - (v', k', AN') is defined, where AN := AX(#,v', k'). Hence with X' = m - AN,

red " der res I t-(v', k', mAN) = m -red " der Tres I t'-(v' k', AN)
is admissible contrary to the assumption that #'-(v', k', ') is ancestor parameter set. i
We already have proved most of the following Lemma:

Lemma 6.3 Let t < k < v be integers. The following are equivalent:
(1) Clan(t,v,k) is ancestor clan.
(i) The parameter set t-(v,k, AX(t,v,k)) is ancestor parameter set.
(11i) Clan(t,v, k) contains an ancestor parameter set.

hiij
(iv) For every relation Clan(t,v,k) (<CJ) Clan(t',v', k") with h +1i + j > 0, or equivalently

Clan(t',v', k") # Clan(t,v, k), the number c is different from 1.

Putting A := AX(¢,v, k) in Proposition 6.2 we obtain:

Corollary 6.4 FEvery non trivial clan is contained in an unique ancestor clan with associated

subclan generator 1.

As the set of ancestor clans is a subset of the set of all clans, it still forms a poset with respect

to the ordering of Definition 4.4. The next property could be called “factorization property”:

Proposition 6.5 Assume Clan(t,v,k) <., Clan(t1,v1,k1) and Clan(t,v, k) <., Clan(ta,vs,k2)

where Clan(tg, vo, ko) is ancestor clan. If ¢y divides co then Clan(ty, vy, k1) <es/er Clan(to, vo, k2).
Proof: Write ¢co = ¢ - ¢;. The assumptions imply

t—(’U, k, Ci - A)\(t, v, k)) S tl—(vl, kl, A)\(tl, V1, kl)), (31)
Ancestor (t-(v, k, co - AN, v, k))) = ta-(v2, ko, AX(t2, 2, k2)). (32)
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“Multiplying” (31) by ¢, we get t-(v, k, co-AX(t, v, k)) < t1-(v1, k1, c-:AX(t1,v1, k1)). But the ancestor
is the largest admissible parameter set above a given one, containing all other with that property,

hence together with (32) this implies
tl—(vl, kl, C: A)\(tl, U1, kl)) S t2-(1)2, kQ, A)\(tg, V2, k2))
Thus Clan(tl, V1, kl) <ea/er Clan(tQ, V9, kg) O

The assumption that Clan(to,ve, ko) is ancestor clan is necessary as the following coun-
terexample shows: Clan(5,24,8) <3 Clan(13,32,16) and Clan(5,24,8) <57 Clan(7,24,8), but
Clan(13,32,16) £ Clan(7,24,8).

For ancestor clans, the associated subclan generator determines the successor. The point is that

we do not need the path information as in Proposition 4.6 (iii).

)\max (t,’U,k)

Proposition 6.6 If Clan(t,v,k) <. Cy for ¢ # AN

and some ancestor clan Cq, then Cy is
uniquely determined by c.

Proof: Assume

h s. 5‘ h: 9‘ 9“
Clan(t,v, k) ( IQCJI) Ci and Clan(t, v, k) ( 230]2) Co.

for another ancestor clan Cy. Then by Proposition 4.9,
Clan(t’ v’ k) (max(h1,h2),ma)_(<('icl,ig),max(jl,jg)) 63
for some clan Cs3. Hence

(h1 ,il ,jl) (max(hl,hg)fhl ,max(i1 ,’L'Q)f’il ,max(jl ,j2)7j1)

Clan(t,v, k) <. C <1 Cs.

But C; is ancestor clan. Thus Lemma 6.3, (iii), implies C3 = C;. Starting with exchanged roles of

Cy and Cy, we get Co = C3 = C;. In other words, the clan C; is uniquely determined by c. O
We conclude
Proposition 6.7 The poset of ancestor clans above a given clan is finite.

Proof: Consider an arbitrary clan Clan(¢, v, k). If Clan(¢, v, k) is trivial, no ancestor clan lies above.
Hence assume Clan(t, v, k) is non-trivial. By Corollary 6.4, there is an ancestor clan Clan(¢y, v1, k1)
with Clan(¢, v, k) <1 Clan(ty,v1,k1). By the factorization property (Proposition 6.5), all ancestor
clans above Clan(t,v, k) also lie above Clan(t;, vy, ky). Every ancestor clan Clan(t;, v;, k;) above

. Amax (t s ,k Amax t, ;k
Clan(t1,v1, k1) satisfies Clan(t1,v1,k1) <, Clan(t;, v, k;) for some ¢; | A/\(wgivlﬁks) = Ax(g,v?k))-

. tot . Amax (t1,v1,k1)
Since ancestor clans are never trivial, ¢; < AN, 00,k

generator ¢; determines the ancestor clan Clan(¢;, v;, k;) uniquely. As there are only finitely many

for all 4. By Proposition 6.6, the subclan

possibilities for ¢;, the statement is proved. O
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We are able to state the main result about ancestor parameter sets:

Theorem 6.8 (Klassifikationssatz) The ancestors of incomplete parameter sets of Clan(t,v,k)
lie in ancestor clans above that clan. Hence we can classify the set of admissible incomplete t-
design parameter sets by the clans containing their ancestors. More precisely, that classification
establishes a surjective mapping from the set of admissible incomplete t-design parameter sets to
the set of ancestor clans:

Given an admissible incomplete t-(v, k, \), there is a largest natural number ¢ dividing m
such that Clan(t,v, k) <. Clan(t',v', k") for some ancestor clan Clan(t',v',k'). Then

Ancestor (t-(v, k, X)) € Clan(t', v, k'),

hence t-(v,k,\) is mapped onto Clan(t',v', k').

Conversely, a given ancestor clan Clan(t',v', k') is the clan of the ancestors of exactly the
incomplete design parameter sets contained in families Fp,(t',v', k') where m is not divisible by any
¢ > 1 such that Clan(t',v', k') <. Clan(t", 0", k").

Proof: We first check that the mapping described in the theorem is well defined and really maps onto
the clan of the ancestor. Firstly, by Corollary 6.4, the divisor ¢ = 1 of W is always possible,
as there always is an ancestor clan Clan(¢',v', k') with Clan(¢,v, k) <1 Clan(#', v, k") (for this, note
that Clan(¢,v, k) is non trivial as it contains an incomplete parameter set). In addition, by Proposi-
tion 6.6 that ancestor clan is uniquely determined. Last but not least, Proposition 4.9 implies that
the largest ¢ (in the sense of divisibility) really is unique. If Clan(t,v,k) <., Clan(¢1,v1,k;) and
Clan(t, v, k) <¢, Clan(ta,ve, ko) for different divisors ¢; and ¢y and ancestor clans Clan(t;, v;, k;), @ €
{1, 2} then there is another ancestor clan Clan(ts, vs, k3) with Clan(t,v, k) <icm(cy,cp) Clan(ts, vs, k3).
(For this, note that lem(cy, o) # % as A < Amax(t, v, k) by assumption.)

In the other direction, we describe the set of parameter sets which are mapped onto a given
ancestor clan Clan(#',v', k"). Note that Clan(t',v', k') <. Clan(¢",v", k") implies that

t"(v’,k’,m . A)\(tl,vl, kl)) S t”'(v”, k”, m . A)\(t”,’l)”,k”)),
c

for all m < % divisible by ¢. Hence the parameter sets in F,,(t',v', k') for such m have

larger ancestors. O

A few remarks are in order. The importance of Section 4 is that it gives a systematic way to
compute all clans including ancestor clans above a given clan. For a given ¢, v and k, one computes

via Proposition 4.2 the subclan generators cfv’k for each of the operations D € {red_l, der™", res 1},

if defined. As long as that number is not /\’A“;X, one repeats the process after replacing ¢, v and
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k by t', v' and k' where D(t-(v,k,cAX)) = t'-(v, k', AX'). The ancestor clans resulting from that
computation are stored. Theorem 6.8 allows to classify admissible parameter sets by mapping
them to the appropriate ancestor clan. In practice, it turns out that the number of ancestor clans
is reasonably small.

Let us get back to the ancestors of the parameter sets 5-(24,8, \) discussed previously in Ex-

ample 3.1:

Example 6.9 The relationships between ancestor clans above Clan(5, 24, 8) are the following. Note

that Clan(5,24,8) itself is ancestor clan.

(0,8,0) (0,2,2)
Clan(5,24,8) <3 Clan(13,32,16) <17 Clan(17,36,18),

(0,0,1) (
Clan(5,24,8) <;7 Clan(6,25,8)

(1,0,0) (1,8
Clan(5,24,8) <19 Clan(6,24,8) <

1,0,0)
<19 Clan(7,25,8),

,0)
3 Clan(15, 32, 16).

It is time to draw a picture, thereby discovering more relations between these ancestor clans (cf.

Fig. 6). O
17-(36, 18, 7-(25,8, 77775 - 6) g <a
der Zres—2 res 1

17)m 17|35
13-(32, 16, 6-(24,8, {5 - 3) m <37
der res” ! red™!
3|m 17|m 19|m

5-(24,8,m - 1)m<s.a7.19

Figure 6: The ancestor clans above Clan(5, 24, 8)

7 Ancestor clans of t-designs with large ¢

Let us get back to the main goal of this paper, which is the classification of known #-designs with
t > 5. We are referring to a list of around 7000 parameter sets of such designs, each of which has

been constructed explicitly (at the time of writing this article, which is Spring 2001). Most of

31



these designs have been constructed by researchers in Bayreuth, Germany (we refer to [2]), but
the list includes also designs constructed elsewhere. In Table 2, we present the ancestor clans of
these t-designs. The ancestor clans are denoted in the form ¢-(v, k,m - AX(t,v,k)) where m varies
between 1 and Apax(t,v,k)/ANt, v, k), as indicated in the subscript. We cannot show detailed
information about the families, except that we indicate the number of realizable families and the
number of realizable parameter sets for each clan (a family is realizable if it contains is at least one

realizable parameter set). Interestingly, we can classify the parameter sets by 80 ancestor clans.
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€€

ancestor clan ‘ # f. ‘ # d. H ancestor clan ‘ # f ‘ # d. H ancestor clan ‘ # f. ‘ # d. ‘
5-(12,6,m - l)mg 2 2 8-(24,12,m - 70)m526 4 35 17-(36,18,m - 1)mS19 9 330
5—(16, 8, m - 5)m§33 1 1 8—(31, 10, m - 1)m§253 109 555 19—(44, 22, m - 20)m§115 4 13
5-(19,6,m - 2)m§7 2 2 8-(34,12,m - 10)m§1495 4 16 21-(44,22,m - 1)m§23 11 90
5—(24, 8, m - l)mggf;g 284 284 8—(37, 12, m - 21)m§1131 32 320 21—(48, 24, m - 195)m§15 2 20
5—(24, 12, m - G)mggggg 2921 2921 8—(42, 10, m - 3)m§187 3 12 1—(96, 24, m - 5)m§13505 3 12
5-(28,10,m - 7)m§4807 10 10 8-(52,10,m - 2)m<473 2 2 23-(48,24,m - 5)m§5 1 14
5-(30,7,m - 30)m§10 1 1 9-(20,10,m - 1),, m<11 5 37 23-(52,26,m - 42)m§87 3 24
5-(32,8,m - 5)m§585 17 17 9-(31,10,m - 2),, m<11 5 52 25-(52,26,m - 9)m53 1 1
5-(33,6,m - 4)m§7 3 9-(32,16,m - 33),, m<7429 1 1 25-(56,28,m - 5)m§899 3 12
5-(54,6,m - 1)m§49 1 9-(36,12,m - 15),, m<19 25 211 26-(85,28,m - 1)m§1711 15 15
6-(14,7,m - 4) <o 4 9-(42,10,m - 3)m<11 2 2 27-(56,28,m - 1) <29 6| 11
6-(22,7,m - 4)m§4 1 9-(50,12,m - 20),, m<53 11 11 8-(60, 30, m - 8)m§62 2 20
6-(24,8,m - 3)m§51 16 16 10—(36, 12,m - 5)m m<65 13 167 9-(60, 30, m - 1)m§31 14 36
6-(25,8,m - 3)m§57 18 54 0-(37,12,m - 9),, m<39 7 71 0-(62,31,m - 16)m§2 1 9
6-(28,10,m - 35)m5209 31 124 1-(24,12,m - 1), <1 6 123 5-(72,36,m - 1)m337 2 2
6-(30,7,m - 12)m§2 1 4 11 (30,15, m - 6)m§646 152 | 1210 9-(80,40,m - 1)m§41 1 1
6-(33, 8, m - 3)m§117 7 7 1-(36, 18, m - 220)m§2185 1 1 1—(84, 42, m - 1)m§43 13 15
6-(38,7,m - 4)m<s 1 1 1-(37,12,m - 2) <13 4| 81 45-(92,46,m - 1)<a7 1 1
6—(40, 10, m - 2)m§23188 9 36 1—(45, 15, m - 22)m§2108 2 8 57 (116, 58, m - 1)m§59 2 2
7—(16, 8, m - 3)m§3 1 ) 2—(46, 16, m - 44 )m§1054 1 4 59—(120, 60, m - 1)m§61 2 2
7-(20,10,m - 2)m<143 56 | 276 13-(30,15,m - 4)m<34 8| 191 65-(132,66,m - 1)m<er 1 1
7—(24, 12, m - 14)m§442 170 677 13—(32, 16, m - 3)m§323 144 | 2902 77—(156, 78, m - 1)m§79 1 1
7—(25, 8, m - 6)m§3 1 4 13—(45, 15, m - 4)m§124 3 30 101—(204, 102, m - 1)m§103 1 1
7-(32,16,m - 55)m§37145 1 1 14-(30,15,m - 8)m§2 1 55 || 125-(252,126,m - 1)m§127 1 1
7-(34,8,m - 3)m<g 2 3 15-(32,16,m - 1)m<17 8 | 418 || 161-(324,162,m - 1)m<163 1 1
7-(40,10,m - 4)m51364 8 80 15-(49,16,m - 2)m517 1 1 || 237-(476,238,m - 1)mS23g 2 2
7-(41,10,m - 8)m§748 8 32 16-(74,18,m - 3)m§551 1 1

Table 2: Ancestor clans of existing ¢-designs with ¢t > 5 (# f. = # families, # d. = # design parameter sets)




