
f0; 1g-Solutions of Integer Linear EquationSystems?Anton Betten, Alfred WassermannDepartment of MathematicsUniversity of BayreuthGermanyAbstract. A parallel version of an algorithm for solving systems of in-teger linear equations with f0; 1g-variables is presented. The algorithmis based on lattice basis reduction in combination with explicit enumer-ation.1 The algorithmA parallel version of an algorithm proposed by Kaib and Ritter [4] has beenimplemented with PVM to �nd all f0; 1g-solutions of integer linear equationsystems. For example such systems are of interest in the construction of blockdesigns, see [1, 2, 3, 8]: It is possible to �nd block designs if one �nds f0; 1g-vectors x and � > 0 with A � x = �(1; 1; : : : ; 1)>; (1)where A is a matrix consisting of nonnegative integers. Our problem is alsorelated to cryptography [6] and theory of numbers [7].The algorithm { using lattice basis reduction [5] { constructs a basis for theequation kernel that consists of short integer vectors. Then the integer linearcombinations of these basis vectors are enumerated and tested if they yieldf0; 1g-solutions of (1). For an explicit description of the algorithm see [8].2 ParallelizationThe backtracking algorithm is now implemented using PVM. The algorithmruns along a search tree with an unpredictable number of childs at each vertex.Actually, we search all solutions of a discrete optimization problem, the optimalvalue of the objective function being well known in advance.? This research was supported by Procope.



���� ���� ���� ����

�����������������������������������
���
���
���

����

����

root vertex

����

����

The parallel version of the backtracking algorithm is easily given: We �x themaximal number of tasks allowed to be processed by the virtual machine. Thisnumber depends for instance on the number of machines or on the amount ofmain memory available.There is a principal task controlling every other task, that we will call \mas-ter". After some preprocessing, i.e. LLL reduction, the master creates subor-dinate tasks, called \slaves", that possess their own search loop. Each slaveenumerates a certain part of the search tree. After enumerating all branches ofits subtree the slave is allowed to die.If the �xed maximal number of tasks is not reached during some stage of thealgorithm, a new task will be created by the master. Therefore, the slave whoseems to have gained the least progress is told to split, i.e. to create a new slave,who does part of the work of the old task. The search tree of the old task isshrunken.
moment. stage

Master

Slave

of computation

Slave

Master

Slave

The slave who got the split message still �nishes the branch of the root treein which he is currently computing (rightmost branch in the �gure). But justbefore doing so he creates a new slave and initiates a task containg the remainingbranches (of the root vertex). So, the original tree of the slave is divided into twoparts, the momentary subtree is cut o� and will be �nished by the slave himself,the remaining branches are carried over to the new slave. Note that splitting isalways done at the level of the root vertex. Otherwise, the shape of the subtreeswould become too di�cult to handle. Here, the root vertex and its �rst edge toa deeper node is all one needs to know for de�ning a subtree: the tree is de�nedto be all those subtrees of the root vertex which start at the special edge andcontinue with the following branches { remember that we enumerate a basis of a



kernel so there is a notion of left and right in each level. The new slave informsthe master of his existence and both slaves start to work on their two smallersubproblems.Implicitely, this strategy implies dynamical load balancing: Each machinereceives a new task as soon as it has �nished the previous one. This reduces thesize of other trees. Therefore slower machines get help by faster machines.Note that perhaps a split request cannot be carried out. Namely, if the search(sub-) tree does not possess any more branches leading down from the root vertexexcept that one containing the momentary position of computation. The next�gure shows the messages needed for a task split.
Slave 2

DATA

Master

Slave 1

SPAWN

SPLIT

SPLIT OK

In a �rst version of our algorithm, we made PVM to choose by itself themachine where to spawn the new task. But we noticed bad behaviour of thealgorithm, because some machines got too much load. Therefore we decided toput machines and tasks under control of the master. So each split message ofthe master names a certain machine where the new task should be spawned.3 ResultsSince we do not have an homogenous pool of computers we indicate the speed ofeach computer of our virtual machine by percentage of the speed of a Pentium90 running under Linux. In order to measure the running time, each computer ofthe virtual machine was tested with the serial version of the program, computingjust a small example. machine type P90 speedHP 9000 755 / 99 MHz 303 %HP 9000 712 / 80 MHz 240 %Silicon Graphics SGI5 181 %Intel Pentium 90 MHz 100 %Several tests with PVM were done with the input matrix KM_PGL23plus_t6_k8and � = 36 from [2]. This is a 28�119 matrix with dimension of the search spaceequal to 93. Each solution is a 6-(25,8,36) design. For a detailed explanation ofthe automorphism group see also [2]. The following table lists the results of our



tests on four di�erent con�gurations of virtual machines. The second column liststhe number of computers of each type we used. The third column contains thetypes of these computers. The fourth column contains the collected percentageof Pentium 90 speed of the computers in the virtual machine. In the column"No. Proc." the maximal number of slave processes is noted which were allowedto run simultaneously on the virtual machine. The last column gives the timeafter which the result was printed on the screen.No. Computer P 90 speed No. Proc. Time1. 3 Silicon Graphics SGI5 181 %3 543 % 12 323 min2. 2 HPPA 9000/755 99 MHz 303 %1 HPPA 9000/712 80 MHz 240 %2 Silicon Graphics SGI5 181 %5 1208 % 24 160 min3. 3 HPPA 9000/755 99 MHz 303 %1 HPPA 9000/712 80 MHz 240 %6 Silicon Graphics SGI5 181 %10 2235 % 45 89 min4. 6 HPPA 9000/755 99 MHz 303 %1 HPPA 9000/712 80 MHz 240 %6 Silicon Graphics SGI5 181 %13 3144 % 58 56 minMoreover, with the fourth con�guration we were able to �nd 10008 solutions forthe same matrix KM_PGL23plus_t6_k8 and � = 45 which were previously notknown to exist. The computing time we needed was 7:34 hours.References1. A. Betten, A. Kerber, A. Kohnert, R. Laue, A. Wassermann: The Disco-very of Simple 7-Designs with Automorphism Group P�L(2; 32). AAECC 11 inLecture Notes in Computer Science 547 (1995), 281{293.2. A. Betten, R. Laue, A. Wassermann: Simple 7-Designs With Small Parame-ters, Spetses, 1996.3. D. L. Kreher, S. P. Radziszowski: Finding Simple t-Designs by Using BasisReduction. Congressus Numerantium 55 (1986), 235{244.4. M. Kaib, H. Ritter: Block Reduction for Arbitrary Norms. Preprint 1995.5. A. K. Lenstra, H. W. Lenstra Jr., L. Lov�asz: Factoring Polynomials with Ra-tional Coe�cients, Math. Ann. 261 (1982), 515{534.6. J. C. Lagarias, A. M. Odlyzko: Solving low-density subset sum problems.J. Assoc. Comp. Mach. 32 (1985), 229{246.7. C. P. Schnorr: Factoring Integers and Computing Discrete Logarithms via Dio-phantine Approximation. Advances in Cryptology { Eurocrypt '91 in Lecture Notesin Computer Science 547 (1991), 281{293.8. A. Wassermann: Finding Simple t-Designs with Enumeration Techniques, sub-mitted.This article was processed using the LATEX macro package with LLNCS style


