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tWe introdu
e generalizations of earlier dire
t methods for 
onstru
ting largesets of t�designs. These are based on assembling systemati
ally orbits oft�homogeneous permutation groups in their indu
ed a
tions on k�subsets.By means of these te
hniques and the known re
ursive methods we 
onstru
tan extensive number of new large sets, in
luding new in�nite families. In par-ti
ular, a new series of LS[3℄(2(2 + m); 6 � 3m � 2; 16 � 3m � 2) is obtained.This also provides the smallest known v for a t� (v; k; �) design when t � 16.We present our results 
ompa
tly for v � 61, in tables derived from Pas
al'striangle modulo appropriate primes.1 Introdu
tionLarge sets of t-designs have been used in re
ursive 
onstru
tions for over a de
ade.Most 
elebrated is the pioneering work of Teirlin
k who showed in [26℄ that sim-ple t-designs exist for all t. Unfortunately, for a given t, Teirlin
k's 
onstru
tionsresult in t-designs with extremely large values for the parameters v and �. Subse-quently, other resear
hers, parti
ularly Khosrovshahi and Ajoodani-Namini, greatly1




ontributed to the repertory of re
ursive methods. By means of these te
hniquesthe value of v for whi
h t-designs are now 
onstru
tible 
an be made 
onsiderablysmaller.Re
ursive methods require a basis of large sets from whi
h to start. Then in�niteseries of parameter sets are settled by re
ursion. In this arti
le, we present severalnew large sets whi
h, in 
ombination with already known 
ases and the knownre
ursive methods, handle many admissible parameter sets.By an admissible parameter set for a putative LS[N ℄(t; k; v) we mean parameters(N; t; k; v) whi
h satisfy 
ertain obvious divisibility 
onditions as dis
ussed in thenext se
tion. In the 
ase of halvings, i. e. LS[2℄(t; k; v), Ajoodani-Namini [1℄ hasshown that for t = 2 all admissible parameter sets are realizable. For larger t thereare partial results for k up to 16 [21℄. We review what is presently known by meansof the following theorem.Theorem 1 Let p be an odd prime, and 0 < t < k < v be integers. Then, largesets LS[p℄(t; k; v) are realizable as follows:i) For all k � 11 all admissible LS[3℄(2; k; v) are realizable.ii) For all k � 8 all admissible LS[3℄(3; k; v) are realizable.iii) For all k � 8 all admissible LS[3℄(4; k; v) are realizable.iv) For all k � 5 all admissible LS[5℄(2; k; v) are realizable, with the well knownex
eptions of an LS[5℄(2; 3; 7) and an LS[5℄(2; 4; 7).v) For all k � 5 all admissible LS[5℄(3; k; v) are realizable, with the well knownex
eption of an LS[5℄(3; 4; 8).vi) For all k � 6 all admissible LS[7℄(2; k; v) are realizable.vii) For all k � 10 all admissible LS[11℄(2; k; v) are realizable.viii) For all k � 5 all admissible LS[29℄(2; k; v) are realizable.There exist LS[3℄(2(2 +m); 6 � 3m � 2; 16 � 3m � 2) for all natural numbers m.This provides the smallest known v when t � 16.Our results are presented for v � 61 in tables that are dedu
ed from Pas
al'striangle, making it easy to depi
t unsettled 
ases. Disposing of the unsettled 
ases2



will either require new re
ursive te
hniques or dire
t 
onstru
tion methods di�erentfrom the ones employed in this paper.The large sets in this paper are obtained by appropriately assembling orbits oft-homogeneous groups. This approa
h had been employed earlier, see [12℄, withthe additional restri
tion that all orbits of k-sets were of length equal to the grouporder. In this paper we generalize the approa
h by also 
onsidering situations whereorbits of k-sets of various lengths 
an o

ur. In some 
ases, a random sear
h fordisjoint t-designs 
ontributes large sets from non t-homogeneous group a
tions. The
omputations here were made using DISCRETA, a software pa
kage developed atBayreuth University, as well as a spe
ial purpose 
omputer program written for thisarti
le.This arti
le was started when the �rst author visited the se
ond author at theUniversity of Nebraska - Lin
oln. The �rst author thanks this institute for its kindhospitality and the fruitful atmosphere whi
h stimulated su

essful resear
h.2 PreliminariesIn this paper, V denotes a �nite point set with jV j = v, t and k are positive integerssu
h that 0 < t < k � v, and the 
olle
tion of all k-subsets of V is denoted by �Vk�.A simple t�(v; k; �) design, (V;B), is a v-element set V of points and a 
olle
tionB of k-element subsets of V 
alled blo
ks, su
h that every t-element subset of V is
ontained in pre
isely � blo
ks. All t� (v; k; �) designs dis
ussed in this paper aresimple.If (V;B) is a t� (v; k; �) design, and x 2 V , the derived design with respe
t to xis (V n fxg;D), where D 2 D if and only if D = B n fxg, for x 2 B 2 B. A deriveddesign is a (t� 1)� (v � 1; k � 1; �) design.If (V;B) is a t� (v; k; �) design, and x 2 V , the residual design with respe
t tox is the design (V n fxg;R), where K 2 R if and only if x 62 K 2 B. A residualdesign is a (t� 1)� (v � 1; k; �0) design.It is well known that for ea
h s, 0 � s � t, every t � (v; k; �) design is also ans� (v; k; �s) design, where �s = ��v�st�s�=�k�st�s�: Thus, a set of ne
essary divisibility
onditions for the existen
e of a t� (v; k; �) design is that ��v�st�s� � 0 mod �k�st�s�,for 0 � s < t.By a large set LS[N ℄(t; k; v) we mean a 
olle
tion L = f(V;Bi)gNi=1 of t�(v; k; �)designs where fBigNi=1 is a partition of �Vk�.The number of blo
ks in a t � (v; k; �) design is b = �0 = ��vt�=�kt�. Thus, ane
essary 
ondition for a large set LS[N ℄(t; k; v) to exist is that Nb = �vk�. This is3



equivalent to �N = �v�tk�t�. Thus, N must divide �v�tk�t�.A group a
tion GjV is 
alled transitive if V 
onsists of a single G-orbit. Thegroup a
tion GjV is said to be t-homogeneous if the indu
ed a
tion of G on �Vt � istransitive. For brevity, by a k�orbit we mean an orbit of G in its indu
ed a
tionon �Vk�.Let B = fBigNi=1 be the 
olle
tion of designs in a large set L. A group G is saidto be an automorphism group of L if B g=B for all g 2 G, that is, if Bgi 2 B forall Bi 2 B and g 2 G. Equivalently, we say that a large set with this property isG-invariant. If the stronger 
ondition that Bgi=Bi for all Bi 2 B and g 2 G holds,we say that a large set is [G℄-invariant.In 1976, Kramer and Mesner [24℄ des
ribed 
ertain matrix invariants At;k as-so
iated with a given group a
tion GjV . Roughly speaking At;k is the result offusing under G the in
iden
e matrix between �Vt � and �Vk�, where in
iden
e is setin
lusion. More pre
isely, for a given group a
tion GjV , let � = f�igri=1 be the
olle
tion of G-orbits on �Vt �, and � = f�jgsj=1 be the 
olle
tion of G-orbits on�Xk �. For a �xed member T of �i, the number aij(T ) of members K 2 �j su
h thatT � K is independent of the 
hoi
e of T 2 �i, hen
e we may write aij = aij(T ).We de�ne the r � s matrix At;k = At;k(GjX) by At;k = (aij).In [24℄ Kramer and Mesner state a theorem whi
h provides ne
essary and suf-�
ient 
onditions for the existen
e of a G�invariant t � (v; k; �) design in termsof the matrix At;k above. Beginning with a given group a
tion GjV , the theoremallows for the 
onstru
tion of all su
h G�invariant t�designs. In [12℄ the authorsdes
ribe a slight generalization of the theorem whi
h provides means for 
onstru
t-ing [G℄-invariant large sets of t� (v; k; �) designs. In parti
ular, the authors of [12℄turn their attention to t�homogeneous, G-semiregular large sets of t�designs.3 Dire
t Constru
tionsThe methods in this se
tion are based on the 
on
ept of assembling orbits of apermutation group into t-designs so that these designs form a large set.We use the Kramer-Mesner method to �nd t-designs from the orbits of a permu-tation group GjV in its indu
ed a
tion on k-subsets. Thus, we may �rst 
onstru
tdisjoint designs with various values of � stepwise by �rst sear
hing for a t-designwith a small �, removing all orbits used for this design before the next step, and
ontinuing this way until all orbits are 
overed by some t-design. Then we try to
ombine these designs into disjoint designs whi
h all have the same parameter �.Mathemati
ally, this problem 
an be des
ribed by the solutions of a system of lineardiophantine equations. 4



Theorem 2 Let t < k < v be natural numbers, and V a set of v points. Supposethat for natural numbers � and N , �N = �v�tk�t�. Let P be a partition of �Vk�into disjoint t-designs su
h that, for j = 1; � � � ; n, there are exa
tly aj designs withparameter �j in P . Let A = (aij) be an m�n integer matrix su
h that 0 � aij � aj,and for ea
h i = 1; : : : ;m: nXj=1 aij�j = �: (3.1)Then, ea
h integer solution ve
tor (N1; � � � ; Nm) to the diophantine system:(N1; � � � ; Nm)A = (a1; � � � ; an) (3.2)determines a large set LS[N ℄(t; k; v) by sele
ting Ni t�(v; k; �) designs whi
h 
or-respond to the ith row (ai1; � � � ; ain). In su
h a solution aij designs have parameterst� (v; k; �j).Proof: If D1 and D2 are two disjoint t-designs on the same point set V , with Dia t � (v; k; `i) design, then their union D1 [ D2 is a t � (v; k; `) design with with` = `1+`2. Ea
h row of A allows us to 
onstru
t a t�(v; k; �) design as the union ofdisjoint designs, and a solution (N1; � � � ; Nm) to (3.2) allows us to assemble exa
tlythe 
orre
t number of disjoint t� (v; k; �) designs to 
over �Vk� exa
tly. 2Of 
ourse, there may be many di�erent partition types of �Vk� into disjoint t-designs, as well as di�erent partitions of the same type. In general, Theorem 2does not 
ompletely solve the problem of des
ribing all LS[N ℄(t; k; v) whi
h 
an beobtained from the orbits on k�subsets of a pres
ribed permutation group GjV .There are some spe
ial 
ases where a �nest partition of the set of all k-orbitsinto t-designs is unique. Obviously this is the 
ase if the group has only one orbiton t-subsets, i. e. the group is t-homogeneous. Then, ea
h k�orbit is a t-design andthe �nest partition is just the set of all k-orbits. So, in this 
ase Theorem 2 allowsus to �nd a 
omplete solution.As an example 
onsider G = P�L(2; 27) in its a
tion on the proje
tive line ofv = 28 points. Let k = 11 and t = 3: Sin
e this group is 3-homogeneous, ea
hk-orbit is a 3-design. These orbits form our starting partition P . Here, there area1 = 343 designs with �1 = 2970, a2 = 33 designs with �2 = 1485, and a3 = 14designs with �3 = 990. We note that 495 divides ea
h of �1; �2 and �3. We have�v�tk�t� = �258 � = 495 � 5 � 19 � 23 where ea
h � must be a multiple of 495. We sear
hfor an LS[5℄(3; 11; 28) using Theorem 2. We 
an simplify our �rst equationnXj=1 aij�j = �5



by dividing both sides by 495 and get6 � a11 + 3 � a12 + 2 � a13 = 437 = 19 � 23:A �rst solution ve
tor is (a11; a12; a13) = (72; 1; 1). A se
ond solution is (a21; a22;a23) = (55; 29; 10). Then (N1; N2) = (4; 1) solves diophantine system (3.2) so thatwe have to 
ombine 4 designs of the �rst kind with 1 design of the se
ond kind toget the desired LS[5℄(3; 11; 28).In what follows we present some further examples of large sets obtained byapplying Theorem 2. We report here some orbit statisti
s obtained with the helpof DISCRETA.Examples 1� An LS[77℄(1; 6; 12). Here the 
y
li
 group of order 12 regular on points, isa
ting on the set of all 6-subsets with 75 orbits of length 12, 3 orbits of length6, 1 orbit of the length 4, and 1 of length 2.� An LS[11℄(2; 6; 13). Here the group AGL(1; 13) has 9 orbits of size 156, 3orbits of length 78, 1 orbit of length 52 and 1 of length 26. These 
an be
ombined into 11 1-designs with 156 blo
ks ea
h. Using Alltop's theoremthis large set extends to an LS[11℄(3; 7; 14).� An LS[2℄(3; 6; 12). The group PSL(2; 11) has 1 orbit of length 330, 2 orbitsof length 132, and 3 orbits of length 110.� An LS[2℄(3; 8; 20). The group PSL(2; 19) has 29 orbits of length 3420, 13orbits of length 1710, 3 orbits of length 855, 3 orbits of length 570, and 1orbit of length 285.� An LS[N ℄(3; 11; 32). Here the group PSL(2; 31) has 5 orbits of sizejPSL(2; 31)j=5 and 12 orbits of length jPSL(2; 31)j=3. All other orbits havelength jPSL(2; 31)j. Sin
e in ea
h 
ase the number of orbits is a multipleof the stabilizer order, one 
an always 
ombine orbits to form a design withexa
tly jPSL(2; 31)j blo
ks. Thus, there exists an LS[29 � 13 � 23℄(3; 11; 32).� G = P�L(2; 32) is 4-homogeneous on the 33 points of the proje
tive line, andthis group has 32 orbits on 7-sets. There are 22 orbits of length jGj, 7 orbitsof length jGj=2 and 3 orbits of length jGj=5. Combining 4 orbits of lengthjGj=2 with two orbits of size jGj gives 24 = 8 � 3 sets of size jGj. We 
ombine8 of these sets with one orbit of length jGj=5 three times and thus get anLS[3℄(4; 7; 33). 6



� Again, let G = P�L(2; 32) a
t on 33 points as above. Then, in its indu
eda
tion on 10-sets, G has 538 orbits of length jGj, 54 orbits of length jGj=2, 1orbit of length jGj=5, and 3 orbits of length jGj=10. These 
an be 
ombinedto form an LS[39℄(4; 10; 33), an LS[29℄(4; 10; 33), an LS[13℄(4; 10; 33), and anLS[3℄(4; 10; 33).� Consider G = PGL(2; 37) in its a
tion on the proje
tive line of 38 points.Then, in its indu
ed a
tion on 7-sets G has 225 orbits of length jGj, 46 orbitsof length jGj=2, and 4 orbits of length jGj=3. These 
an be 
ombined to anLS[2℄(3; 7; 38).In a spe
ial 
ase we 
an determine N in a more 
onvenient way.Theorem 3 If there exists a partition of �vk� into a1 designs with parameters t �(v; k; q�) and a2 designs with parameters t � (v; k; �) for some natural number qthen large sets LS[N ℄(t; k; v) 
an be obtained from this partition for 
ertain divisorsN of a2 + qa1. For su
h an N there must exist a non-negative integer m � a2=qsu
h that N divides both a2 �mq and a1 +m.Proof: From the starting partition 
ombine q of the t� (v; k; �) designs to form at � (v; k; q�) design. If this is done m times there result a1 + m designs withparameters t � (v; k; q�). Suppose that Nd = a1 + m and Ne = a2 � mq forsome natural numbers d; e. Combining d designs with parameters t � (v; k; q�)with e designs with parameters t � (v; k; �) results in a t � (v; k; �0) design where�0 = (dq + e)�. Repeating this N times until all designs are used results in thedesired large set. The number N then must divide a2 + qa1. To see this simplyinsert m = dN � a1 into Ne = a2 �mq to obtain a2 + a1q = (dq + e)N . Thus, thepossible values of N are divisors of a2 + qa1. 2The group G = P�L(2; 32) is 4-homogeneous on 33 points. The orbits of Gpartition the set of all 10-sets into 538 4-(33,10,840) designs, 54 4-(33,10,420)designs, 1 4-(33,10,168) design, and 3 4-(33,10,84) designs. The last three typesgive exa
tly 55 4-(33,10,420) designs. So, we get a partition into designs of twotypes as required for Theorem 3. We have q = 2, and a2 + 2a1 = 1131 = 29 � 39.>From 55 = 8 � 2+39, and 538+8 = 546 = 39 � 14 we get an LS[39℄(4; 10; 33). Also,from 55 = 13 � 2+29, and 538 +13 = 551 = 29 � 19 we get an LS[29℄(4; 10; 33). Thedivisors of 39 yield further large sets. But the divisors 3 �29 and 13 �29 are too largefor a large set. 7



By the translation group T (n; p) we mean a multipli
ative elementary abeliangroup of order pn. In the following theorem we 
onsider the right regular a
tion ofT (2; p) on itself.Theorem 4 Let p be a prime, and G = V = T (2; p). Then there exists an LS[p+1℄(1; p; p2) where T (2; p) a
ts as a group of automorphisms of ea
h of the designs inthe large set. Thus, the large set is [G℄�invariant.Proof : The translation group T (2; p) has exa
tly p+ 1 subgroups of order p, ea
hleaving invariant under the group a
tion of right multipli
ation the set of elementsin that subgroup and its right 
osets. No other subset of p elements is left invariantby su
h a subgroup. Ea
h su
h 
olle
tion of p-sets forms a single orbit under thefull group. So, the whole group has exa
tly p+1 orbits of size p on p-sets. All otherp-sets must lie in orbits of size p2. There remain 1p2 (�p2p � � p(p + 1)) orbits of sizep2. This number 
an be represented in the form n � (p+1) for some natural numbern. So, we 
an form a large set of p+ 1 designs by 
omposing ea
h design out of norbits of size p2 and one orbit of size p. 2For example p = 5 yields 2124 orbits of size 25 and 6 orbits of size 5 on the5-subsets of T (2; 5). Sin
e 2124 is 354�6, a large set 
an be obtained by 
onstru
tingdisjoint designs ea
h formed by 
ombining 354 orbits of size 25 and one of size 5.If we had tried the 
y
li
 group of order 25 we would have obtained only one orbitof size 5 and 2125 orbits of size 25. This would not produ
e any large sets. Thus,we see that no simple divisibility 
onditions 
an 
over this 
ase. One 
an easilygeneralize Theorem 4 to higher powers of p.Generally, group orbits are a ri
h sour
e for the required partitions. We will
onsider several series of groups and therefore look for spe
ial 
ases whi
h are easierto verify in the 
ontext of Theorem 3. First we look for a 
ase where N = �vk�=jGj.The 
ase where all k-orbits have length the group order, i. e. semiregular largesets, has been treated theoreti
ally for the groups PSL(2; q) by Cusa
k and Magliv-eras [12℄. We now 
onsider a slightly more general 
ase.Theorem 5 Let p be a prime and suppose that GjV is a t�homogeneous groupa
tion where ea
h orbit of G on �Vk� has length either jGj or jGj=p: Suppose furtherthat jGj divides �vk�, v = jV j. Then, there exists an LS[N ℄(t; k; v), where N =�vk�=jGj:Proof : Let G have a orbits of size jGj and b orbits of size jGj=p. Thena+ b = z8



is a natural number. The union of all orbits is the set of all k-subsets. Thus, weget a se
ond equation a jGj+ b jGj=p = �vk�:Solving for b yields b = pp� 1fz � 1jGj�vk�g:If jGj divides �vk� then b is a multiple of p, so that we 
an repeatedly 
ombine porbits of size jGj=p to form a t-design with jGj blo
ks ea
h until all orbits of thislength are exhausted. Ea
h of the remaining orbits of length jGj also forms su
h adesign. Sin
e all orbits are disjoint, these designs form a partition of the 
ompletedesign into designs with jGj blo
ks ea
h. Dividing �vk� by jGj then gives the numberof designs N . 2The 
y
li
 group of order v, in its regular representation is of 
ourse transitiveand thus, for g
d(v; k) = 1 or g
d(v; k) = q, where q is a prime and v divides �vk�,we get an LS[N ℄(1; k; v), where N = �vk�=v.Several new large sets are obtained from Theorem 5 by looking at well knownfamilies of groups whi
h are at least 2-homogeneous. In parti
ular, we obtain thefollowing result.Theorem 6 Let p be an odd prime. For p � 1 mod 4 and f any natural number,or p � 3 mod 4 and f an even natural number, let d = pf � 1. For p � 3 mod 4and f an odd natural number let d = (pf � 1)=2. Let 2 � k � v = pf and suppose ddivides �pf�1k�1 �. Set N = 1d�pf�1k�1 �. If p does not divide k and g
d(k(k�1); d) 2 f1; qgfor some prime q then there exists an LS[N ℄(2; k; v).Proof : If p � 1 mod 4, f arbitrary; or p � 3 mod 4 and f even, then AGL(1; pf )is 2-homogeneous on pf points. If p � 3 mod 4 and f is odd, then AGL(1; pf ) andits unique subgroup AGL(1; pf )=2 of index 2 are 2-homogeneous on pf points.In order to apply Theorem 5 we have to �nd out for whi
h values of k su
h agroup G has orbits of sizes jGj or jGj=q only, where q is some prime. So, we examinethe 
y
le types of the elements of G to see whether a k-subset is left invariant. Wehave to single out the 
ases where, besides the identity, either no elements or onlyelements of some �xed prime order q may leave su
h a k-subset invariant.The group AGL(1; pf ) has an elementary abelian normal subgroup of order pfand one 
onjuga
y 
lass of 
omplements whi
h are 
y
li
 of order pf � 1. Elements9



other than the identity have either order p, 
omprised of 
y
les of length p only,or have just one �xed point and (pf � 1)=d 
y
les of length d for some divisor dof pf � 1. The subgroup AGL(1; pf )=2 
ontains the elements of order p and thosefurther elements whose order divides (pf � 1)=2.If G = AGL(1; pf ) then for k prime to p and g
d(k(k � 1); pf � 1) 2 f1; qg forsome prime q, the 
ondition that jAGL(1; pf )j = pf (pf � 1) divides �pfk � suÆ
es toobtain an LS[N ℄(2; k; pf ).If p � 3 mod 4 and f is odd then for k prime to p and g
d(k(k�1); (pf �1)=2) 2f1; qg for some prime q, the 
ondition that jAGL(1; pf )j = pf (pf �1)=2 divides �pfk �suÆ
es to obtain an LS[N ℄(2; k; pf ). 2Examples 2� G = AGL(1; 17) has order 17 � 16. For k = 6 we have 42 orbits of size 272 and7 orbits of size 15. So there is an LS[7℄(2; 6; 17). G = AGL(1; 23)=2 has order23�11. For k = 5 we have 133 orbits of size 253. So there is an LS[133℄(2; 5; 23).For G = AGL(1; 27) we �nd an LS[50℄(2; 4; 27), an LS[230℄(2; 5; 27), and anLS[2530℄(2; 7; 27).� G = AGL(1; 29) has 12298 orbits of size jGj, 70 orbits of size jGj=2, and 3orbits of size jGj=4 on 9-sets. Combining twi
e 2 of the orbits of size jGj=2adds two more designs with jGj blo
ks to the regular ones. Thus, there arenow 12300 of these designs, 66 designs with jGj=2 blo
ks, and the remaining3 designs with jGj=4 blo
ks. Ea
h of these numbers is a multiple of 3 so, one
an build an LS[3℄(2; 9; 29) out of this orbit partition.� G = AGL(1; 31) has 646305 orbits of size jGj, 50 orbits of size jGj=3, 6 orbitsof size jGj=5, and 2 orbits of size jGj=15 on 15-sets. The 
orresponding valuesof � are 105, 35, 21, 7 respe
tively. Combining the two designs of � = 7with 1 design of � = 21 yields one more design with � = 35. The remaining5 designs with � = 21 yield one further design with � = 105. Now, bothnumbers 646306 and 51 are divisible by 17 so that we get an LS[17℄(2; 15; 31).By usings Alltop's 
onstru
tion, see below, we get an LS[17℄(3; 16; 32).Theorem 7 Let p be an odd prime. For p � 1 mod 4 and f any natural number,or p � 3 mod 4 and f an even natural number let d = pf � 1. For p � 3 mod 4and f an odd natural number let d = (pf � 1)=2. Let 2 � k � v = pf . Supposethat d divides �pf�1k�1 � and let N = 1d�pf�1k�1 �. If g
d(p; k(k � 1) = 1 and at most oneof the greatest 
ommon divisors g
d(k(k � 1)(k � 2); d), g
d(k; pf + 1) (respe
tively10



g
d(k; (pf +1)=2 when pf � 3 mod 4), is a prime q and otherwise the g
d is always1, then there exists an LS[N ℄(3; k; v).Proof : PGL(2; pf ) is 3-homogeneous on pf + 1 points. If p � 3 mod 4 and f is anodd number then already the unique subgroup PSL(2; pf ) of index 2 in PGL(2; pf )is 3-homogeneous on pf + 1 points.The group PGL(2; pf ) has degree pf + 1 and any non-identity element �xes atmost 2 points. There are elements with no �xed points, i. e. powers of a 
y
le oflength pf + 1. There are elements with exa
tly one �xed point, i. e. elements oforder p. Finally, there are elements with exa
tly 2 �xed points, these are the powersof elements of order pf � 1.In the 
ase of a 3-homogeneous PSL(2; pf ) we have to restri
t these elementsto elements of order p, the powers of elements of order (pf + 1)=2, and the powersof elements of order (pf � 1)=2.So, if no k-subset is �xed by a non-identity element then k must be prime topf +1 or (pf +1)=2, respe
tively, k(k� 1) must be prime to pf and k(k� 1)(k� 2)must be prime to pf � 1 or (pf � 1)=2, respe
tively. These 
onditions are 
arefullyexamined by Cusa
k and Magliveras in the 
ase of a 3-homogeneous PSL(2; pf ).Now we want to allow that there may exist orbits of length jPSL(2; pf )j=q fora �xed prime q > 2. Then one of the 
oprime 
onditions may be repla
ed by a
ommon divisor q. Thus we get the following 
ases.� g
d(k; (pf + 1)=2) = q, g
d(k(k � 1); pf ) = 1, and g
d(k(k � 1)(k � 2); (pf �1)=2) = 1.� g
d(k; (pf + 1)=2) = 1, g
d(k(k � 1); pf ) = 1, and g
d(k(k � 1)(k � 2); (pf �1)=2) = q. 2Consider the 
ase pf � 1 mod 4. By [12℄ for any group 
ontaining PSL(2; pf )there exists no semiregular large set with t = 3. Sin
e PSL(2; pf ) is no longer 3-homogeneous, we pro
eed to use G = PGL(2; pf ). We have to drop semiregularityand still obtain restri
tions for possible large sets. It is easy to see that g
d(pf �1; k(k � 1)(k � 2)) = 1 is impossible for odd p. If g
d(pf � 1; k(k � 1)(k � 2)) = qfor a prime q then q = 2 and k � 3 mod 4. There are examples for pf = 53, k = 7and pf = 29, k = 11 below.For pf = 32 there exists an LS[5℄(3; 4; 33) with given automorphism groupPGL(2; 32). The 
ase pf = 64 does not produ
e a large set. See also Teirlin
k [25℄.11



Examples 3� G = PSL(2; 23) is 3-homogeneous on 24 points and its order divides �2410�. Sothere exists an LS[323℄(3; 10; 24). We remark that LS[7℄(3; 5; 24), LS[57℄(3; 7; 24),and LS[412℄(3; 11; 24) also exist by [13℄.� G = PSL(2; 31) is 3-homogeneous on 32 points and for k = 9 and p = 3 the
onditions of the Theorem hold. So, there exists an LS[1885℄(3; 9; 32). Sin
e1885 = 5 � 13 � 29, we also get parameter sets LS[5℄(3; 9; 32), LS[13℄(3; 9; 32),and LS[29℄(3; 9; 32).� G = PGL(2; 53) is 3-homogeneous on 54 points and its order divides �547 �.Now, 7 is 
oprime to 54 and 7 � 6 � 5 has greatest 
ommon divisor 2 with 52.In fa
t there are 1140 orbits of length jGj and 100 orbits of length jGj=2. So,there exist LS[N ℄(3; 7; 54) for N = 2; 5; 7; 17.Theorem 3 gives rise to large sets in more general situations than Theorem4. However, it is more diÆ
ult to derive easy 
onditions whi
h are suÆ
ient forTheorem 3. The strategy followed after Theorem 4, to 
onsider restri
ted familiesof groups, will also be followed here. So, we look again at t-homogeneous groupsand determine the distribution of orbits of k-sets with parti
ular orbit lengths in
onvenient spe
ial 
ases.Let G a
t t-homogeneously on a set V . Then the 
ondensed version of a Kramer-Mesner matrix needed for Theorem 2 for t- versus k-orbits 
an be 
omputed by
ombinatorial methods. The idea is to 
lassify ea
h k-orbit by the 
onjuga
y 
lassof a 
orresponding stabilizer subgroup. If the stabilizer orders are known Alltop'sLemma [4℄, [7℄ yields the matrix entries.The �rst step is to determine for ea
h 
onjuga
y 
lass of subgroups and for anyparti
ular representative U in the 
onjuga
y 
lass, the k-sets invariant under U .Clearly, su
h a k-set K must 
onsist of full U -orbits. So,K = K11 [ � � � [K1k1 [ � � � [ Ki1 [ � � � [Kiki � � � [Kn1 [ � � � [Knknwith ki orbits Kij of size i up to some n. If U has exa
tly ai orbits of size i thenthere are�aiki� possibilities to sele
t ki orbits of size i. For a given pattern (k1; � � � ; kn) withk = Pi i � ki the possibilities for the di�erent sizes i are multiplied to obtain thenumber of 
ombinations. This gives the general formulaC(Vk)(U) = Xk=Pi i�kiYi �aiki�12



for the number of k-sets invariant under U .For any subgroup U of G the orbits of U are in bije
tion to the double 
osetsSnG=U of the stabilizer S of a point, and U in G. These again 
an be 
lassi�eda

ording to the stabilizers of right 
osets Sg in U with respe
t to right multipli
a-tion by elements of U , see [20℄. For a subgroup D of U we have SgD = Sg if andonly if gDg�1 is 
ontained in S.In the 
ase of G = PSL(2; p) for a prime p � 3 mod 4 the stabilizer of a pointis a semidire
t produ
t of Zp by Z` where ` = (p � 1)=2 is odd. So, �nding theorbits of a subgroup U of PSL(2; p) of whi
h the order is not divisible by p 
anbe done by de
iding whi
h subgroups of U may be 
onjugate to a subgroup of S.Su
h a subgroup D is 
y
li
 of an order dividing `. In parti
ular jDj is odd and anysubgroup of some order 2f has only orbits of length 2f . The subgroups of PSL(2; p)are well known, see [8℄. Those whi
h may have a nontrivial interse
tion with S andof whi
h the order is not divisible by p must have an interse
tion whi
h is either Z3or Z5. So, it is easy to handle these few 
ases. Then for ea
h U the orbits 
an bewritten down.To obtain the number of k-sets where U is the full stabilizer apply the prin
ipleof in
lusion and ex
lusion to the these numbers over all overgroups of U . This isequivalent to summing over these numbers weighted by the values of the Moebiusfun
tion. Again double 
ounting allows us to determine the number of overgroupsH 
ontaining U , and belonging to a 
ertain 
onjuga
y 
lass, from the number of
onjugates of U that are 
ontained in some H. So, if the subgroups are well knownas in the 
ase of PSL(2; p) this Moebius inversion 
an be 
arried out, see also [14℄,[22℄.Be
ause elements with the same stabilizer U generally lie in the same orbit onlyif they are already in the same orbit under the normalizer NG(U), the numberobtained has to be divided by the orbit length jNG(U)=U j whi
h all NG(U) orbitshave on this set.As an example 
onsider orbits of 4-sets under PSL(2; 23) a
ting on 24 points.There is just one 
onjuga
y 
lass of subgroups Z2. Su
h a subgroup U is generatedby an involution �xing no points, so it must have point-orbits of length 2 only.Hen
e, there are �122 � = 66 U�invariant 4-sets. A 
y
li
 group Z4 is generatedby an element of type 46 and therefore must have point-orbits of length 4. TheSylow 2-subgroups are dihedral and thus 
ontain a unique 
y
li
 subgroup of order4. Thus, su
h a subgroup has �61� = 6 invariant 4-sets. All these lie in the sameorbit of the normalizer of this 
y
li
 subgroup whi
h is dihedral of order 24. Thereremain two 
onjuga
y 
lasses of Klein subgroups V4 whi
h also have orbits of length13



4 only. Ea
h has as its normalizer a subgroup isomorphi
 to S4 whi
h again formsone orbit out of the 4-sets invariant under a V4. No larger group has orbits of length4. A group of order 2 then is 
ontained in a unique 
y
li
 subgroup of order 4 andin 3 subgroups from ea
h 
onjuga
y 
lass of V4's by double 
ounting. So, for ea
hof these 7 subgroups of order 4 
ontaining the Z2, we have to subtra
t from the 66invariant 4-sets their 6 invariant 4-sets. The remaining 24 invariant 4-sets fall into2 orbits of length 12 under the normalizer of Z2 whi
h is dihedral of order 24.If we restri
t the possible values of k by applying the appropriate divisibility
onditions, then only 
ertain subgroups 
an o

ur as stabilizers of a k-set. So, if allsu
h stabilizers have to be 
ontained in a 
ertain 
y
li
 subgroup of order h up to
onjuga
y, then we 
an use the number theoreti
 Moebius fun
tion for the latti
eof divisors of h. We use this strategy below to obtain large sets where the numberof k-orbits is fairly large.To obtain the values of � in these 
ases by Alltop's Lemma we re
all the formulajNG(K)j �m(T;KG) = jNG(T )j �m0(TG;K); (3.3)where NG(R) denotes the stabilizer in G of subset R � V , m(T;KG) denotes thenumber of k-sets in the orbit KG that 
ontain the t-set T and m0(TG;K) denotesthe number of t-sets in the orbit TG that are 
ontained in the k-set K. Here weassume that G is t-homogeneous so that m0(TG;K) = �kt�: The value of � is justm(T;KG) and 
an be obtained from the formula when the stabilizer orders areknown.Let G = AGL(1; pf )=2 be the unique subgroup of index 2 inAGL(1; pf ) for someprime power pf � 3 mod 4. Then G a
ts regularly on 2-sets. So, jNG(T )j = 1 andif K is any k-set and T a 2-set we get that T is 
ontained in exa
tly �k2�=jNG(K)jof the k-sets in the orbit of K.We 
onsider spe
ial 
ases. So, we �rst assume that p does not divide k. Thenno k�subset 
an be left invariant by an element of order p in G. So, the stabilizerof su
h a K must lie in one of the 
omplements, C say. Sin
e G is primitive andsolvable, these 
omplements form one 
onjuga
y 
lass and are maximal subgroups.In parti
ular they are the normalizers of ea
h of their non-identity subgroups. Anyelement of G mapping a k-set with stabilizer U onto another k-set with stabilizer Umust normalize that stabilizer. Thus, if U < C is the set-stabilizer of a k�subsets,then G has a=[C : U ℄ orbits of this type.Any subgroup U of order d of C has one �xed point and pf�12d orbits of size d.14



A �xed k-set must be a union of U -orbits. So, if d divides k there are exa
tly�pf�12dkd �invariant k-subsets. If d divides k � 1 there are exa
tly�pf�12dk�1d �invariant k-subsets. In all other 
ases there are no invariant k-subsets.This dis
ussion leads to the following result. If p does not divide k and g
d(k; (pf�1)=2) = q for some prime q then G has exa
tly2qpf � 1�pf�12dkd �orbits on k-sets with stabilizer of order q. If p does not divide k and g
d(k�1; (pf �1)=2) = q for some prime q then G has exa
tly2qpf � 1�pf�12dk�1d �orbits on k-sets with stabilizer of order q. All other k-sets have trivial stabilizers.Consider the 
ase of PGL(2; 29). This group is 3-homogeneous and for k = 11,besides the identity only an element of order 2 may �x su
h a k-set. The grouporder does not divide �3011�, hen
e, Theorem 4 is not appli
able. But Theorem 3may be applied. >From the formulas we obtain 2171 designs with � = 990 and 495designs with � = 495. So, q = 2. In the 
ontext of Theorem 3 we have to �ndsolutions for the system 143 � 2m mod N and 2171 � �m mod N . So, N mustdivide 4485 = 3 � 5 � 13 � 23. We get an LS[N ℄(3; 11; 30) for N = 3; 5; 13; 23.Instead of 
onstru
ting a large set from disjoint designs Magliveras [13℄ has alsosear
hed for all designs with the required � whi
h 
an be 
ombined from the orbits ofa pres
ribed group and then sele
ted a partition into disjoint designs among those.As in Theorem 2, this strategy splits the general problem into two subproblems.First, all solutions of the Kramer-Mesner system of diophantine equations for theappropriate value of � are 
omputed and se
ondly a matrix is formed by the solutionve
tors of the system whi
h again de�nes a diophantine system of linear equations15



with right hand side 
onstant to 1. A 0-1 solution ve
tor determines a large set bysele
ting those designs whi
h 
orrespond to a 1. Thus, this strategy uses the sametool in both steps. In many 
ases however this approa
h needs too mu
h 
omputertime or spa
e. So, as in the strategy of Theorem 2 we try to dire
tly 
onstru
t apartition of �Vk� into designs all with the same �. This 
orresponds to ba
ktra
kingin the se
ond part of Magliveras strategy but avoiding to �nd all solutions in the�rst part. Be
ause we may still have to run through a large solution spa
e we haveimplemented a random sele
tion of designs disjoint from those sele
ted previouslyin the sear
h for a partition into designs. Both versions are part of DISCRETA andled to some interesting new large sets with t � 4:� LS[3℄(4; 6; 13) with automorphism group Z13,� LS[3℄(5; 7; 24) with automorphism group PGL(2; 23),� LS[3℄(3; 7; 21) with automorphism group PSL(3; 4).� LS[5℄(2; 3; 17) admitting Z17� LS[29℄(3; 5; 32) with automorphism group AGL(1; 32).� LS[7℄(4; 5; 32) with automorphism group AGL(1; 32).Note that by Lu[23℄, [27℄ large sets LS[N ℄(2; 3; v) exist for v � 1 or 3(mod 6)and v 6= 7: Here we have a large set for v = 17:4 Re
ursive Constru
tionsLet p be an odd prime. Sin
e for 0 � k � n < p no �nk� is divisible by p, Pas
al'striangle mod p has non-zero entries in the �rst p rows. We 
all the triangle formedby the �rst p rows the starting triangle. The (p+ 1)st row then has 1's in the �rstand last entry and all other entries 0. So, we have the two ones as starting pointsof new triangles of p rows whi
h are identi
al to the starting triangle. The entriesoutside these triangles in these p rows are 0. In the next (2p+ 1)st row the middleentry is 2, sin
e the 1's from the two upper neighbors add up to 2. Apart from theborder entries of 1's all other entries are 0. The 2 gives rise to a triangle of p rowsin whi
h ea
h entry of the starting triangle with p rows is multiplied by 2 mod p.Generally, we obtain the following pattern: The Pas
al triangle mod p is formed oftriangles of p rows whi
h are obtained from the starting triangle by multiplying it16



by some fa
tor mod p. These fa
tors themselves again form a Pas
al triangle of thesame type. So, a re
ursive stru
ture is generated whi
h easily des
ribes the wholepattern. As an example, we display below Pas
al's triangle modulo 5.
Pas
al's Triangle mod 50 11 1 12 1 2 13 1 3 3 14 1 4 1 4 15 1 0 0 0 0 16 1 1 0 0 0 1 17 1 2 1 0 0 1 2 18 1 3 3 1 0 1 3 3 19 1 4 1 4 1 1 4 1 4 110 1 0 0 0 0 2 0 0 0 0 111 1 1 0 0 0 2 2 0 0 0 1 112 1 2 1 0 0 2 4 2 0 0 1 2 113 1 3 3 1 0 2 1 1 2 0 1 3 3 114 1 4 1 4 1 2 3 2 3 2 1 4 1 4 115 1 0 0 0 0 3 0 0 0 0 3 0 0 0 0 116 1 1 0 0 0 3 3 0 0 0 3 3 0 0 0 1 117 1 2 1 0 0 3 1 3 0 0 3 1 3 0 0 1 2 118 1 3 3 1 0 3 4 4 3 0 3 4 4 3 0 1 3 3 119 1 4 1 4 1 3 2 3 2 3 3 2 3 2 3 1 4 1 4 120 1 0 0 0 0 4 0 0 0 0 1 0 0 0 0 4 0 0 0 0 121 1 1 0 0 0 4 4 0 0 0 1 1 0 0 0 4 4 0 0 0 1 122 1 2 1 0 0 4 3 4 0 0 1 2 1 0 0 4 3 4 0 0 1 2 123 1 3 3 1 0 4 2 2 4 0 1 3 3 1 0 4 2 2 4 0 1 3 3 124 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 125 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 127 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 128 1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 129 1 4 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 1 4 130 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 131 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 132 1 2 1 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 1 2 133 1 3 3 1 0 1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 1 0 1 3 3 134 1 4 1 4 1 1 4 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 1 4 1 1 4 1 4 1As we saw in se
tion 2, a ne
essary 
ondition for an LS[N ℄(t; k; v) to exist isthat the 
omponent designs have � su
h that �N = �v�tk�t�. Sin
e a t-design is alsoan s-design for 0 � s � t and the large set an LS[N ℄(s; k; v), the �s-values alsosatisfy the equations �sN = �v�sk�s�. Thus, for s = 0; : : : ; t, ea
h of the binomial
oeÆ
ients �v�sk�s� must be divisible by N . For N = p a prime, Pas
al's triangle modp, as des
ribed above, easily allows us to lo
ate the admissible parameter sets. Fora given v and k, the t + 1 entries parallel to the right border and ending with the17



position of �v�tk�t� mod p must be 0. So, one �nds out that 
ertain lower segments ofthe observed "inverted" 0-triangles with a base line of 0-entries, form the admissibleparameter sets. LS[3℄(3,k,v)8 - - - - -9 - - - - -10 - - - - - -11 - - - - - -12 - - - - ? ? ?13 - - - - - ? ?14 - - - - - - ? ?15 - - - - - - - 716 - - - - - - - - ?17 - - - - - - - - -18 - - - - - - - - - -19 - - - - - - - - - -20 - - - - - - - - - - -21 - - - - ? ? ? ? ? - -22 - - - - - ? ? ? ? - - -23 - - - - - - ? ? ? - - -24 - - - - - - - ? ? - - - -25 - - - - - - - - ? - - - -26 - - - - - - - - - - - - - -27 - - - - - - - - - - - - - -28 - - - - - - - - - - - - - - -29 - - - - - - - - - - - - - - -30 - - - - ? ? ? ? ? ? ? ? ? ? ? ?31 - - - - - ? ? ? ? ? ? ? ? ? ? ?32 - - - - - - ? ? ? ? ? ? ? ? ? ? ?33 - - - - - - - ? ? ? ? ? ? ? ? ? ?34 - - - - - - - - ? ? ? ? ? ? ? ? ? ?35 - - - - - - - - - ? ? ? ? ? ? ? ? ?36 - - - - - - - - - - ? ? ? ? ? ? ? ? ?37 - - - - - - - - - - - ? ? ? ? ? ? ? ?38 - - - - - - - - - - - - ? ? ? ? ? ? ? ?39 - - - - ? ? ? ? ? - - - - ? ? ? ? ? ? ?40 - - - - - ? ? ? ? - - - - - ? ? ? ? ? ? ?41 - - - - - - ? ? ? - - - - - - ? ? ? ? ? ?42 - - - - - - - ? ? - - - - - - - ? ? ? ? ? ?43 - - - - - - - - ? - - - - - - - - ? ? ? ? ?44 - - - - - - - - - - - - - - - - - - ? ? ? ? ?45 - - - - - - - - - - - - - - - - - - - ? ? ? ?46 - - - - - - - - - - - - - - - - - - - - ? ? ? ?47 - - - - - - - - - - - - - - - - - - - - ? ? ?48 - - - ? ? ? ? ? - - - - ? ? ? ? ? - - - - ? ? ?49 - - - ? ? ? ? - - - - - ? ? ? ? - - - - - ? ?50 - - - - ? ? ? - - - - - - ? ? ? - - - - - - ? ?51 - - - - ? ? - - - - - - - ? ? - - - - - - - ?52 - - - - - ? - - - - - - - - ? - - - - - - - - ?53 - - - - - - - - - - - - - - - - - - - - - - -54 - - - - - - - - - - - - - - - - - - - - - - - -55 - - - - - - - - - - - - - - - - - - - - - - -56 - - - - - - - - - - - - - - - - - - - - - - - -57 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - -58 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - -59 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - -60 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - -61 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - -We display above an example of the admissible parameters for LS[3℄(3; k; v) where,be
ause of symmetry we only show the part of the table with k � v=2. In thisdisplay, we note that there are 4 diagonals, 
orresponding to k � 3, for whi
h18



there are no admissible parameters. In later tables we drop su
h empty diagonals,and no 
onfusion will o

ur be
ause feasible parameters where existen
e is knownare labeled by the 
orresponding value of k. Su
h a k-label, then, identi�es the
orresponding diagonal of the table.For example, when N = 3 and t = 3 we get a triangle of possible parameters ofwhi
h we only show the part for k � v=2. Ea
h row is indexed by v. The positionsin the triangle 
orrespond to the positions in Pas
al's triangle. A question markindi
ates a value of k for whi
h an LS[3℄(3; k; v) is admissible from the divisibility
onditions. We repla
e question marks by the value of k when a large set with the
orresponding parameter set is known to exist and by a � sign if it is known thatsu
h a large set 
annot exist. The question marks that remain identify the stillunde
ided 
ases. The same kind of tables have already been used for halvings in[21℄.If ea
h of the base line parameter sets of an admissible triangle belongs to anexisting large set then the whole triangle does so. This follows from one of thetheorems 
ited below. There are further re
ursion rules allowing us to �ll sometriangle for larger values of v if a triangle for smaller values 
an be �lled with anexisten
e sign.Lemma 1 If all designs in an LS[N ℄(t; k; v) are derived with respe
t to the samepoint x, then the resulting designs form an LS[N ℄(t� 1; k � 1; v � 1), furthermore,the 
orresponding residual designs with respe
t to x form an LS[N ℄(t� 1; k; v � 1).Lemma 2 Alltop's Constru
tion: If an LS[N ℄(2s; k; 2k + 1) exists then also anLS[N ℄(2s+ 1; k + 1; 2k + 2) exists.This follows from applying Alltop's 
onstru
tion [5℄ to ea
h design in the givenlarge set.Theorem 8 Ajoodani-Namini[2℄: If an LS[p℄(t; k; v) exists, p a prime, then therealso exist LS[p℄(t+ 1; pk + j; p(v + 1)) for 0 < j < p.Corollary 1 If an LS[p℄(t; k; v) exists, p a prime, then there also exist LS[p℄(t; pk+j; p(v + 1)� 1) for j = 0; 1; : : : ; p� 1: 19



To see this, form the derived and residual large sets from the large sets resultingfrom Ajoodani-Namini's theorem.Theorem 9 If an LS[3℄(2s; k; 2k + 1) exists, then an in�nite series of large setsLS[3℄(2(s + i); (k + 2)3i � 2; (2k + 4)3i � 3) exists, where i = 0; 1; : : :.Proof: First apply Alltop's 
onstru
tion to the given LS[3℄(2s; k; 2k + 1) to obtainan LS[3℄(2s + 1; k + 1; 2k + 2). >From this, by the 
orollary to Ajoodani-Namini'sTheorem, 
onstru
t an LS[3℄(2s+2; 3k+4; 6k+9). This again ful�lls the assumptionof the theorem. Now the formula follows by indu
tion. 2The new LS[3℄(4; 6; 13) is a starting point of the series LS[3℄(2(2+i); 6�3i�2; 16�3i�2) for i = 0; 1; : : :. This series has the smallest presently known values of v for a t-(v; k; �) design with a given t � 16. An LS[3℄(4; 5; 13) had been found earlier by [17℄.The supplementary designs form an LS[3℄(4; 7; 13) and an LS[3℄(4; 8; 13) respe
-tively. From these large sets then, the next Theorem yields large sets LS[3℄(4; 6; 14),LS[3℄(4; 7; 14), LS[3℄(4; 8; 14), LS[3℄(4; 7; 15), LS[3℄(4; 8; 15), and LS[3℄(4; 8; 16). Inparti
ular, the LS[3℄(4; 7; 15) is again a starting point for an in�nite series obtainedby applying Theorem 9. Further series 
an be obtained in a similar fashion fromthe large sets LS[3℄(2; 5; 11), LS[3℄(2; 6; 13), and LS[3℄(2; 7; 15), but for these thevalues of v for a given t are larger than what we get from the �rst series.Theorem 10 Ajoodani-Namini, Khosrovshahi[16℄: If an LS[N ℄(t; k; v) and an LS[N ℄(t; k+1; v) exist then so does an LS[N ℄(t; k + 1; v + 1).Theorem 11 Ajoodani-Namini, Khosrovshahi[16℄: If there exist LS[N ℄(t; k; v) fork = t+1; : : : ; ` and LS[N ℄(t; k; u) for all k in an interval a � k � ` then there existLS[N ℄(t; k; v + u� t) for all k in the interval a � k � `.5 Tables>From the basi
 large sets, the above re
ursive results yield a large number ofparameter sets, indi
ated 
ompa
tly by entry k in row v of a table. As an example,we exhibit the table for LS[3℄(3; k; v) below, and all other tables en
ompassing allthat is known for v � 61 appear in the Appendix. An entry "-" means that the
20



parameter set is not feasible, a question mark "?" means that the existen
e of a largeset with that parameter set is unde
ided, and bold fa
e indi
ates a new parameterset. LS[3℄(3,k,v)8 -9 -10 - -11 - -12 4 5 613 - 5 614 - - 6 715 - - - 716 - - - - 817 - - - - -18 - - - - - -19 - - - - - -20 - - - - - - -21 4 5 6 7 8 - -22 - 5 6 7 8 - - -23 - - 6 7 8 - - -24 - - - 7 8 - - - -25 - - - - 8 - - - -26 - - - - - - - - - -27 - - - - - - - - - -28 - - - - - - - - - - -29 - - - - - - - - - - -30 4 5 6 7 8 ? ? 11 ? ? ? ?31 - 5 6 7 8 ? ? ? ? ? ? ?32 - - 6 7 8 9 10 ? ? 13 ? ? ?33 - - - 7 8 9 10 ? ? ? ? ? ?34 - - - - 8 9 10 ? ? ? ? ? ? ?35 - - - - - 9 10 11 12 13 14 15 16 1736 - - - - - - 10 11 12 13 14 15 16 17 1837 - - - - - - - 11 12 13 14 15 16 17 1838 - - - - - - - - 12 13 14 15 16 17 18 1939 4 5 6 7 8 - - - - 13 14 15 16 17 18 1940 - 5 6 7 8 - - - - - 14 15 16 17 18 19 2041 - - 6 7 8 - - - - - - 15 16 17 18 19 2042 - - - 7 8 - - - - - - - 16 17 18 19 20 2143 - - - - 8 - - - - - - - - 17 18 19 20 2144 - - - - - - - - - - - - - - 18 19 20 21 2245 - - - - - - - - - - - - - - - 19 20 21 2246 - - - - - - - - - - - - - - - - 20 21 22 2347 - - - - - - - - - - - - - - - - - 21 22 2348 4 5 6 7 8 - - - - 13 ? 15 ? 17 - - - - 22 23 2449 - 5 6 7 8 - - - - - ? ? ? ? - - - - - 23 2450 - - 6 7 8 - - - - - - ? ? ? - - - - - - 24 2551 - - - 7 8 - - - - - - - ? ? - - - - - - - 2552 - - - - 8 - - - - - - - - ? - - - - - - - - 2653 - - - - - - - - - - - - - - - - - - - - - - -54 - - - - - - - - - - - - - - - - - - - - - - - -55 - - - - - - - - - - - - - - - - - - - - - - - -56 - - - - - - - - - - - - - - - - - - - - - - - - -57 4 5 6 7 8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - -58 - 5 6 7 8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - -59 - - 6 7 8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - -60 - - - 7 8 9 ? 11 ? 13 14 ? ? 17 ? 19 ? 21 22 23 ? 25 ? - - - -61 - - - 8 9 ? ? ? ? 14 ? ? ? ? ? ? ? 22 23 ? ? ? - - - -The Appendix 
ontaining all the tables generated for this paper 
an be down-loaded from one of the web sites: <http://helios.unl.edu/�spyros/> or<http://www.mathe2.uni-bayreuth.de/people/laue.html>. We hope the readerwill be interested in resolving some of the unsettled 
ases.21
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