
New Large Sets of t�DesignsReinhard LaueDepartment of MathematisUniversity of BayreuthD-95440 Bayreuth, GermanySpyros S. MagliverasDepartment of Computer Siene and EngineeringUniversity of Nebraska-LinolnLinoln, Nebraska 68588-0115andAlfred WassermannDepartment of MathematisUniversity of BayreuthD-95440 Bayreuth, GermanyAbstratWe introdue generalizations of earlier diret methods for onstruting largesets of t�designs. These are based on assembling systematially orbits oft�homogeneous permutation groups in their indued ations on k�subsets.By means of these tehniques and the known reursive methods we onstrutan extensive number of new large sets, inluding new in�nite families. In par-tiular, a new series of LS[3℄(2(2 + m); 6 � 3m � 2; 16 � 3m � 2) is obtained.This also provides the smallest known v for a t� (v; k; �) design when t � 16.We present our results ompatly for v � 61, in tables derived from Pasal'striangle modulo appropriate primes.1 IntrodutionLarge sets of t-designs have been used in reursive onstrutions for over a deade.Most elebrated is the pioneering work of Teirlink who showed in [26℄ that sim-ple t-designs exist for all t. Unfortunately, for a given t, Teirlink's onstrutionsresult in t-designs with extremely large values for the parameters v and �. Subse-quently, other researhers, partiularly Khosrovshahi and Ajoodani-Namini, greatly1



ontributed to the repertory of reursive methods. By means of these tehniquesthe value of v for whih t-designs are now onstrutible an be made onsiderablysmaller.Reursive methods require a basis of large sets from whih to start. Then in�niteseries of parameter sets are settled by reursion. In this artile, we present severalnew large sets whih, in ombination with already known ases and the knownreursive methods, handle many admissible parameter sets.By an admissible parameter set for a putative LS[N ℄(t; k; v) we mean parameters(N; t; k; v) whih satisfy ertain obvious divisibility onditions as disussed in thenext setion. In the ase of halvings, i. e. LS[2℄(t; k; v), Ajoodani-Namini [1℄ hasshown that for t = 2 all admissible parameter sets are realizable. For larger t thereare partial results for k up to 16 [21℄. We review what is presently known by meansof the following theorem.Theorem 1 Let p be an odd prime, and 0 < t < k < v be integers. Then, largesets LS[p℄(t; k; v) are realizable as follows:i) For all k � 11 all admissible LS[3℄(2; k; v) are realizable.ii) For all k � 8 all admissible LS[3℄(3; k; v) are realizable.iii) For all k � 8 all admissible LS[3℄(4; k; v) are realizable.iv) For all k � 5 all admissible LS[5℄(2; k; v) are realizable, with the well knownexeptions of an LS[5℄(2; 3; 7) and an LS[5℄(2; 4; 7).v) For all k � 5 all admissible LS[5℄(3; k; v) are realizable, with the well knownexeption of an LS[5℄(3; 4; 8).vi) For all k � 6 all admissible LS[7℄(2; k; v) are realizable.vii) For all k � 10 all admissible LS[11℄(2; k; v) are realizable.viii) For all k � 5 all admissible LS[29℄(2; k; v) are realizable.There exist LS[3℄(2(2 +m); 6 � 3m � 2; 16 � 3m � 2) for all natural numbers m.This provides the smallest known v when t � 16.Our results are presented for v � 61 in tables that are dedued from Pasal'striangle, making it easy to depit unsettled ases. Disposing of the unsettled ases2



will either require new reursive tehniques or diret onstrution methods di�erentfrom the ones employed in this paper.The large sets in this paper are obtained by appropriately assembling orbits oft-homogeneous groups. This approah had been employed earlier, see [12℄, withthe additional restrition that all orbits of k-sets were of length equal to the grouporder. In this paper we generalize the approah by also onsidering situations whereorbits of k-sets of various lengths an our. In some ases, a random searh fordisjoint t-designs ontributes large sets from non t-homogeneous group ations. Theomputations here were made using DISCRETA, a software pakage developed atBayreuth University, as well as a speial purpose omputer program written for thisartile.This artile was started when the �rst author visited the seond author at theUniversity of Nebraska - Linoln. The �rst author thanks this institute for its kindhospitality and the fruitful atmosphere whih stimulated suessful researh.2 PreliminariesIn this paper, V denotes a �nite point set with jV j = v, t and k are positive integerssuh that 0 < t < k � v, and the olletion of all k-subsets of V is denoted by �Vk�.A simple t�(v; k; �) design, (V;B), is a v-element set V of points and a olletionB of k-element subsets of V alled bloks, suh that every t-element subset of V isontained in preisely � bloks. All t� (v; k; �) designs disussed in this paper aresimple.If (V;B) is a t� (v; k; �) design, and x 2 V , the derived design with respet to xis (V n fxg;D), where D 2 D if and only if D = B n fxg, for x 2 B 2 B. A deriveddesign is a (t� 1)� (v � 1; k � 1; �) design.If (V;B) is a t� (v; k; �) design, and x 2 V , the residual design with respet tox is the design (V n fxg;R), where K 2 R if and only if x 62 K 2 B. A residualdesign is a (t� 1)� (v � 1; k; �0) design.It is well known that for eah s, 0 � s � t, every t � (v; k; �) design is also ans� (v; k; �s) design, where �s = ��v�st�s�=�k�st�s�: Thus, a set of neessary divisibilityonditions for the existene of a t� (v; k; �) design is that ��v�st�s� � 0 mod �k�st�s�,for 0 � s < t.By a large set LS[N ℄(t; k; v) we mean a olletion L = f(V;Bi)gNi=1 of t�(v; k; �)designs where fBigNi=1 is a partition of �Vk�.The number of bloks in a t � (v; k; �) design is b = �0 = ��vt�=�kt�. Thus, aneessary ondition for a large set LS[N ℄(t; k; v) to exist is that Nb = �vk�. This is3



equivalent to �N = �v�tk�t�. Thus, N must divide �v�tk�t�.A group ation GjV is alled transitive if V onsists of a single G-orbit. Thegroup ation GjV is said to be t-homogeneous if the indued ation of G on �Vt � istransitive. For brevity, by a k�orbit we mean an orbit of G in its indued ationon �Vk�.Let B = fBigNi=1 be the olletion of designs in a large set L. A group G is saidto be an automorphism group of L if B g=B for all g 2 G, that is, if Bgi 2 B forall Bi 2 B and g 2 G. Equivalently, we say that a large set with this property isG-invariant. If the stronger ondition that Bgi=Bi for all Bi 2 B and g 2 G holds,we say that a large set is [G℄-invariant.In 1976, Kramer and Mesner [24℄ desribed ertain matrix invariants At;k as-soiated with a given group ation GjV . Roughly speaking At;k is the result offusing under G the inidene matrix between �Vt � and �Vk�, where inidene is setinlusion. More preisely, for a given group ation GjV , let � = f�igri=1 be theolletion of G-orbits on �Vt �, and � = f�jgsj=1 be the olletion of G-orbits on�Xk �. For a �xed member T of �i, the number aij(T ) of members K 2 �j suh thatT � K is independent of the hoie of T 2 �i, hene we may write aij = aij(T ).We de�ne the r � s matrix At;k = At;k(GjX) by At;k = (aij).In [24℄ Kramer and Mesner state a theorem whih provides neessary and suf-�ient onditions for the existene of a G�invariant t � (v; k; �) design in termsof the matrix At;k above. Beginning with a given group ation GjV , the theoremallows for the onstrution of all suh G�invariant t�designs. In [12℄ the authorsdesribe a slight generalization of the theorem whih provides means for onstrut-ing [G℄-invariant large sets of t� (v; k; �) designs. In partiular, the authors of [12℄turn their attention to t�homogeneous, G-semiregular large sets of t�designs.3 Diret ConstrutionsThe methods in this setion are based on the onept of assembling orbits of apermutation group into t-designs so that these designs form a large set.We use the Kramer-Mesner method to �nd t-designs from the orbits of a permu-tation group GjV in its indued ation on k-subsets. Thus, we may �rst onstrutdisjoint designs with various values of � stepwise by �rst searhing for a t-designwith a small �, removing all orbits used for this design before the next step, andontinuing this way until all orbits are overed by some t-design. Then we try toombine these designs into disjoint designs whih all have the same parameter �.Mathematially, this problem an be desribed by the solutions of a system of lineardiophantine equations. 4



Theorem 2 Let t < k < v be natural numbers, and V a set of v points. Supposethat for natural numbers � and N , �N = �v�tk�t�. Let P be a partition of �Vk�into disjoint t-designs suh that, for j = 1; � � � ; n, there are exatly aj designs withparameter �j in P . Let A = (aij) be an m�n integer matrix suh that 0 � aij � aj,and for eah i = 1; : : : ;m: nXj=1 aij�j = �: (3.1)Then, eah integer solution vetor (N1; � � � ; Nm) to the diophantine system:(N1; � � � ; Nm)A = (a1; � � � ; an) (3.2)determines a large set LS[N ℄(t; k; v) by seleting Ni t�(v; k; �) designs whih or-respond to the ith row (ai1; � � � ; ain). In suh a solution aij designs have parameterst� (v; k; �j).Proof: If D1 and D2 are two disjoint t-designs on the same point set V , with Dia t � (v; k; `i) design, then their union D1 [ D2 is a t � (v; k; `) design with with` = `1+`2. Eah row of A allows us to onstrut a t�(v; k; �) design as the union ofdisjoint designs, and a solution (N1; � � � ; Nm) to (3.2) allows us to assemble exatlythe orret number of disjoint t� (v; k; �) designs to over �Vk� exatly. 2Of ourse, there may be many di�erent partition types of �Vk� into disjoint t-designs, as well as di�erent partitions of the same type. In general, Theorem 2does not ompletely solve the problem of desribing all LS[N ℄(t; k; v) whih an beobtained from the orbits on k�subsets of a presribed permutation group GjV .There are some speial ases where a �nest partition of the set of all k-orbitsinto t-designs is unique. Obviously this is the ase if the group has only one orbiton t-subsets, i. e. the group is t-homogeneous. Then, eah k�orbit is a t-design andthe �nest partition is just the set of all k-orbits. So, in this ase Theorem 2 allowsus to �nd a omplete solution.As an example onsider G = P�L(2; 27) in its ation on the projetive line ofv = 28 points. Let k = 11 and t = 3: Sine this group is 3-homogeneous, eahk-orbit is a 3-design. These orbits form our starting partition P . Here, there area1 = 343 designs with �1 = 2970, a2 = 33 designs with �2 = 1485, and a3 = 14designs with �3 = 990. We note that 495 divides eah of �1; �2 and �3. We have�v�tk�t� = �258 � = 495 � 5 � 19 � 23 where eah � must be a multiple of 495. We searhfor an LS[5℄(3; 11; 28) using Theorem 2. We an simplify our �rst equationnXj=1 aij�j = �5



by dividing both sides by 495 and get6 � a11 + 3 � a12 + 2 � a13 = 437 = 19 � 23:A �rst solution vetor is (a11; a12; a13) = (72; 1; 1). A seond solution is (a21; a22;a23) = (55; 29; 10). Then (N1; N2) = (4; 1) solves diophantine system (3.2) so thatwe have to ombine 4 designs of the �rst kind with 1 design of the seond kind toget the desired LS[5℄(3; 11; 28).In what follows we present some further examples of large sets obtained byapplying Theorem 2. We report here some orbit statistis obtained with the helpof DISCRETA.Examples 1� An LS[77℄(1; 6; 12). Here the yli group of order 12 regular on points, isating on the set of all 6-subsets with 75 orbits of length 12, 3 orbits of length6, 1 orbit of the length 4, and 1 of length 2.� An LS[11℄(2; 6; 13). Here the group AGL(1; 13) has 9 orbits of size 156, 3orbits of length 78, 1 orbit of length 52 and 1 of length 26. These an beombined into 11 1-designs with 156 bloks eah. Using Alltop's theoremthis large set extends to an LS[11℄(3; 7; 14).� An LS[2℄(3; 6; 12). The group PSL(2; 11) has 1 orbit of length 330, 2 orbitsof length 132, and 3 orbits of length 110.� An LS[2℄(3; 8; 20). The group PSL(2; 19) has 29 orbits of length 3420, 13orbits of length 1710, 3 orbits of length 855, 3 orbits of length 570, and 1orbit of length 285.� An LS[N ℄(3; 11; 32). Here the group PSL(2; 31) has 5 orbits of sizejPSL(2; 31)j=5 and 12 orbits of length jPSL(2; 31)j=3. All other orbits havelength jPSL(2; 31)j. Sine in eah ase the number of orbits is a multipleof the stabilizer order, one an always ombine orbits to form a design withexatly jPSL(2; 31)j bloks. Thus, there exists an LS[29 � 13 � 23℄(3; 11; 32).� G = P�L(2; 32) is 4-homogeneous on the 33 points of the projetive line, andthis group has 32 orbits on 7-sets. There are 22 orbits of length jGj, 7 orbitsof length jGj=2 and 3 orbits of length jGj=5. Combining 4 orbits of lengthjGj=2 with two orbits of size jGj gives 24 = 8 � 3 sets of size jGj. We ombine8 of these sets with one orbit of length jGj=5 three times and thus get anLS[3℄(4; 7; 33). 6



� Again, let G = P�L(2; 32) at on 33 points as above. Then, in its induedation on 10-sets, G has 538 orbits of length jGj, 54 orbits of length jGj=2, 1orbit of length jGj=5, and 3 orbits of length jGj=10. These an be ombinedto form an LS[39℄(4; 10; 33), an LS[29℄(4; 10; 33), an LS[13℄(4; 10; 33), and anLS[3℄(4; 10; 33).� Consider G = PGL(2; 37) in its ation on the projetive line of 38 points.Then, in its indued ation on 7-sets G has 225 orbits of length jGj, 46 orbitsof length jGj=2, and 4 orbits of length jGj=3. These an be ombined to anLS[2℄(3; 7; 38).In a speial ase we an determine N in a more onvenient way.Theorem 3 If there exists a partition of �vk� into a1 designs with parameters t �(v; k; q�) and a2 designs with parameters t � (v; k; �) for some natural number qthen large sets LS[N ℄(t; k; v) an be obtained from this partition for ertain divisorsN of a2 + qa1. For suh an N there must exist a non-negative integer m � a2=qsuh that N divides both a2 �mq and a1 +m.Proof: From the starting partition ombine q of the t� (v; k; �) designs to form at � (v; k; q�) design. If this is done m times there result a1 + m designs withparameters t � (v; k; q�). Suppose that Nd = a1 + m and Ne = a2 � mq forsome natural numbers d; e. Combining d designs with parameters t � (v; k; q�)with e designs with parameters t � (v; k; �) results in a t � (v; k; �0) design where�0 = (dq + e)�. Repeating this N times until all designs are used results in thedesired large set. The number N then must divide a2 + qa1. To see this simplyinsert m = dN � a1 into Ne = a2 �mq to obtain a2 + a1q = (dq + e)N . Thus, thepossible values of N are divisors of a2 + qa1. 2The group G = P�L(2; 32) is 4-homogeneous on 33 points. The orbits of Gpartition the set of all 10-sets into 538 4-(33,10,840) designs, 54 4-(33,10,420)designs, 1 4-(33,10,168) design, and 3 4-(33,10,84) designs. The last three typesgive exatly 55 4-(33,10,420) designs. So, we get a partition into designs of twotypes as required for Theorem 3. We have q = 2, and a2 + 2a1 = 1131 = 29 � 39.>From 55 = 8 � 2+39, and 538+8 = 546 = 39 � 14 we get an LS[39℄(4; 10; 33). Also,from 55 = 13 � 2+29, and 538 +13 = 551 = 29 � 19 we get an LS[29℄(4; 10; 33). Thedivisors of 39 yield further large sets. But the divisors 3 �29 and 13 �29 are too largefor a large set. 7



By the translation group T (n; p) we mean a multipliative elementary abeliangroup of order pn. In the following theorem we onsider the right regular ation ofT (2; p) on itself.Theorem 4 Let p be a prime, and G = V = T (2; p). Then there exists an LS[p+1℄(1; p; p2) where T (2; p) ats as a group of automorphisms of eah of the designs inthe large set. Thus, the large set is [G℄�invariant.Proof : The translation group T (2; p) has exatly p+ 1 subgroups of order p, eahleaving invariant under the group ation of right multipliation the set of elementsin that subgroup and its right osets. No other subset of p elements is left invariantby suh a subgroup. Eah suh olletion of p-sets forms a single orbit under thefull group. So, the whole group has exatly p+1 orbits of size p on p-sets. All otherp-sets must lie in orbits of size p2. There remain 1p2 (�p2p � � p(p + 1)) orbits of sizep2. This number an be represented in the form n � (p+1) for some natural numbern. So, we an form a large set of p+ 1 designs by omposing eah design out of norbits of size p2 and one orbit of size p. 2For example p = 5 yields 2124 orbits of size 25 and 6 orbits of size 5 on the5-subsets of T (2; 5). Sine 2124 is 354�6, a large set an be obtained by onstrutingdisjoint designs eah formed by ombining 354 orbits of size 25 and one of size 5.If we had tried the yli group of order 25 we would have obtained only one orbitof size 5 and 2125 orbits of size 25. This would not produe any large sets. Thus,we see that no simple divisibility onditions an over this ase. One an easilygeneralize Theorem 4 to higher powers of p.Generally, group orbits are a rih soure for the required partitions. We willonsider several series of groups and therefore look for speial ases whih are easierto verify in the ontext of Theorem 3. First we look for a ase where N = �vk�=jGj.The ase where all k-orbits have length the group order, i. e. semiregular largesets, has been treated theoretially for the groups PSL(2; q) by Cusak and Magliv-eras [12℄. We now onsider a slightly more general ase.Theorem 5 Let p be a prime and suppose that GjV is a t�homogeneous groupation where eah orbit of G on �Vk� has length either jGj or jGj=p: Suppose furtherthat jGj divides �vk�, v = jV j. Then, there exists an LS[N ℄(t; k; v), where N =�vk�=jGj:Proof : Let G have a orbits of size jGj and b orbits of size jGj=p. Thena+ b = z8



is a natural number. The union of all orbits is the set of all k-subsets. Thus, weget a seond equation a jGj+ b jGj=p = �vk�:Solving for b yields b = pp� 1fz � 1jGj�vk�g:If jGj divides �vk� then b is a multiple of p, so that we an repeatedly ombine porbits of size jGj=p to form a t-design with jGj bloks eah until all orbits of thislength are exhausted. Eah of the remaining orbits of length jGj also forms suh adesign. Sine all orbits are disjoint, these designs form a partition of the ompletedesign into designs with jGj bloks eah. Dividing �vk� by jGj then gives the numberof designs N . 2The yli group of order v, in its regular representation is of ourse transitiveand thus, for gd(v; k) = 1 or gd(v; k) = q, where q is a prime and v divides �vk�,we get an LS[N ℄(1; k; v), where N = �vk�=v.Several new large sets are obtained from Theorem 5 by looking at well knownfamilies of groups whih are at least 2-homogeneous. In partiular, we obtain thefollowing result.Theorem 6 Let p be an odd prime. For p � 1 mod 4 and f any natural number,or p � 3 mod 4 and f an even natural number, let d = pf � 1. For p � 3 mod 4and f an odd natural number let d = (pf � 1)=2. Let 2 � k � v = pf and suppose ddivides �pf�1k�1 �. Set N = 1d�pf�1k�1 �. If p does not divide k and gd(k(k�1); d) 2 f1; qgfor some prime q then there exists an LS[N ℄(2; k; v).Proof : If p � 1 mod 4, f arbitrary; or p � 3 mod 4 and f even, then AGL(1; pf )is 2-homogeneous on pf points. If p � 3 mod 4 and f is odd, then AGL(1; pf ) andits unique subgroup AGL(1; pf )=2 of index 2 are 2-homogeneous on pf points.In order to apply Theorem 5 we have to �nd out for whih values of k suh agroup G has orbits of sizes jGj or jGj=q only, where q is some prime. So, we examinethe yle types of the elements of G to see whether a k-subset is left invariant. Wehave to single out the ases where, besides the identity, either no elements or onlyelements of some �xed prime order q may leave suh a k-subset invariant.The group AGL(1; pf ) has an elementary abelian normal subgroup of order pfand one onjugay lass of omplements whih are yli of order pf � 1. Elements9



other than the identity have either order p, omprised of yles of length p only,or have just one �xed point and (pf � 1)=d yles of length d for some divisor dof pf � 1. The subgroup AGL(1; pf )=2 ontains the elements of order p and thosefurther elements whose order divides (pf � 1)=2.If G = AGL(1; pf ) then for k prime to p and gd(k(k � 1); pf � 1) 2 f1; qg forsome prime q, the ondition that jAGL(1; pf )j = pf (pf � 1) divides �pfk � suÆes toobtain an LS[N ℄(2; k; pf ).If p � 3 mod 4 and f is odd then for k prime to p and gd(k(k�1); (pf �1)=2) 2f1; qg for some prime q, the ondition that jAGL(1; pf )j = pf (pf �1)=2 divides �pfk �suÆes to obtain an LS[N ℄(2; k; pf ). 2Examples 2� G = AGL(1; 17) has order 17 � 16. For k = 6 we have 42 orbits of size 272 and7 orbits of size 15. So there is an LS[7℄(2; 6; 17). G = AGL(1; 23)=2 has order23�11. For k = 5 we have 133 orbits of size 253. So there is an LS[133℄(2; 5; 23).For G = AGL(1; 27) we �nd an LS[50℄(2; 4; 27), an LS[230℄(2; 5; 27), and anLS[2530℄(2; 7; 27).� G = AGL(1; 29) has 12298 orbits of size jGj, 70 orbits of size jGj=2, and 3orbits of size jGj=4 on 9-sets. Combining twie 2 of the orbits of size jGj=2adds two more designs with jGj bloks to the regular ones. Thus, there arenow 12300 of these designs, 66 designs with jGj=2 bloks, and the remaining3 designs with jGj=4 bloks. Eah of these numbers is a multiple of 3 so, onean build an LS[3℄(2; 9; 29) out of this orbit partition.� G = AGL(1; 31) has 646305 orbits of size jGj, 50 orbits of size jGj=3, 6 orbitsof size jGj=5, and 2 orbits of size jGj=15 on 15-sets. The orresponding valuesof � are 105, 35, 21, 7 respetively. Combining the two designs of � = 7with 1 design of � = 21 yields one more design with � = 35. The remaining5 designs with � = 21 yield one further design with � = 105. Now, bothnumbers 646306 and 51 are divisible by 17 so that we get an LS[17℄(2; 15; 31).By usings Alltop's onstrution, see below, we get an LS[17℄(3; 16; 32).Theorem 7 Let p be an odd prime. For p � 1 mod 4 and f any natural number,or p � 3 mod 4 and f an even natural number let d = pf � 1. For p � 3 mod 4and f an odd natural number let d = (pf � 1)=2. Let 2 � k � v = pf . Supposethat d divides �pf�1k�1 � and let N = 1d�pf�1k�1 �. If gd(p; k(k � 1) = 1 and at most oneof the greatest ommon divisors gd(k(k � 1)(k � 2); d), gd(k; pf + 1) (respetively10



gd(k; (pf +1)=2 when pf � 3 mod 4), is a prime q and otherwise the gd is always1, then there exists an LS[N ℄(3; k; v).Proof : PGL(2; pf ) is 3-homogeneous on pf + 1 points. If p � 3 mod 4 and f is anodd number then already the unique subgroup PSL(2; pf ) of index 2 in PGL(2; pf )is 3-homogeneous on pf + 1 points.The group PGL(2; pf ) has degree pf + 1 and any non-identity element �xes atmost 2 points. There are elements with no �xed points, i. e. powers of a yle oflength pf + 1. There are elements with exatly one �xed point, i. e. elements oforder p. Finally, there are elements with exatly 2 �xed points, these are the powersof elements of order pf � 1.In the ase of a 3-homogeneous PSL(2; pf ) we have to restrit these elementsto elements of order p, the powers of elements of order (pf + 1)=2, and the powersof elements of order (pf � 1)=2.So, if no k-subset is �xed by a non-identity element then k must be prime topf +1 or (pf +1)=2, respetively, k(k� 1) must be prime to pf and k(k� 1)(k� 2)must be prime to pf � 1 or (pf � 1)=2, respetively. These onditions are arefullyexamined by Cusak and Magliveras in the ase of a 3-homogeneous PSL(2; pf ).Now we want to allow that there may exist orbits of length jPSL(2; pf )j=q fora �xed prime q > 2. Then one of the oprime onditions may be replaed by aommon divisor q. Thus we get the following ases.� gd(k; (pf + 1)=2) = q, gd(k(k � 1); pf ) = 1, and gd(k(k � 1)(k � 2); (pf �1)=2) = 1.� gd(k; (pf + 1)=2) = 1, gd(k(k � 1); pf ) = 1, and gd(k(k � 1)(k � 2); (pf �1)=2) = q. 2Consider the ase pf � 1 mod 4. By [12℄ for any group ontaining PSL(2; pf )there exists no semiregular large set with t = 3. Sine PSL(2; pf ) is no longer 3-homogeneous, we proeed to use G = PGL(2; pf ). We have to drop semiregularityand still obtain restritions for possible large sets. It is easy to see that gd(pf �1; k(k � 1)(k � 2)) = 1 is impossible for odd p. If gd(pf � 1; k(k � 1)(k � 2)) = qfor a prime q then q = 2 and k � 3 mod 4. There are examples for pf = 53, k = 7and pf = 29, k = 11 below.For pf = 32 there exists an LS[5℄(3; 4; 33) with given automorphism groupPGL(2; 32). The ase pf = 64 does not produe a large set. See also Teirlink [25℄.11



Examples 3� G = PSL(2; 23) is 3-homogeneous on 24 points and its order divides �2410�. Sothere exists an LS[323℄(3; 10; 24). We remark that LS[7℄(3; 5; 24), LS[57℄(3; 7; 24),and LS[412℄(3; 11; 24) also exist by [13℄.� G = PSL(2; 31) is 3-homogeneous on 32 points and for k = 9 and p = 3 theonditions of the Theorem hold. So, there exists an LS[1885℄(3; 9; 32). Sine1885 = 5 � 13 � 29, we also get parameter sets LS[5℄(3; 9; 32), LS[13℄(3; 9; 32),and LS[29℄(3; 9; 32).� G = PGL(2; 53) is 3-homogeneous on 54 points and its order divides �547 �.Now, 7 is oprime to 54 and 7 � 6 � 5 has greatest ommon divisor 2 with 52.In fat there are 1140 orbits of length jGj and 100 orbits of length jGj=2. So,there exist LS[N ℄(3; 7; 54) for N = 2; 5; 7; 17.Theorem 3 gives rise to large sets in more general situations than Theorem4. However, it is more diÆult to derive easy onditions whih are suÆient forTheorem 3. The strategy followed after Theorem 4, to onsider restrited familiesof groups, will also be followed here. So, we look again at t-homogeneous groupsand determine the distribution of orbits of k-sets with partiular orbit lengths inonvenient speial ases.Let G at t-homogeneously on a set V . Then the ondensed version of a Kramer-Mesner matrix needed for Theorem 2 for t- versus k-orbits an be omputed byombinatorial methods. The idea is to lassify eah k-orbit by the onjugay lassof a orresponding stabilizer subgroup. If the stabilizer orders are known Alltop'sLemma [4℄, [7℄ yields the matrix entries.The �rst step is to determine for eah onjugay lass of subgroups and for anypartiular representative U in the onjugay lass, the k-sets invariant under U .Clearly, suh a k-set K must onsist of full U -orbits. So,K = K11 [ � � � [K1k1 [ � � � [ Ki1 [ � � � [Kiki � � � [Kn1 [ � � � [Knknwith ki orbits Kij of size i up to some n. If U has exatly ai orbits of size i thenthere are�aiki� possibilities to selet ki orbits of size i. For a given pattern (k1; � � � ; kn) withk = Pi i � ki the possibilities for the di�erent sizes i are multiplied to obtain thenumber of ombinations. This gives the general formulaC(Vk)(U) = Xk=Pi i�kiYi �aiki�12



for the number of k-sets invariant under U .For any subgroup U of G the orbits of U are in bijetion to the double osetsSnG=U of the stabilizer S of a point, and U in G. These again an be lassi�edaording to the stabilizers of right osets Sg in U with respet to right multiplia-tion by elements of U , see [20℄. For a subgroup D of U we have SgD = Sg if andonly if gDg�1 is ontained in S.In the ase of G = PSL(2; p) for a prime p � 3 mod 4 the stabilizer of a pointis a semidiret produt of Zp by Z` where ` = (p � 1)=2 is odd. So, �nding theorbits of a subgroup U of PSL(2; p) of whih the order is not divisible by p anbe done by deiding whih subgroups of U may be onjugate to a subgroup of S.Suh a subgroup D is yli of an order dividing `. In partiular jDj is odd and anysubgroup of some order 2f has only orbits of length 2f . The subgroups of PSL(2; p)are well known, see [8℄. Those whih may have a nontrivial intersetion with S andof whih the order is not divisible by p must have an intersetion whih is either Z3or Z5. So, it is easy to handle these few ases. Then for eah U the orbits an bewritten down.To obtain the number of k-sets where U is the full stabilizer apply the prinipleof inlusion and exlusion to the these numbers over all overgroups of U . This isequivalent to summing over these numbers weighted by the values of the Moebiusfuntion. Again double ounting allows us to determine the number of overgroupsH ontaining U , and belonging to a ertain onjugay lass, from the number ofonjugates of U that are ontained in some H. So, if the subgroups are well knownas in the ase of PSL(2; p) this Moebius inversion an be arried out, see also [14℄,[22℄.Beause elements with the same stabilizer U generally lie in the same orbit onlyif they are already in the same orbit under the normalizer NG(U), the numberobtained has to be divided by the orbit length jNG(U)=U j whih all NG(U) orbitshave on this set.As an example onsider orbits of 4-sets under PSL(2; 23) ating on 24 points.There is just one onjugay lass of subgroups Z2. Suh a subgroup U is generatedby an involution �xing no points, so it must have point-orbits of length 2 only.Hene, there are �122 � = 66 U�invariant 4-sets. A yli group Z4 is generatedby an element of type 46 and therefore must have point-orbits of length 4. TheSylow 2-subgroups are dihedral and thus ontain a unique yli subgroup of order4. Thus, suh a subgroup has �61� = 6 invariant 4-sets. All these lie in the sameorbit of the normalizer of this yli subgroup whih is dihedral of order 24. Thereremain two onjugay lasses of Klein subgroups V4 whih also have orbits of length13



4 only. Eah has as its normalizer a subgroup isomorphi to S4 whih again formsone orbit out of the 4-sets invariant under a V4. No larger group has orbits of length4. A group of order 2 then is ontained in a unique yli subgroup of order 4 andin 3 subgroups from eah onjugay lass of V4's by double ounting. So, for eahof these 7 subgroups of order 4 ontaining the Z2, we have to subtrat from the 66invariant 4-sets their 6 invariant 4-sets. The remaining 24 invariant 4-sets fall into2 orbits of length 12 under the normalizer of Z2 whih is dihedral of order 24.If we restrit the possible values of k by applying the appropriate divisibilityonditions, then only ertain subgroups an our as stabilizers of a k-set. So, if allsuh stabilizers have to be ontained in a ertain yli subgroup of order h up toonjugay, then we an use the number theoreti Moebius funtion for the lattieof divisors of h. We use this strategy below to obtain large sets where the numberof k-orbits is fairly large.To obtain the values of � in these ases by Alltop's Lemma we reall the formulajNG(K)j �m(T;KG) = jNG(T )j �m0(TG;K); (3.3)where NG(R) denotes the stabilizer in G of subset R � V , m(T;KG) denotes thenumber of k-sets in the orbit KG that ontain the t-set T and m0(TG;K) denotesthe number of t-sets in the orbit TG that are ontained in the k-set K. Here weassume that G is t-homogeneous so that m0(TG;K) = �kt�: The value of � is justm(T;KG) and an be obtained from the formula when the stabilizer orders areknown.Let G = AGL(1; pf )=2 be the unique subgroup of index 2 inAGL(1; pf ) for someprime power pf � 3 mod 4. Then G ats regularly on 2-sets. So, jNG(T )j = 1 andif K is any k-set and T a 2-set we get that T is ontained in exatly �k2�=jNG(K)jof the k-sets in the orbit of K.We onsider speial ases. So, we �rst assume that p does not divide k. Thenno k�subset an be left invariant by an element of order p in G. So, the stabilizerof suh a K must lie in one of the omplements, C say. Sine G is primitive andsolvable, these omplements form one onjugay lass and are maximal subgroups.In partiular they are the normalizers of eah of their non-identity subgroups. Anyelement of G mapping a k-set with stabilizer U onto another k-set with stabilizer Umust normalize that stabilizer. Thus, if U < C is the set-stabilizer of a k�subsets,then G has a=[C : U ℄ orbits of this type.Any subgroup U of order d of C has one �xed point and pf�12d orbits of size d.14



A �xed k-set must be a union of U -orbits. So, if d divides k there are exatly�pf�12dkd �invariant k-subsets. If d divides k � 1 there are exatly�pf�12dk�1d �invariant k-subsets. In all other ases there are no invariant k-subsets.This disussion leads to the following result. If p does not divide k and gd(k; (pf�1)=2) = q for some prime q then G has exatly2qpf � 1�pf�12dkd �orbits on k-sets with stabilizer of order q. If p does not divide k and gd(k�1; (pf �1)=2) = q for some prime q then G has exatly2qpf � 1�pf�12dk�1d �orbits on k-sets with stabilizer of order q. All other k-sets have trivial stabilizers.Consider the ase of PGL(2; 29). This group is 3-homogeneous and for k = 11,besides the identity only an element of order 2 may �x suh a k-set. The grouporder does not divide �3011�, hene, Theorem 4 is not appliable. But Theorem 3may be applied. >From the formulas we obtain 2171 designs with � = 990 and 495designs with � = 495. So, q = 2. In the ontext of Theorem 3 we have to �ndsolutions for the system 143 � 2m mod N and 2171 � �m mod N . So, N mustdivide 4485 = 3 � 5 � 13 � 23. We get an LS[N ℄(3; 11; 30) for N = 3; 5; 13; 23.Instead of onstruting a large set from disjoint designs Magliveras [13℄ has alsosearhed for all designs with the required � whih an be ombined from the orbits ofa presribed group and then seleted a partition into disjoint designs among those.As in Theorem 2, this strategy splits the general problem into two subproblems.First, all solutions of the Kramer-Mesner system of diophantine equations for theappropriate value of � are omputed and seondly a matrix is formed by the solutionvetors of the system whih again de�nes a diophantine system of linear equations15



with right hand side onstant to 1. A 0-1 solution vetor determines a large set byseleting those designs whih orrespond to a 1. Thus, this strategy uses the sametool in both steps. In many ases however this approah needs too muh omputertime or spae. So, as in the strategy of Theorem 2 we try to diretly onstrut apartition of �Vk� into designs all with the same �. This orresponds to baktrakingin the seond part of Magliveras strategy but avoiding to �nd all solutions in the�rst part. Beause we may still have to run through a large solution spae we haveimplemented a random seletion of designs disjoint from those seleted previouslyin the searh for a partition into designs. Both versions are part of DISCRETA andled to some interesting new large sets with t � 4:� LS[3℄(4; 6; 13) with automorphism group Z13,� LS[3℄(5; 7; 24) with automorphism group PGL(2; 23),� LS[3℄(3; 7; 21) with automorphism group PSL(3; 4).� LS[5℄(2; 3; 17) admitting Z17� LS[29℄(3; 5; 32) with automorphism group AGL(1; 32).� LS[7℄(4; 5; 32) with automorphism group AGL(1; 32).Note that by Lu[23℄, [27℄ large sets LS[N ℄(2; 3; v) exist for v � 1 or 3(mod 6)and v 6= 7: Here we have a large set for v = 17:4 Reursive ConstrutionsLet p be an odd prime. Sine for 0 � k � n < p no �nk� is divisible by p, Pasal'striangle mod p has non-zero entries in the �rst p rows. We all the triangle formedby the �rst p rows the starting triangle. The (p+ 1)st row then has 1's in the �rstand last entry and all other entries 0. So, we have the two ones as starting pointsof new triangles of p rows whih are idential to the starting triangle. The entriesoutside these triangles in these p rows are 0. In the next (2p+ 1)st row the middleentry is 2, sine the 1's from the two upper neighbors add up to 2. Apart from theborder entries of 1's all other entries are 0. The 2 gives rise to a triangle of p rowsin whih eah entry of the starting triangle with p rows is multiplied by 2 mod p.Generally, we obtain the following pattern: The Pasal triangle mod p is formed oftriangles of p rows whih are obtained from the starting triangle by multiplying it16



by some fator mod p. These fators themselves again form a Pasal triangle of thesame type. So, a reursive struture is generated whih easily desribes the wholepattern. As an example, we display below Pasal's triangle modulo 5.
Pasal's Triangle mod 50 11 1 12 1 2 13 1 3 3 14 1 4 1 4 15 1 0 0 0 0 16 1 1 0 0 0 1 17 1 2 1 0 0 1 2 18 1 3 3 1 0 1 3 3 19 1 4 1 4 1 1 4 1 4 110 1 0 0 0 0 2 0 0 0 0 111 1 1 0 0 0 2 2 0 0 0 1 112 1 2 1 0 0 2 4 2 0 0 1 2 113 1 3 3 1 0 2 1 1 2 0 1 3 3 114 1 4 1 4 1 2 3 2 3 2 1 4 1 4 115 1 0 0 0 0 3 0 0 0 0 3 0 0 0 0 116 1 1 0 0 0 3 3 0 0 0 3 3 0 0 0 1 117 1 2 1 0 0 3 1 3 0 0 3 1 3 0 0 1 2 118 1 3 3 1 0 3 4 4 3 0 3 4 4 3 0 1 3 3 119 1 4 1 4 1 3 2 3 2 3 3 2 3 2 3 1 4 1 4 120 1 0 0 0 0 4 0 0 0 0 1 0 0 0 0 4 0 0 0 0 121 1 1 0 0 0 4 4 0 0 0 1 1 0 0 0 4 4 0 0 0 1 122 1 2 1 0 0 4 3 4 0 0 1 2 1 0 0 4 3 4 0 0 1 2 123 1 3 3 1 0 4 2 2 4 0 1 3 3 1 0 4 2 2 4 0 1 3 3 124 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 125 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 127 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 128 1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 129 1 4 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 1 4 130 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 131 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 132 1 2 1 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 1 2 133 1 3 3 1 0 1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 1 0 1 3 3 134 1 4 1 4 1 1 4 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 1 4 1 1 4 1 4 1As we saw in setion 2, a neessary ondition for an LS[N ℄(t; k; v) to exist isthat the omponent designs have � suh that �N = �v�tk�t�. Sine a t-design is alsoan s-design for 0 � s � t and the large set an LS[N ℄(s; k; v), the �s-values alsosatisfy the equations �sN = �v�sk�s�. Thus, for s = 0; : : : ; t, eah of the binomialoeÆients �v�sk�s� must be divisible by N . For N = p a prime, Pasal's triangle modp, as desribed above, easily allows us to loate the admissible parameter sets. Fora given v and k, the t + 1 entries parallel to the right border and ending with the17



position of �v�tk�t� mod p must be 0. So, one �nds out that ertain lower segments ofthe observed "inverted" 0-triangles with a base line of 0-entries, form the admissibleparameter sets. LS[3℄(3,k,v)8 - - - - -9 - - - - -10 - - - - - -11 - - - - - -12 - - - - ? ? ?13 - - - - - ? ?14 - - - - - - ? ?15 - - - - - - - 716 - - - - - - - - ?17 - - - - - - - - -18 - - - - - - - - - -19 - - - - - - - - - -20 - - - - - - - - - - -21 - - - - ? ? ? ? ? - -22 - - - - - ? ? ? ? - - -23 - - - - - - ? ? ? - - -24 - - - - - - - ? ? - - - -25 - - - - - - - - ? - - - -26 - - - - - - - - - - - - - -27 - - - - - - - - - - - - - -28 - - - - - - - - - - - - - - -29 - - - - - - - - - - - - - - -30 - - - - ? ? ? ? ? ? ? ? ? ? ? ?31 - - - - - ? ? ? ? ? ? ? ? ? ? ?32 - - - - - - ? ? ? ? ? ? ? ? ? ? ?33 - - - - - - - ? ? ? ? ? ? ? ? ? ?34 - - - - - - - - ? ? ? ? ? ? ? ? ? ?35 - - - - - - - - - ? ? ? ? ? ? ? ? ?36 - - - - - - - - - - ? ? ? ? ? ? ? ? ?37 - - - - - - - - - - - ? ? ? ? ? ? ? ?38 - - - - - - - - - - - - ? ? ? ? ? ? ? ?39 - - - - ? ? ? ? ? - - - - ? ? ? ? ? ? ?40 - - - - - ? ? ? ? - - - - - ? ? ? ? ? ? ?41 - - - - - - ? ? ? - - - - - - ? ? ? ? ? ?42 - - - - - - - ? ? - - - - - - - ? ? ? ? ? ?43 - - - - - - - - ? - - - - - - - - ? ? ? ? ?44 - - - - - - - - - - - - - - - - - - ? ? ? ? ?45 - - - - - - - - - - - - - - - - - - - ? ? ? ?46 - - - - - - - - - - - - - - - - - - - - ? ? ? ?47 - - - - - - - - - - - - - - - - - - - - ? ? ?48 - - - ? ? ? ? ? - - - - ? ? ? ? ? - - - - ? ? ?49 - - - ? ? ? ? - - - - - ? ? ? ? - - - - - ? ?50 - - - - ? ? ? - - - - - - ? ? ? - - - - - - ? ?51 - - - - ? ? - - - - - - - ? ? - - - - - - - ?52 - - - - - ? - - - - - - - - ? - - - - - - - - ?53 - - - - - - - - - - - - - - - - - - - - - - -54 - - - - - - - - - - - - - - - - - - - - - - - -55 - - - - - - - - - - - - - - - - - - - - - - -56 - - - - - - - - - - - - - - - - - - - - - - - -57 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - -58 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - -59 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - -60 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - -61 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - -We display above an example of the admissible parameters for LS[3℄(3; k; v) where,beause of symmetry we only show the part of the table with k � v=2. In thisdisplay, we note that there are 4 diagonals, orresponding to k � 3, for whih18



there are no admissible parameters. In later tables we drop suh empty diagonals,and no onfusion will our beause feasible parameters where existene is knownare labeled by the orresponding value of k. Suh a k-label, then, identi�es theorresponding diagonal of the table.For example, when N = 3 and t = 3 we get a triangle of possible parameters ofwhih we only show the part for k � v=2. Eah row is indexed by v. The positionsin the triangle orrespond to the positions in Pasal's triangle. A question markindiates a value of k for whih an LS[3℄(3; k; v) is admissible from the divisibilityonditions. We replae question marks by the value of k when a large set with theorresponding parameter set is known to exist and by a � sign if it is known thatsuh a large set annot exist. The question marks that remain identify the stillundeided ases. The same kind of tables have already been used for halvings in[21℄.If eah of the base line parameter sets of an admissible triangle belongs to anexisting large set then the whole triangle does so. This follows from one of thetheorems ited below. There are further reursion rules allowing us to �ll sometriangle for larger values of v if a triangle for smaller values an be �lled with anexistene sign.Lemma 1 If all designs in an LS[N ℄(t; k; v) are derived with respet to the samepoint x, then the resulting designs form an LS[N ℄(t� 1; k � 1; v � 1), furthermore,the orresponding residual designs with respet to x form an LS[N ℄(t� 1; k; v � 1).Lemma 2 Alltop's Constrution: If an LS[N ℄(2s; k; 2k + 1) exists then also anLS[N ℄(2s+ 1; k + 1; 2k + 2) exists.This follows from applying Alltop's onstrution [5℄ to eah design in the givenlarge set.Theorem 8 Ajoodani-Namini[2℄: If an LS[p℄(t; k; v) exists, p a prime, then therealso exist LS[p℄(t+ 1; pk + j; p(v + 1)) for 0 < j < p.Corollary 1 If an LS[p℄(t; k; v) exists, p a prime, then there also exist LS[p℄(t; pk+j; p(v + 1)� 1) for j = 0; 1; : : : ; p� 1: 19



To see this, form the derived and residual large sets from the large sets resultingfrom Ajoodani-Namini's theorem.Theorem 9 If an LS[3℄(2s; k; 2k + 1) exists, then an in�nite series of large setsLS[3℄(2(s + i); (k + 2)3i � 2; (2k + 4)3i � 3) exists, where i = 0; 1; : : :.Proof: First apply Alltop's onstrution to the given LS[3℄(2s; k; 2k + 1) to obtainan LS[3℄(2s + 1; k + 1; 2k + 2). >From this, by the orollary to Ajoodani-Namini'sTheorem, onstrut an LS[3℄(2s+2; 3k+4; 6k+9). This again ful�lls the assumptionof the theorem. Now the formula follows by indution. 2The new LS[3℄(4; 6; 13) is a starting point of the series LS[3℄(2(2+i); 6�3i�2; 16�3i�2) for i = 0; 1; : : :. This series has the smallest presently known values of v for a t-(v; k; �) design with a given t � 16. An LS[3℄(4; 5; 13) had been found earlier by [17℄.The supplementary designs form an LS[3℄(4; 7; 13) and an LS[3℄(4; 8; 13) respe-tively. From these large sets then, the next Theorem yields large sets LS[3℄(4; 6; 14),LS[3℄(4; 7; 14), LS[3℄(4; 8; 14), LS[3℄(4; 7; 15), LS[3℄(4; 8; 15), and LS[3℄(4; 8; 16). Inpartiular, the LS[3℄(4; 7; 15) is again a starting point for an in�nite series obtainedby applying Theorem 9. Further series an be obtained in a similar fashion fromthe large sets LS[3℄(2; 5; 11), LS[3℄(2; 6; 13), and LS[3℄(2; 7; 15), but for these thevalues of v for a given t are larger than what we get from the �rst series.Theorem 10 Ajoodani-Namini, Khosrovshahi[16℄: If an LS[N ℄(t; k; v) and an LS[N ℄(t; k+1; v) exist then so does an LS[N ℄(t; k + 1; v + 1).Theorem 11 Ajoodani-Namini, Khosrovshahi[16℄: If there exist LS[N ℄(t; k; v) fork = t+1; : : : ; ` and LS[N ℄(t; k; u) for all k in an interval a � k � ` then there existLS[N ℄(t; k; v + u� t) for all k in the interval a � k � `.5 Tables>From the basi large sets, the above reursive results yield a large number ofparameter sets, indiated ompatly by entry k in row v of a table. As an example,we exhibit the table for LS[3℄(3; k; v) below, and all other tables enompassing allthat is known for v � 61 appear in the Appendix. An entry "-" means that the
20



parameter set is not feasible, a question mark "?" means that the existene of a largeset with that parameter set is undeided, and bold fae indiates a new parameterset. LS[3℄(3,k,v)8 -9 -10 - -11 - -12 4 5 613 - 5 614 - - 6 715 - - - 716 - - - - 817 - - - - -18 - - - - - -19 - - - - - -20 - - - - - - -21 4 5 6 7 8 - -22 - 5 6 7 8 - - -23 - - 6 7 8 - - -24 - - - 7 8 - - - -25 - - - - 8 - - - -26 - - - - - - - - - -27 - - - - - - - - - -28 - - - - - - - - - - -29 - - - - - - - - - - -30 4 5 6 7 8 ? ? 11 ? ? ? ?31 - 5 6 7 8 ? ? ? ? ? ? ?32 - - 6 7 8 9 10 ? ? 13 ? ? ?33 - - - 7 8 9 10 ? ? ? ? ? ?34 - - - - 8 9 10 ? ? ? ? ? ? ?35 - - - - - 9 10 11 12 13 14 15 16 1736 - - - - - - 10 11 12 13 14 15 16 17 1837 - - - - - - - 11 12 13 14 15 16 17 1838 - - - - - - - - 12 13 14 15 16 17 18 1939 4 5 6 7 8 - - - - 13 14 15 16 17 18 1940 - 5 6 7 8 - - - - - 14 15 16 17 18 19 2041 - - 6 7 8 - - - - - - 15 16 17 18 19 2042 - - - 7 8 - - - - - - - 16 17 18 19 20 2143 - - - - 8 - - - - - - - - 17 18 19 20 2144 - - - - - - - - - - - - - - 18 19 20 21 2245 - - - - - - - - - - - - - - - 19 20 21 2246 - - - - - - - - - - - - - - - - 20 21 22 2347 - - - - - - - - - - - - - - - - - 21 22 2348 4 5 6 7 8 - - - - 13 ? 15 ? 17 - - - - 22 23 2449 - 5 6 7 8 - - - - - ? ? ? ? - - - - - 23 2450 - - 6 7 8 - - - - - - ? ? ? - - - - - - 24 2551 - - - 7 8 - - - - - - - ? ? - - - - - - - 2552 - - - - 8 - - - - - - - - ? - - - - - - - - 2653 - - - - - - - - - - - - - - - - - - - - - - -54 - - - - - - - - - - - - - - - - - - - - - - - -55 - - - - - - - - - - - - - - - - - - - - - - - -56 - - - - - - - - - - - - - - - - - - - - - - - - -57 4 5 6 7 8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - -58 - 5 6 7 8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - -59 - - 6 7 8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - -60 - - - 7 8 9 ? 11 ? 13 14 ? ? 17 ? 19 ? 21 22 23 ? 25 ? - - - -61 - - - 8 9 ? ? ? ? 14 ? ? ? ? ? ? ? 22 23 ? ? ? - - - -The Appendix ontaining all the tables generated for this paper an be down-loaded from one of the web sites: <http://helios.unl.edu/�spyros/> or<http://www.mathe2.uni-bayreuth.de/people/laue.html>. We hope the readerwill be interested in resolving some of the unsettled ases.21
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