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Abstract

We introduce generalizations of earlier direct methods for constructing large
sets of t—designs. These are based on assembling systematically orbits of
t—homogeneous permutation groups in their induced actions on k—subsets.
By means of these techniques and the known recursive methods we construct
an extensive number of new large sets, including new infinite families. In par-
ticular, a new series of LS[3](2(2 + m),6 - 3™ — 2,16 - 3™ — 2) is obtained.
This also provides the smallest known v for a ¢t — (v, k, \) design when ¢ > 16.
We present our results compactly for v < 61, in tables derived from Pascal’s
triangle modulo appropriate primes.

1 Introduction

Large sets of ¢-designs have been used in recursive constructions for over a decade.
Most celebrated is the pioneering work of Teirlinck who showed in [26] that sim-
ple t-designs exist for all £. Unfortunately, for a given ¢, Teirlinck’s constructions
result in ?-designs with extremely large values for the parameters v and A. Subse-
quently, other researchers, particularly Khosrovshahi and Ajoodani-Namini, greatly



contributed to the repertory of recursive methods. By means of these techniques
the value of v for which ¢-designs are now constructible can be made considerably
smaller.

Recursive methods require a basis of large sets from which to start. Then infinite
series of parameter sets are settled by recursion. In this article, we present several
new large sets which, in combination with already known cases and the known
recursive methods, handle many admissible parameter sets.

By an admissible parameter set for a putative LS[N](¢, k,v) we mean parameters
(N,t,k,v) which satisfy certain obvious divisibility conditions as discussed in the
next section. In the case of halvings, i. e. LS[2](¢,k,v), Ajoodani-Namini [1] has
shown that for ¢ = 2 all admissible parameter sets are realizable. For larger ¢ there
are partial results for £ up to 16 [21]. We review what is presently known by means
of the following theorem.

Theorem 1 Let p be an odd prime, and 0 < t < k < v be integers. Then, large
sets LS[p|(t, k,v) are realizable as follows:

i) For all k < 11 all admissible LS[3)(2,k,v) are realizable.
ii) For all k < 8 all admissible LS[3](3,k,v) are realizable.
ii) For all k < 8 all admissible LS[3](4,k,v) are realizable.

i) For all k <5 all admissible LS[5](2,k,v) are realizable, with the well known
exceptions of an LS[5|(2,3,7) and an LS[5](2,4,7).

v) For all k <5 all admissible LS[5](3,k,v) are realizable, with the well known
exception of an LS[5](3,4,8).

vi) For all k < 6 all admissible LS[7)(2,k,v) are realizable.
vii) For all k <10 all admissible LS[11](2, k,v) are realizable.
vigi) For all k <5 all admissible LS[29](2, k,v) are realizable.

There exist LS[3](2(2 + m),6-3™ — 2,16 - 3" — 2) for all natural numbers m.
This provides the smallest known v when ¢ > 16.

Our results are presented for v < 61 in tables that are deduced from Pascal’s
triangle, making it easy to depict unsettled cases. Disposing of the unsettled cases



will either require new recursive techniques or direct construction methods different
from the ones employed in this paper.

The large sets in this paper are obtained by appropriately assembling orbits of
t-homogeneous groups. This approach had been employed earlier, see [12], with
the additional restriction that all orbits of k-sets were of length equal to the group
order. In this paper we generalize the approach by also considering situations where
orbits of k-sets of various lengths can occur. In some cases, a random search for
disjoint ¢-designs contributes large sets from non t-homogeneous group actions. The
computations here were made using DISCRETA, a software package developed at
Bayreuth University, as well as a special purpose computer program written for this
article.

This article was started when the first author visited the second author at the
University of Nebraska - Lincoln. The first author thanks this institute for its kind
hospitality and the fruitful atmosphere which stimulated successful research.

2 Preliminaries

In this paper, V' denotes a finite point set with |V| = v, ¢ and k are positive integers
such that 0 < ¢t < k < v, and the collection of all k-subsets of V' is denoted by (‘k/)

A simple t— (v, k, \) design, (V, B), is a v-element set V' of points and a collection
B of k-element subsets of V' called blocks, such that every ¢-element subset of V' is
contained in precisely A blocks. All ¢t — (v, k, \) designs discussed in this paper are
simple.

If (V,B)isat—(v,k,\) design, and = € V, the derived design with respect to x
is (V \ {z},D), where D € D if and only if D = B\ {z}, for x € B € B. A derived
designisa (t —1) — (v — 1,k — 1, A) design.

If (V,B)isat— (v,k,\) design, and z € V, the residual design with respect to
x is the design (V' \ {z},R), where K € R if and only if z ¢ K € B. A residual
designis a (t —1) — (v — 1,k, \') design.

It is well known that for each s, 0 < s < ¢, every t — (v,k, \) design is also an
s — (v,k, As) design, where Ay = )\(2::)/(';:;) Thus, a set of necessary divisibility
conditions for the existence of a t — (v, k, A) design is that A(}~7) = 0 mod (]Z:;),
for 0 <s <t

By a large set LS[N](t, k,v) we mean a collection £ = {(V, B;)}Y, of t — (v, k, )
designs where {B;}Y, is a partition of (‘k/)

The number of blocks in a t — (v,k, \) design is b = \g = )\(;’)/(k) Thus, a

t
necessary condition for a large set LS[N](t, k,v) to exist is that Nb = (7). This is



equivalent to AN = (z:i) Thus, N must divide (z:i)

A group action G|V is called transitive if V' consists of a single G-orbit. The
group action G|V is said to be t-homogeneous if the induced action of G on (‘t/) is
transitive. For brevity, by a k—orbit we mean an orbit of G in its induced action
on (}).

Let B = {B;}, be the collection of designs in a large set £. A group G is said
to be an automorphism group of £ if BY=B for all g € G, that is, if B} € B for
all B; € B and g € G. Equivalently, we say that a large set with this property is
G-invariant. If the stronger condition that Bf =P, for all B; € B and g € G holds,
we say that a large set is [G]-invariant.

In 1976, Kramer and Mesner [24] described certain matrix invariants A,y as-
sociated with a given group action G|V. Roughly speaking A;; is the result of
fusing under G the incidence matrix between (‘{) and (Z), where incidence is set
inclusion. More precisely, for a given group action G|V, let A = {A;}/_, be the
collection of G-orbits on (Y), and I' = {T';}3_; be the collection of G-orbits on

()k() For a fixed member T' of A;, the number a;;(T) of members K € I'; such that
T C K is independent of the choice of T' € A;, hence we may write a;; = a;;(T).
We define the r x s matrix Ay = A1 (G|X) by Ay = (ai;).

In [24] Kramer and Mesner state a theorem which provides necessary and suf-
ficient conditions for the existence of a G—invariant ¢ — (v, k, A) design in terms
of the matrix A;; above. Beginning with a given group action G|V, the theorem
allows for the construction of all such G—invariant t—designs. In [12] the authors
describe a slight generalization of the theorem which provides means for construct-
ing [G]-invariant large sets of t — (v, k, A) designs. In particular, the authors of [12]
turn their attention to {—homogeneous, G-semiregular large sets of t—designs.

3 Direct Constructions

The methods in this section are based on the concept of assembling orbits of a
permutation group into ¢-designs so that these designs form a large set.

We use the Kramer-Mesner method to find #-designs from the orbits of a permu-
tation group G|V in its induced action on k-subsets. Thus, we may first construct
disjoint designs with various values of A stepwise by first searching for a ¢-design
with a small A, removing all orbits used for this design before the next step, and
continuing this way until all orbits are covered by some #-design. Then we try to
combine these designs into disjoint designs which all have the same parameter .
Mathematically, this problem can be described by the solutions of a system of linear
diophantine equations.



Theorem 2 Let t < k < v be natural numbers, and V a set of v points. Suppose
that for natural numbers X and N, AN = (Z:i) Let P be a partition of (‘,g)
into disjoint t-designs such that, for j = 1,---,n, there are exactly a; designs with
parameter \; in P. Let A = (ai;) be an m x n integer matriz such that 0 < a;; < aj;,

and for eachi=1,...,m:
n
Zaij)\j =\ (3.1)
j=1

Then, each integer solution vector (Ny,---, Ny,) to the diophantine system:
(Ny,-+-,Np)A = (a1, - ,ap) (3.2)

determines a large set LS[N](t, k,v) by selecting N; t— (v, k,\) designs which cor-
respond to the i row (a1, -+, ain). In such a solution a;; designs have parameters
t— (v, k,Aj).

Proof: If Dy and Dy are two disjoint ¢-designs on the same point set V, with D;
at— (v,k,¢;) design, then their union D; UDs is a t — (v, k,£) design with with
¢ = {1 +/5. Each row of A allows us to construct a ¢t — (v, k, A) design as the union of
disjoint designs, and a solution (Ny,---, Np,) to (3.2) allows us to assemble exactly
the correct number of disjoint ¢ — (v, k, \) designs to cover (Z) exactly. O

Of course, there may be many different partition types of (‘,:) into disjoint ¢-
designs, as well as different partitions of the same type. In general, Theorem 2
does not completely solve the problem of describing all LS[N](¢, k,v) which can be
obtained from the orbits on k—subsets of a prescribed permutation group G|V.

There are some special cases where a finest partition of the set of all k-orbits
into t-designs is unique. Obviously this is the case if the group has only one orbit
on t-subsets, i. e. the group is t-homogeneous. Then, each k—orbit is a ¢-design and
the finest partition is just the set of all k-orbits. So, in this case Theorem 2 allows
us to find a complete solution.

As an example consider G = PT'L(2,27) in its action on the projective line of
v = 28 points. Let £ = 11 and ¢ = 3. Since this group is 3-homogeneous, each
k-orbit is a 3-design. These orbits form our starting partition P. Here, there are
a1 = 343 designs with Ay = 2970, a9 = 33 designs with Ao = 1485, and a3 = 14
designs with A3 = 990. We note that 495 divides each of A{, Ao and A3. We have
(Z:i) = (285) =495-5-19 - 23 where each A must be a multiple of 495. We search
for an LS[5](3,11,28) using Theorem 2. We can simplify our first equation

n
Z ai]‘>\j =
j=1
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by dividing both sides by 495 and get

6-a11 +3-a19+2-a13 =437 =19 -23.

A first solution vector is (a11,a12,a13) = (72,1, 1). A second solution is (as1, ass,
as3) = (55,29,10). Then (N, Ny) = (4,1) solves diophantine system (3.2) so that
we have to combine 4 designs of the first kind with 1 design of the second kind to
get the desired LS[5](3,11,28).

In what follows we present some further examples of large sets obtained by
applying Theorem 2. We report here some orbit statistics obtained with the help
of DISCRETA.

Examples 1

An LS[77](1,6,12). Here the cyclic group of order 12 regular on points, is
acting on the set of all 6-subsets with 75 orbits of length 12, 3 orbits of length
6, 1 orbit of the length 4, and 1 of length 2.

An LS[11](2,6,13). Here the group AGL(1,13) has 9 orbits of size 156, 3
orbits of length 78, 1 orbit of length 52 and 1 of length 26. These can be
combined into 11 1-designs with 156 blocks each. Using Alltop’s theorem
this large set extends to an LS[11](3,7,14).

An LS[2](3,6,12). The group PSL(2,11) has 1 orbit of length 330, 2 orbits
of length 132, and 3 orbits of length 110.

An LS[2](3,8,20). The group PSL(2,19) has 29 orbits of length 3420, 13
orbits of length 1710, 3 orbits of length 855, 3 orbits of length 570, and 1
orbit of length 285.

An LS[N](3,11,32). Here the group PSL(2,31) has 5 orbits of size
\PSL(2,31)|/5 and 12 orbits of length |PSL(2,31)|/3. All other orbits have
length |PSL(2,31)]. Since in each case the number of orbits is a multiple

of the stabilizer order, one can always combine orbits to form a design with
exactly |PSL(2,31)| blocks. Thus, there exists an LS[29 - 13 - 23](3, 11, 32).

G = PT'L(2,32) is 4-homogeneous on the 33 points of the projective line, and
this group has 32 orbits on 7-sets. There are 22 orbits of length |G|, 7 orbits
of length |G|/2 and 3 orbits of length |G|/5. Combining 4 orbits of length
|G|/2 with two orbits of size |G| gives 24 = 8 - 3 sets of size |G|. We combine
8 of these sets with one orbit of length |G|/5 three times and thus get an
LS[3](4,7,33).



e Again, let G = PT'L(2,32) act on 33 points as above. Then, in its induced
action on 10-sets, G has 538 orbits of length |G|, 54 orbits of length |G|/2, 1
orbit of length |G|/5, and 3 orbits of length |G|/10. These can be combined
to form an LS[39)(4, 10, 33), an LS[29](4, 10,33), an LS[13](4, 10,33), and an
LS[3](4, 10, 33).

e Consider G = PGL(2,37) in its action on the projective line of 38 points.
Then, in its induced action on 7-sets G' has 225 orbits of length |G|, 46 orbits
of length |G]/2, and 4 orbits of length |G|/3. These can be combined to an
LS[2](3,7,38).

In a special case we can determine N in a more convenient way.

Theorem 3 If there exists a partition of (Z) into a1 designs with parameters t —
(v,k,q\) and ay designs with parameters t — (v,k,\) for some natural number q
then large sets LS[N](t,k,v) can be obtained from this partition for certain divisors
N of as + qa1. For such an N there must exist a non-negative integer m < as/q
such that N divides both as — mq and a1 + m.

Proof: From the starting partition combine q of the ¢t — (v, k, \) designs to form a
t — (v,k,q\) design. If this is done m times there result a; + m designs with
parameters t — (v, k,qg\). Suppose that Nd = a; + m and Ne = as — mq for
some natural numbers d,e. Combining d designs with parameters ¢ — (v, k, g)\)
with e designs with parameters ¢t — (v, k, \) results in a ¢t — (v, k, \') design where
N = (dq + e)\. Repeating this N times until all designs are used results in the
desired large set. The number N then must divide ay + ga;. To see this simply
insert m = dN — a1 into Ne = as — mq to obtain as + a1q = (dg + ¢)N. Thus, the
possible values of N are divisors of as + qay. O

The group G = PT'L(2,32) is 4-homogeneous on 33 points. The orbits of G
partition the set of all 10-sets into 538 4-(33,10,840) designs, 54 4-(33,10,420)
designs, 1 4-(33,10,168) design, and 3 4-(33,10,84) designs. The last three types
give exactly 55 4-(33,10,420) designs. So, we get a partition into designs of two
types as required for Theorem 3. We have ¢ = 2, and ay + 2a; = 1131 = 29 - 39.
;From 55 = 82+ 39, and 538 + 8 = 546 = 39 - 14 we get an LS[39](4, 10, 33). Also,
from 55 = 13-2+29, and 538 + 13 = 551 = 29- 19 we get an LS[29](4,10,33). The
divisors of 39 yield further large sets. But the divisors 3-29 and 13-29 are too large
for a large set.



By the translation group T(n,p) we mean a multiplicative elementary abelian
group of order p”. In the following theorem we consider the right regular action of
T(2,p) on itself.

Theorem 4 Let p be a prime, and G =V =T(2,p). Then there exists an LS[p +
1)(1, p,p?) where T'(2,p) acts as a group of automorphisms of each of the designs in
the large set. Thus, the large set is [G]—invariant.

Proof : The translation group T'(2,p) has exactly p + 1 subgroups of order p, each
leaving invariant under the group action of right multiplication the set of elements
in that subgroup and its right cosets. No other subset of p elements is left invariant
by such a subgroup. Each such collection of p-sets forms a single orbit under the
full group. So, the whole group has exactly p+ 1 orbits of size p on p-sets. All other

p-sets must lie in orbits of size p?. There remain I%((’i) — p(p + 1)) orbits of size

p?. This number can be represented in the form n - (p 4 1) for some natural number
n. So, we can form a large set of p + 1 designs by composing each design out of n
orbits of size p? and one orbit of size p. O

For example p = 5 yields 2124 orbits of size 25 and 6 orbits of size 5 on the
5-subsets of T'(2,5). Since 2124 is 354-6, a large set can be obtained by constructing
disjoint designs each formed by combining 354 orbits of size 25 and one of size 5.
If we had tried the cyclic group of order 25 we would have obtained only one orbit
of size 5 and 2125 orbits of size 25. This would not produce any large sets. Thus,
we see that no simple divisibility conditions can cover this case. One can easily
generalize Theorem 4 to higher powers of p.

Generally, group orbits are a rich source for the required partitions. We will
consider several series of groups and therefore look for special cases which are easier
to verify in the context of Theorem 3. First we look for a case where N = (})/|G]|.

The case where all k-orbits have length the group order, i. e. semiregular large
sets, has been treated theoretically for the groups PSL(2,q) by Cusack and Magliv-
eras [12]. We now consider a slightly more general case.

Theorem 5 Let p be a prime and suppose that G|V is a t—homogeneous group
action where each orbit of G on (‘k/) has length either |G| or |G|/p. Suppose further
that |G| divides (), v = |V|. Then, there exists an LS[N](t, k,v), where N =

(1)/IGI-
Proof : Let G have a orbits of size |G| and b orbits of size |G|/p. Then

at+b==z



is a natural number. The union of all orbits is the set of all k-subsets. Thus, we
get a second equation

a|G|+b|G|/p = (Z)

__p 1 (v
b_p—lz |G|<k>}'

If |G| divides (Z) then b is a multiple of p, so that we can repeatedly combine p
orbits of size |G|/p to form a t¢-design with |G| blocks each until all orbits of this
length are exhausted. Each of the remaining orbits of length |G| also forms such a
design. Since all orbits are disjoint, these designs form a partition of the complete
design into designs with |G| blocks each. Dividing (}) by |G| then gives the number
of designs N. O

Solving for b yields

The cyclic group of order v, in its regular representation is of course transitive
and thus, for ged(v,k) = 1 or ged(v, k) = q, where ¢ is a prime and v divides (Z),
we get an LS[N](1,k,v), where N = (}) /.

Several new large sets are obtained from Theorem 5 by looking at well known
families of groups which are at least 2-homogeneous. In particular, we obtain the
following result.

Theorem 6 Let p be an odd prime. For p =1 mod 4 and f any natural number,
or p =3 mod 4 and f an even natural number, let d = pf — 1. For p = 3 mod /
and f an odd natural number let d = (pf —1)/2. Let 2 <k <wv = p! and suppose d
divides (’;::11). Set N = %(pkf:f). If p does not divide k and ged(k(k—1),d) € {1,q}
for some prime q then there exists an LS[N|(2,k,v).

Proof : If p = 1 mod 4, f arbitrary; or p = 3 mod 4 and f even, then AGL(1,p/)
is 2-homogeneous on pf points. If p = 3 mod 4 and f is odd, then AGL(1,p/) and
its unique subgroup AGL(1,pf)/2 of index 2 are 2-homogeneous on p/ points.

In order to apply Theorem 5 we have to find out for which values of k£ such a
group G has orbits of sizes |G| or |G|/q only, where ¢ is some prime. So, we examine
the cycle types of the elements of G to see whether a k-subset is left invariant. We
have to single out the cases where, besides the identity, either no elements or only
elements of some fixed prime order ¢ may leave such a k-subset invariant.

The group AGL(1,p?) has an elementary abelian normal subgroup of order pf
and one conjugacy class of complements which are cyclic of order p/ — 1. Elements



other than the identity have either order p, comprised of cycles of length p only,
or have just one fixed point and (pf — 1)/d cycles of length d for some divisor d
of p/ — 1. The subgroup AGL(1,p/)/2 contains the elements of order p and those
further elements whose order divides (p/ — 1)/2.

If G = AGL(1,p?) then for k prime to p and ged(k(k — 1),pf — 1) € {1,4} for
some prime ¢, the condition that |[AGL(1,p?)| = p/ (p? — 1) divides (pkf) suffices to
obtain an LS[N](2, k, p/).

If p= 3 mod 4 and f is odd then for k prime to p and ged(k(k—1), (pf —1)/2) €
{1, ¢} for some prime g, the condition that |AGL(1,p/)| = p/ (p/ —1)/2 divides (pkf
suffices to obtain an LS[N](2, k,pf). O

Examples 2

e G =AGL(1,17) has order 17-16. For k = 6 we have 42 orbits of size 272 and
7 orbits of size 15. So there is an LS[7](2,6,17). G = AGL(1,23)/2 has order
23-11. For k = 5 we have 133 orbits of size 253. So there is an LS[133](2, 5,23).
For G = AGL(1,27) we find an LS[50](2,4,27), an LS[230](2,5,27), and an
L8[2530](2, 7, 27).

e G = AGL(1,29) has 12298 orbits of size |G|, 70 orbits of size |G|/2, and 3
orbits of size |G|/4 on 9-sets. Combining twice 2 of the orbits of size |G|/2
adds two more designs with |G| blocks to the regular ones. Thus, there are
now 12300 of these designs, 66 designs with |G|/2 blocks, and the remaining
3 designs with |G|/4 blocks. Each of these numbers is a multiple of 3 so, one
can build an LS[3](2,9,29) out of this orbit partition.

e G = AGL(1,31) has 646305 orbits of size |G|, 50 orbits of size |G|/3, 6 orbits
of size |G|/5, and 2 orbits of size |G|/15 on 15-sets. The corresponding values
of A are 105, 35, 21, 7 respectively. Combining the two designs of A = 7
with 1 design of A = 21 yields one more design with A\ = 35. The remaining
5 designs with A = 21 yield one further design with A = 105. Now, both
numbers 646306 and 51 are divisible by 17 so that we get an LS[17](2, 15, 31).
By usings Alltop’s construction, see below, we get an LS[17](3,16,32).

Theorem 7 Let p be an odd prime. For p =1 mod j and f any natural number,
orp =3 mod 4 and f an even natural number let d = p/ — 1. For p = 3 mod /4
and f an odd natural number let d = (p! —1)/2. Let 2 < k < v = pf. Suppose

that d divides (pkf__ll) and let N = é(p,j__ll). If ged(p,k(k — 1) = 1 and at most one
of the greatest common divisors ged(k(k — 1)(k — 2),d), ged(k,pf + 1) (respectively
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ged(k, (p! +1)/2 when pf =3 mod 4), is a prime q and otherwise the ged is always
1, then there exists an LS[N|(3,k,v).

Proof : PGL(2,p/) is 3-homogeneous on p/ + 1 points. If p =3 mod 4 and f is an
odd number then already the unique subgroup PSL(2, p/) of index 2 in PGL(2, p?)
is 3-homogeneous on p/ + 1 points.

The group PGL(2,pf) has degree p/ + 1 and any non-identity element fixes at
most 2 points. There are elements with no fixed points, i. e. powers of a cycle of
length p/ + 1. There are elements with exactly one fixed point, i. e. elements of
order p. Finally, there are elements with exactly 2 fixed points, these are the powers
of elements of order p/ — 1.

In the case of a 3-homogeneous PSL(2,p/) we have to restrict these elements
to elements of order p, the powers of elements of order (pf + 1)/2, and the powers
of elements of order (p/ —1)/2.

So, if no k-subset is fixed by a non-identity element then k must be prime to
p/ +1 or (p/ +1)/2, respectively, k(k — 1) must be prime to p/ and k(k —1)(k — 2)
must be prime to p/ — 1 or (p/ — 1)/2, respectively. These conditions are carefully
examined by Cusack and Magliveras in the case of a 3-homogeneous PSL(2,p).

Now we want to allow that there may exist orbits of length |PSL(2,p/)|/q for
a fixed prime ¢ > 2. Then one of the coprime conditions may be replaced by a
common divisor q. Thus we get the following cases.

e ged(k, (p/ +1)/2) = q, ged(k(k — 1),p/) = 1, and ged(k(k — 1)(k — 2), (p/ —
1)/2) = 1.

e ged(k, (p! +1)/2) = 1, ged(k(k — 1),p/) = 1, and ged(k(k — 1)(k — 2), (p/ -
1)/2) =q.

a

Consider the case p/ = 1 mod 4. By [12] for any group containing PSL(2, p/)
there exists no semiregular large set with t = 3. Since PSL(2,p/) is no longer 3-
homogeneous, we proceed to use G = PGL(2,p/). We have to drop semiregularity
and still obtain restrictions for possible large sets. It is easy to see that ged(p! —
1,k(k — 1)(k — 2)) = 1 is impossible for odd p. If ged(p/ — 1,k(k — 1)(k —2)) = ¢
for a prime ¢ then ¢ = 2 and k = 3 mod 4. There are examples for p/ =53, k =7
and p/ =29, k = 11 below.

For p/ = 32 there exists an LS[5](3,4,33) with given automorphism group
PGL(2,32). The case p/ = 64 does not produce a large set. See also Teirlinck [25].
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Examples 3

e G = PSL(2,23) is 3-homogeneous on 24 points and its order divides (%é) So
there exists an LS[323](3, 10, 24). We remark that LS[7](3,5,24), LS[57](3,7,24),
and LS[412](3,11,24) also exist by [13].

e G = PSL(2,31) is 3-homogeneous on 32 points and for £k = 9 and p = 3 the
conditions of the Theorem hold. So, there exists an LS[1885](3,9,32). Since
1885 = 5- 13- 29, we also get parameter sets LS[5(3,9,32), LS[13](3,9, 32),
and LS[29](3,9,32).

e G = PGL(2,53) is 3-homogeneous on 54 points and its order divides (574).
Now, 7 is coprime to 54 and 7 -6 - 5 has greatest common divisor 2 with 52.
In fact there are 1140 orbits of length |G| and 100 orbits of length |G|/2. So,
there exist LS[N|(3,7,54) for N =2,5,7,17.

Theorem 3 gives rise to large sets in more general situations than Theorem
4. However, it is more difficult to derive easy conditions which are sufficient for
Theorem 3. The strategy followed after Theorem 4, to consider restricted families
of groups, will also be followed here. So, we look again at t-homogeneous groups
and determine the distribution of orbits of k-sets with particular orbit lengths in
convenient special cases.

Let G act t-homogeneously on a set V. Then the condensed version of a Kramer-
Mesner matrix needed for Theorem 2 for ¢- versus k-orbits can be computed by
combinatorial methods. The idea is to classify each k-orbit by the conjugacy class
of a corresponding stabilizer subgroup. If the stabilizer orders are known Alltop’s
Lemma [4], [7] yields the matrix entries.

The first step is to determine for each conjugacy class of subgroups and for any
particular representative U in the conjugacy class, the k-sets invariant under U.
Clearly, such a k-set K must consist of full U-orbits. So,

K:KIIU"‘UKlklU“‘U KiIU"'UKiki"'UKnlU"'UKnkn

with k; orbits Kj; of size i up to some n. If U has exactly a; orbits of size ¢ then
there are

(Z:) possibilities to select k; orbits of size 7. For a given pattern (ky,---,k,) with
k =3,i-k; the possibilities for the different sizes ¢ are multiplied to obtain the
number of combinations. This gives the general formula

coo = ¥ II(7)

k=Y ik i
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for the number of k-sets invariant under U.

For any subgroup U of G the orbits of U are in bijection to the double cosets
S\G/U of the stabilizer S of a point, and U in G. These again can be classified
according to the stabilizers of right cosets Sg in U with respect to right multiplica-
tion by elements of U, see [20]. For a subgroup D of U we have SgD = Sg if and
only if gDg~! is contained in S.

In the case of G = PSL(2,p) for a prime p = 3 mod 4 the stabilizer of a point
is a semidirect product of Z, by Z; where £ = (p — 1)/2 is odd. So, finding the
orbits of a subgroup U of PSL(2,p) of which the order is not divisible by p can
be done by deciding which subgroups of U may be conjugate to a subgroup of S.
Such a subgroup D is cyclic of an order dividing . In particular |D| is odd and any
subgroup of some order 2/ has only orbits of length 2. The subgroups of PSL(2, p)
are well known, see [8]. Those which may have a nontrivial intersection with S and
of which the order is not divisible by p must have an intersection which is either Zj
or Zs. So, it is easy to handle these few cases. Then for each U the orbits can be
written down.

To obtain the number of k-sets where U is the full stabilizer apply the principle
of inclusion and exclusion to the these numbers over all overgroups of U. This is
equivalent to summing over these numbers weighted by the values of the Moebius
function. Again double counting allows us to determine the number of overgroups
H containing U, and belonging to a certain conjugacy class, from the number of
conjugates of U that are contained in some H. So, if the subgroups are well known
as in the case of PSL(2,p) this Moebius inversion can be carried out, see also [14],
[22].

Because elements with the same stabilizer U generally lie in the same orbit only
if they are already in the same orbit under the normalizer Ng(U), the number
obtained has to be divided by the orbit length |Ng(U)/U| which all Ng(U) orbits
have on this set.

As an example consider orbits of 4-sets under PSL(2,23) acting on 24 points.
There is just one conjugacy class of subgroups Zs. Such a subgroup U is generated
by an involution fixing no points, so it must have point-orbits of length 2 only.
Hence, there are (122) = 66 U—invariant 4-sets. A cyclic group Z,4 is generated
by an element of type 4% and therefore must have point-orbits of length 4. The
Sylow 2-subgroups are dihedral and thus contain a unique cyclic subgroup of order
4. Thus, such a subgroup has (?) = 6 invariant 4-sets. All these lie in the same
orbit of the normalizer of this cyclic subgroup which is dihedral of order 24. There

remain two conjugacy classes of Klein subgroups V; which also have orbits of length
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4 only. Each has as its normalizer a subgroup isomorphic to S4 which again forms
one orbit out of the 4-sets invariant under a V4. No larger group has orbits of length
4. A group of order 2 then is contained in a unique cyclic subgroup of order 4 and
in 3 subgroups from each conjugacy class of V4’s by double counting. So, for each
of these 7 subgroups of order 4 containing the Zs, we have to subtract from the 66
invariant 4-sets their 6 invariant 4-sets. The remaining 24 invariant 4-sets fall into
2 orbits of length 12 under the normalizer of Zo which is dihedral of order 24.

If we restrict the possible values of k by applying the appropriate divisibility
conditions, then only certain subgroups can occur as stabilizers of a k-set. So, if all
such stabilizers have to be contained in a certain cyclic subgroup of order h up to
conjugacy, then we can use the number theoretic Moebius function for the lattice
of divisors of h. We use this strategy below to obtain large sets where the number
of k-orbits is fairly large.

To obtain the values of A in these cases by Alltop’s Lemma we recall the formula
[Na(K)| - m(T, K%) = [N (T)| - m(T, K), (3.3)

where Ng(R) denotes the stabilizer in G of subset R C V, m(T, K%) denotes the
number of k-sets in the orbit K¢ that contain the t-set T and m/(T“, K) denotes
the number of t-sets in the orbit T¢ that are contained in the k-set K. Here we
assume that G is #-homogeneous so that m/(T% K) = (’:) The value of X is just
m(T, K) and can be obtained from the formula when the stabilizer orders are
known.

Let G = AGL(1,p/)/2 be the unique subgroup of index 2 in AGL(1, pf) for some
prime power p/ = 3 mod 4. Then G acts regularly on 2-sets. So, |[Ng(T)| = 1 and
if K is any k-set and T' a 2-set we get that T' is contained in exactly (’;)/|Ng(K)|
of the k-sets in the orbit of K.

We consider special cases. So, we first assume that p does not divide k. Then
no k—subset can be left invariant by an element of order p in G. So, the stabilizer
of such a K must lie in one of the complements, C say. Since G is primitive and
solvable, these complements form one conjugacy class and are maximal subgroups.
In particular they are the normalizers of each of their non-identity subgroups. Any
element of G mapping a k-set with stabilizer U onto another k-set with stabilizer U
must normalize that stabilizer. Thus, if U < C'is the set-stabilizer of a k—subsets,
then G has a/[C : U] orbits of this type.

Any subgroup U of order d of C has one fixed point and pfz_;1 orbits of size d.
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A fixed k-set must be a union of U-orbits. So, if d divides k there are exactly

pl—1
2d
d

invariant k-subsets. If d divides & — 1 there are exactly

pl—1
2d
d

invariant k-subsets. In all other cases there are no invariant k-subsets.

This discussion leads to the following result. If p does not divide k and ged(k, (pf —
1)/2) = q for some prime ¢ then G has exactly

f—1
2q <p2d >
pl =1\ &
orbits on k-sets with stabilizer of order ¢. If p does not divide k and ged(k — 1, (pf —
1)/2) = q for some prime ¢q then G has exactly

f—1
2q (p2d>
RN

orbits on k-sets with stabilizer of order ¢q. All other k-sets have trivial stabilizers.

Consider the case of PGL(2,29). This group is 3-homogeneous and for k = 11,
besides the identity only an element of order 2 may fix such a k-set. The group
order does not divide (‘;’?), hence, Theorem 4 is not applicable. But Theorem 3
may be applied. ;From the formulas we obtain 2171 designs with A = 990 and 495
designs with A = 495. So, ¢ = 2. In the context of Theorem 3 we have to find
solutions for the system 143 = 2m mod N and 2171 = —m mod N. So, N must
divide 4485 = 3-5- 13- 23. We get an LS[N](3,11,30) for N = 3,5,13,23.

Instead of constructing a large set from disjoint designs Magliveras [13] has also
searched for all designs with the required A which can be combined from the orbits of
a prescribed group and then selected a partition into disjoint designs among those.
As in Theorem 2, this strategy splits the general problem into two subproblems.
First, all solutions of the Kramer-Mesner system of diophantine equations for the
appropriate value of A are computed and secondly a matrix is formed by the solution
vectors of the system which again defines a diophantine system of linear equations
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with right hand side constant to 1. A 0-1 solution vector determines a large set by
selecting those designs which correspond to a 1. Thus, this strategy uses the same
tool in both steps. In many cases however this approach needs too much computer
time or space. So, as in the strategy of Theorem 2 we try to directly construct a
partition of (‘k/) into designs all with the same A. This corresponds to backtracking
in the second part of Magliveras strategy but avoiding to find all solutions in the
first part. Because we may still have to run through a large solution space we have
implemented a random selection of designs disjoint from those selected previously
in the search for a partition into designs. Both versions are part of DISCRETA and
led to some interesting new large sets with ¢ > 4:

e LS[3](4,6,13) with automorphism group Zs,

e LS[3](5,7,24) with automorphism group PGL(2,23),

LS[3](3,7,21) with automorphism group PSL(3,4).
( )

LS[5](2,3,17) admitting Z17

LS[29](3,5,32) with automorphism group AGL(1,32).

LS[7)(4,5,32) with automorphism group AGL(1,32).

Note that by Lu[23], [27] large sets LS[N](2,3,v) exist for v = 1 or 3(mod 6)
and v # 7. Here we have a large set for v = 17.

4 Recursive Constructions

Let p be an odd prime. Since for 0 < k <n <p no (Z) is divisible by p, Pascal’s
triangle mod p has non-zero entries in the first p rows. We call the triangle formed
by the first p rows the starting triangle. The (p + 1)*! row then has 1’s in the first
and last entry and all other entries 0. So, we have the two ones as starting points
of new triangles of p rows which are identical to the starting triangle. The entries
outside these triangles in these p rows are 0. In the next (2p + 1)* row the middle
entry is 2, since the 1’s from the two upper neighbors add up to 2. Apart from the
border entries of 1’s all other entries are 0. The 2 gives rise to a triangle of p rows
in which each entry of the starting triangle with p rows is multiplied by 2 mod p.
Generally, we obtain the following pattern: The Pascal triangle mod p is formed of
triangles of p rows which are obtained from the starting triangle by multiplying it
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by some factor mod p. These factors themselves again form a Pascal triangle of the
same type. So, a recursive structure is generated which easily describes the whole
pattern. As an example, we display below Pascal’s triangle modulo 5.

Pascal’s Triangle mod 5

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 1 4 1

5 1 0 0 0 0 1

6 1 1.0 0 0 1 1

7 12 1 0 0 1 2 1

8 1 3 3 1.0 1 3 3 1

9 1 4 1 4 1 1 4 1 4 1

10 1 0 0 0 0O 2 0 0 0O 0 1

11 1 1.0 0 0 2 2 0 0 O 1 1

12 12 1 0 0 2 4 2 0 0 1 2 1

13 13 3 1 0 2 1 1 2 0 1 3 3 1

14 14 1 4 1 2 3 2 3 2 1 4 1 4 1

15 1 0 0 OO 3 0 0O O O 3 0 0 0 0 1

16 1 1.0 0o 0O 3 3 0 0 0O 3 3 0 0 0 1 1

17 1 21 0 0 3 1 3 00 3 1 3 00 1 21

18 1 3 3 1 0 3 4 4 3 0 3 4 4 3 0 1 3 3 1

19 1 41 4 1 3 2 3 2 3 3 2 3 2 3 1 4 1 4 1

20 1 0 o0 o o0 4 0 0 0 O0O1 0 0 00 4 0 0 0 01

21 1 1.0 0 0O 4 4 0 0 O 1 1 0O OO 4 4 0 0 0 1 1

22 121 0 0 4 3 4 0 0 1 2 1 0 0 4 3 4 0 0 1 2 1

23 1 331 0 4 2 2 4 01 3 31 0 4 2 2 4 01 3 31

24 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1

25 1P 0 0 OO O OO OOOOOOUOOOOOOOUOO0OO0OO0OT1

26 1P 1.0 0 OO OOOOU OO OOOOOOOOOOODOOTOTI1ITI1
27 1 21 0 0 0O 0O O OOOOOOOOOOOOOOOOOT1T 21
28 1 33 1 0 OO OOOO0OO0OO0OO0O0OO0OO0OUO0UOO0OO0OO0OO0OO0OO0OOQO0OT1T 3 31
29 14 1 4 1 0 0 0 0 O0OO0OOO0OO0OOTUOOUOOUOUOOOOOT1T 4 1 4 1
30 1P 0 0 00 1 OO0 O OOOOOOOOOOOOOOOOOOT®TOOO0OTO0OTI1
31 $1 1 0001 1 0 O0OOOOOOOOOOOOOOOOOTT 1T 0 O0O0 1 1
32 T 210 01 21 0 O0OOO0OO0OO0OOO0OO0OO0OO0ODO0OO0OO0ODOO0OO0OTT 21 001 21
33 1t 33 1 01 3 3 1 00 OOOOOOOOO0ODO0ODO0OO0OO0ODOO0ODOO0OTT 3 31 01 3 31

34 1 4 1 4 1 1 4 1 4 1 0 O0OO0OOOO0OO0OO0OO0OOO0OO0OO0OOO0OT1 4 1 4 1 1 4 1 4

As we saw in section 2, a necessary condition for an LS[N](¢,k,v) to exist is
that the component designs have A such that AN = (Z:i) Since a t-design is also
an s-design for 0 < s < t and the large set an LS[N](s,k,v), the As-values also
satisfy the equations A,N = (;}~%). Thus, for s = 0,...,t, each of the binomial
coefficients (;~%) must be divisible by N. For N = p a prime, Pascal’s triangle mod
p, as described above, easily allows us to locate the admissible parameter sets. For

a given v and k, the ¢ + 1 entries parallel to the right border and ending with the
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position of (Z:i) mod p must be 0. So, one finds out that certain lower segments of
the observed ”inverted” 0-triangles with a base line of 0-entries, form the admissible
parameter sets.

LS[3](3:k,v)

We display above an example of the admissible parameters for LS[3](3, k,v) where,
because of symmetry we only show the part of the table with £ < »/2. In this
display, we note that there are 4 diagonals, corresponding to & < 3, for which
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there are no admissible parameters. In later tables we drop such empty diagonals,
and no confusion will occur because feasible parameters where existence is known
are labeled by the corresponding value of k. Such a k-label, then, identifies the
corresponding diagonal of the table.

For example, when N = 3 and ¢t = 3 we get a triangle of possible parameters of
which we only show the part for k& < v/2. Each row is indexed by v. The positions
in the triangle correspond to the positions in Pascal’s triangle. A question mark
indicates a value of k for which an LS[3](3, k,v) is admissible from the divisibility
conditions. We replace question marks by the value of k£ when a large set with the
corresponding parameter set is known to exist and by a — sign if it is known that
such a large set cannot exist. The question marks that remain identify the still

undecided cases. The same kind of tables have already been used for halvings in
[21].

If each of the base line parameter sets of an admissible triangle belongs to an
existing large set then the whole triangle does so. This follows from one of the
theorems cited below. There are further recursion rules allowing us to fill some
triangle for larger values of v if a triangle for smaller values can be filled with an
existence sign.

Lemma 1 If all designs in an LS[N|(t,k,v) are derived with respect to the same
point x, then the resulting designs form an LS|N](t — 1,k — 1,0 — 1), furthermore,
the corresponding residual designs with respect to x form an LS[N](t — 1,k,v — 1).

Lemma 2 Alltop’s Construction: If an LS[N](2s,k,2k + 1) exists then also an
LS[N](2s + 1,k + 1,2k + 2) exists.

This follows from applying Alltop’s construction [5] to each design in the given
large set.

Theorem 8 Ajoodani-Namini[2]: If an LS[pl(t,k,v) exists, p a prime, then there
also exist LS[p|(t + 1,pk + j,p(v + 1)) for 0 < j <np.

Corollary 1 If an LS[p|(t, k,v) exists, p a prime, then there also exist LS[p](t, pk+
jyop(v+1)—=1) forj=0,1,...,p—1.
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To see this, form the derived and residual large sets from the large sets resulting
from Ajoodani-Namini’s theorem.

Theorem 9 If an LS[3](2s,k,2k + 1) ezists, then an infinite series of large sets
LS[3](2(s + i), (k +2)3" — 2,(2k + 4)3" — 3) exists, where i =0,1,....

Proof: First apply Alltop’s construction to the given LS[3](2s, k,2k + 1) to obtain
an LS[3](2s 4+ 1,k + 1,2k + 2). ;From this, by the corollary to Ajoodani-Namini’s
Theorem, construct an LS[3](2s+2, 3k+4, 6k+9). This again fulfills the assumption

of the theorem. Now the formula follows by induction. O
The new LS[3](4, 6, 13) is a starting point of the series LS[3](2(2+4),6-3' —2, 16-
3'—2) fori = 0,1,.... This series has the smallest presently known values of v for a -

(v, k, X) design with a given ¢ > 16. An LS[3](4, 5, 13) had been found earlier by [17].
The supplementary designs form an LS[3](4,7,13) and an LS[3](4,8, 13) respec-
tively. From these large sets then, the next Theorem yields large sets LS[3](4, 6, 14),
LS[3](4,7,14), LS[3](4,8,14), LS[3](4,7,15), LS[3](4,8, 15), and LS[3](4,8, 16). In
particular, the LS[3](4,7,15) is again a starting point for an infinite series obtained
by applying Theorem 9. Further series can be obtained in a similar fashion from
the large sets LS[3](2,5,11), LS[3](2,6,13), and LS[3](2,7,15), but for these the
values of v for a given ¢ are larger than what we get from the first series.

Theorem 10 Ajoodani-Namini, Khosrovshahi[16]: If an LS[N|(t,k,v) and an LS[N](t, k+
1,v) exist then so does an LS[N](t,k + 1,v + 1).

Theorem 11 Ajoodani-Namini, Khosrovshahi[16]: If there exist LS[N](t, k,v) for
kE=t+1,...,¢ and LS[N|(t,k,u) for all k in an interval a < k < ¢ then there exist
LS[N|(t,k,v +u —t) for all k in the interval a < k < £.

5 Tables

iFrom the basic large sets, the above recursive results yield a large number of
parameter sets, indicated compactly by entry k in row v of a table. As an example,
we exhibit the table for LS[3](3,k,v) below, and all other tables encompassing all
that is known for v < 61 appear in the Appendix. An entry ”-” means that the
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parameter set is not feasible, a question mark ”?” means that the existence of a large
set with that parameter set is undecided, and bold face indicates a new parameter

set.
4 5
- 5
- - 6
4 5 6 7 8 -
- 5 6 7 8 - -
- - 6 7 8 - -
- - - 7 8 - - -
- - - - 8 - - -
7677787?7777777777
6 7 8 ? ? ? ? ? ?
7 8 ? ? ? ? ? ? ?

LS[3](3,k,v)

4 5 6
- 5 6 7

- - 6 7
- - - 7 8

- - - - 8
4 5 6 7 8 ? ? 11

- 5 6 7 8 ? ? ?
- -6 7 8 9 10 ? ?

- - 4 8 9 10 ? ?
- - - - 8 9 10 ? ? ?

- - - - 9 00 11 12 18
- - - - - 00 11 12 13 14

- - - - - 11 12 13 14
- - - - - - 12 13 14 15

6 7 8 - - - 13 14 15
78 - - - - - 14 15 16

78 - - - - - 15 16
g8 - - - - - - - 16 17

8 - - - - - - - - 17
- - - - - - - - - 18
- - 13 7 15 ? 17 - - -

_ _ _ ? ? ? ? _ _ _
_ _ _ ? ? ? _ _ _ _

_ _ _ _ ? ? _ _ _ _
_ _ _ _ ? _ _ _ _ _

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
7 ? 19 ? 21 22 23 ? 25 ?

? ? ? ? ? 292 23 ? ? ?

15

16

17

18

19

15

16

17

The Appendix containing all the tables generated for this paper can be down-

loaded from one of the web sites:
<http://www.mathe2.uni-bayreuth.de/people/laue.html>. We hope the reader

<http://helios.unl.edu/~spyros/>

will be interested in resolving some of the unsettled cases.
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19
19
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22

23
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24
24
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