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Abstract

Group actions are reviewed as a tool for classifying combinatorial objects up to isomor-
phism. The objective is a general theory for constructing representatives of isomorphism
types. Homomorphisms of group actions allow to reduce problem sizes stepwise. In par-
ticular, classifying by stabilizer type, i.e. the automorphism group of the objects, is gen-
eralized to using only sufficiently large subgroups of stabilizers. So, less knowledge on the
full subgroup lattice of the classifying group is needed. For single steps in the homomor-
phism decomposition, isomorphism problems are transformed into double coset problems
in groups. New lower bounds are given for the number of long double cosets such that
corresponding hounds for the number of objects with trivial automorphism group are be
derived.

The theory is illustrated by an account of recent work on the construction of ¢
designs including new results. Based on a computer search by DISCRETA several sim-
ple 8-designs and the first simple 9-designs with small parameters are presented. The
automorphism group is AST(3,3) acting on 27 and 28 points. There are many isomor-
phism types in each case. The number of isomorphism types is determined in the smaller
cases. From relating the isomorphism types of design extensions to double cosets also
designs with small automorphism groups are accessible. There result more than 10'
isomorphism types of 8(28,14,)) designs from each 8-(27,13, A) design. There are ex-
actly 131,210,855,332,052,182,104 isomorphism types of 7-(25,9, 45) designs obtained from
extending all the 7-(24,8,5) designs with automorphism group PS/7(2,23) by all the 7-
(24,9,40) designs with automorphism group PG1(2,23). Most of these designs have a
trivial automorphism group. Iterating forming extensions then results in more than 1062
isomorphism types of 7-(26, 10, 342) designs.

keywords: Group actions, isomorphism problem, double coset, t-design, Kramer-
Mesner method.



1 Introduction

In mathematics, a natural aim is to describe the objects that are considered. Ideally, a Hauptsatz
would fully determine some infinite series and maybe some finitely many additional sporadic
objects comprising all cases. This has been achieved in algebra for finite fields, finite abelian
groups, finite simple groups etc. The results are used to derive further classifications from these.

In combinatorics, the objects usually have a less regular structure to allow such a comprehensive
theorem. So, on one hand the weaker aim to only count the objects of a fixed size is pursued.
There are ingenious solutions for many cases, some relying on a fairly general method. A
prominent example is Pdlya’s and Redfield’s theory of counting [45, 13, 26].

In applications, there is a need of not only knowing abstractly the existence of some number of
objects but to really have the objects. This is obvinos when the isomers that are searched for
correspond to some given spectra. Also, block-designs can of course be applied in the planning
of experiments in agriculture only if they are explicitely known. A code can be used only if it
is at hand.

The development of powerful and cheap computers in the last decade now allows to solve such
construction problemsin many interesting cases. It is even possible to find constructive solutions
where an efficient counting method is not available.

It should therefore be a natural task to excerpt from the different algorithmic approaches the
common aspects. Like a theory of counting allows to tackle various problems in a similar way,
a theory of construction should give general rules applicable in a larger variety of problems.

This has been a motivation for several papers by A. Kerber and the author and some books
by A. Kerber [26]. These all rely on implementations of the algorithms and got an inportant
stimulus from practical experiences. Many aspects of applications to the construction of isomers,
of groups and of codes have already sufficiently been explained in some specialized papers and
some review articles, see [35, 25, 36] and the references there. Here we add some material that
resulted from the search for t-designs with "large” # on small point sets, where large means
t > 3. The t-designs are combinatorial objects defined on a point set V of v points. We only
consider simple t-designs D which consist of a collection of k-element subsets, called blocks, of
V', such that each t-element subset of V' lies in exactly the same number A of blocks. The numeric
parameters of D are listed as 1-(v, k, ). Usually, constructing t-designs and solving isomorphism
problems for #-designs are difficult. We use a group-action approach for solving these problems
by algebraic means. It is important to notice that isomorphism problems sometimes are easier
to solve if information about the way of construction is used. So, we follow up this idea and
thus avoid to solve the general isomorphism problem.

We first give a summary of group theoretic methods which form the abstract background. They
are collected out of several recent papers. Then, the use of these methods in the search for -



designs is explained. On one hand, prescribed automorphism groups are used to deal with whole
orbits of these groups instead of the individual elements like ¢-sets, k-sets or even designs. On
the other hand, these groups yield a powerfull tool for isomorphism classification. This had
already been developed in the recent papers on 6-, 7-, and 8-designs constructed with help
of a computer by our system DISCRETA. In this paper we continue with the first simple 9-
designs on small point sets and then consider the isomorphism problem for design extensions.
We use double cosets which often correspond to the isomorphism types. So, for the first time
huge numbers of isomorphism types can be determined. Most of these designs have a trivial
automorphism group. The following tables illustrate these results.

The new and earlier results on ¢-designs with ¢ > 8 and v < 40 and big automorphism group
are summarized in the following table. All results concerning AST1.(3,3) are new.

Simple 8 and 9-designs

Parameters Gronp Size of KM-matrix Number of isomorphism types
8-(27,11,432) AST(3,3) 37 x 121 7
8-(27,12,1296) AST(3,3) 31 x 154 4336
8-(27,12,1932) AST(3,3) 31 x 154 2110899
8-(27,13,3204) AST(3,3) 31 x 176 538218
8-(27,13,3240) AST(3,3) 31 x 176 618421
8-(27,13,4608) AST(3,3) 31 x 176 > 200000000
8-(27,13,5076) AST(3,3) 31 x 176 many
8-(27,13,5148) AST(3,3) 31 x 176 many
8-(28,13,5832) AST(3, 3)+ 48 x 330 > 5000000000
8-(28,13,7080) AST(3, 3)+ 48 x 330 many
8-(28,13,7128) AST(3, 3)+ 48 x 330 many
8-(28,14,10680) | AST(3,3)+ 48 x 352 >1
8-(28,14,10800) | AST(3,3)+ 48 x 352 >1
8-(28,14,14040) | AST(3,3)+ 48 x 352 >1
8-(28,14,15360) | AST(3,3)+ 48 x 352 >1
8-(28,14,16920) | AST(3,3)+ 48 x 352 >1
8-(28,14,17160) | AST(3,3)+ 48 x 352 >1
8-(28,14,18600) | AST(3,3)+ 48 x 352 >1
8-(31,10,93) PSI(3,5) 42 x 174 138
8-(31,10,100) PSI(3,5) 42 x 174 1658
8-(36,11,1260) Sp(6,2)38 79 x 694 >
8-(40,11,1440) PST(4,3) 53 X 569 > 150000000
9-(28,14,3204) AST(3,3)+ 538218
9-(28,14,3240) AST(3,3)+ 618421
9-(28,14,4608) AST(3,3)+ > 200000000
9-(28,14,5076) AST(3,3)+ many
9-(28,14,5148) AST(3,3)+ many

The parameter list on 27 points and the group ASL(3,3) is complete.

It is remarkable that up to now no 8-design with an automorphism group PG/L(2,¢) has been
found. Also the values of A for 8-designs are large compared to those of the 7-designs found
by prescribing some PG (2, q), [4]. Since small values of A are of interest, we also list the few
known parameter sets of 6- and T-designs with A < 10, omitting derived designs.



Simple 6- and 7-designs

Parameter set Constructed by No. of isomorphism types
6-( 14,7,4) Crat 2
6-(19,7,4) Hol(Chi7) + + 1
6-(19,7,6) Hol(Cqg) 3
6-(22,7,8) large set recursion
6-(28,7,6) PSU(3,9) > 10
6-(32,7,6) PST.(2,31) > 18
7-(24,8,4) PST.(2,23) 1
7-(24,8,5) PST.(2,23) 138
7-(24,8,6) PST.(2,23) > 132
7-(24,8,7) PST.(2,23) > 126
7-(24,8,8) PST.(2,23) > 63
7-(26,8,6) PGT.(2,25) > 7
7-(33,8,10) PTT.(2,32) 4996426

Without restrictions on A there are about 400 parameter sets of 7-designs and about 1100
parameter sets of 6-designs with up to 40 points in the database of DISCRETA now.

Using the theory of design extensions presented in this paper, we obtain the following table of
lower bounds for the number of isomorphism types of 7T-designs.

Extensions of Designs

No. Parameters Gronp Number of isomorphism types Parameters Number of isomorphism types
T | 7-(24, 9, 48) PGT.(2,23) > 2827
1| 7-(24,10,240) PGT(2,23) > 91 7-(25,10,288) > 23786911342165204970
2 | 7-(24, 9, 64) PGT.(2,23) > 15335
2 | 7-(24,10,320) PGT(2,23) > 2 7-(25,10,384) > 5161263324118902274
3 | 7-(24,8, 5) PST.(2,23) 138
3 7—(24,9,40) PGL(?,Q[%) 113 7—(25,9,45) 131210855332052182104
4 | 7-(24,8, 6) PST.(2,23) > 132
4 | 7-(24,9,48) PGT(2,23) > 2827 7-(25,9,54) > 125594891886632282241
5 | 7-(24,8, 8) PST.(2,23) > 63
5 | 7-(24,9,64) PGT(2,23) > 15335 7-(25,9,72) > 7951408124200930620
6 | 7-(26,8, 6) PGT.(2,25) 7
6 | 7-(26,9,54) PTT.(2, 25) 3989 7-(27,9,60) > 121802772685441446018
7 | 7-(26,12, 5796) PTI.(2, 25) >
7 | 7-(26,13,13524) | > ATT1(1,25) > 1 7-(27,13,19320) > 1
8 | 7-(27,10, 540) PTI.(2,25)+ >1
8 | 7-(27,11,2295) AGT(3,3) > 105 7-(28,11,2835) > E754099169659337180
9 | 7-(27,11, 810) ASTA(3,3) 1188
9 | 7-(27,12,2592) AGT.(3,3) 33 7-(28,12,3402) > 281311515186391173924
T0 | 7-(27,11,2025) AGT.(3,3) 57
10 | 7-(27,12,6480) AGT.(3,3) > 500 7-(28,12,8505) > 3374317419594730345500
71 | 7-(28,13,10080) Sp(6,2) 7
11 | 7-(28,14,21600) > Sp(6,2), > 1 7-(29,14,31680) > 1
12 7—(25, 9, 54) Td > 11106724087393318560
12 | 7-(25,10,288) Td > 23786900753834023916 7-(26,10,342) > 1062

The system DISCRETA is freely available from our web-page
http://www.mathe2.uni-bayreuth.de/ discreta/

which also contains an account of the presently known #-designs for £ > 5, Steiner h-designs, and
further information. The author thanks the DISCRETA research group, in particular Anton
Betten and Alfred Wassermann, for their support and Axel Kohnert for computing numbers of

double cosets with his system SYMMETRICA.



2 Definitions and Notations

If a group GG acts on a set @ and A is a subset of ©Q then Ng(A) = {¢g € G|{é]|5 € A} = A}
is the normalizer of A in (G. This generalizes the notion of the normalizer in the special case
of the conjugation action of a group on its lattice of subgroups. This normalizer acts on A
and the kernel of this action is C(A), the centralizer of A in G. We prefer this notion to the
setwise and pointwise stabilizers it A consists of more than one point. As usual, (7, is also
used to denote the stabilizer of w in (G. For a group element g € (G the set of fixed points is
Calg) = {we Ot —w).

We assume throughout the paper that V = {1,2,--- v} is a set of natural numbers. Any subset
of size k is called a k-set. The symmetric group on V is denoted by Sy.

If A and B are two subgroups of the group G then A\G/B = {AgBlg € G} is the set of
double cosets of A and B in (5.

3 Group Actions

An important strategy is to transform an isomorphism problem from some family of objects
into a group theoretic problem. The following basic results often allow this transfer.

Theorem 1 (Fundamental Lemma ) let a group G act transitively on a set Q and w € €.
Then the mapping ¢ : Q — Ng(w)\G such that ¢(w?) = Ng(w)g is a bijection.

The action of G on € is replaced by right-multiplication on the set of right cosets of Ng(w) in
(7. Restricting the acting group to a subgroup gives a description of the orbits of that subgroup.

Theorem 2 ( Split of Orbits) lLet U be a subgroup of G where G acts transitively on €.
Then

W s Neg(w)gU
defines a bijection between the U-orbits on Q0 and the double cosets Ng(w)\G/U.

There is another situation which leads to double cosets.

Theorem 3 ( Gluing Lemma) et a group Gy be a group of automorphisms of some object
wy and a group Gy be a group of automorphisms of some object wy. Let [ 1wy — wy be a fired
isomorphism. Then each isomorphism is obtained by composing f with some automorphism o
of wa, such that the set of all isomorphisms is described by a group;

[so(wy,wa) = fAut(ws).



G X Gy acts on [so(wy,ws) by

faloa2) = g1 faga = f(f g fags

for (g1,92) € Gh X Gy. Thus, the orbits of Gy x Gy are in bijection to the double cosets
(.fi1 Gh flaGy

in Aut(ws).

This Lemma appears in different applications independently in the literature. An early instance
can be found in Ph. Hall’s lecture series in Gottingen in 1939, [23], where w; is a factor group of
one group and wy a subgroup of another group. The different ways of identifying wy with w, have
to be classifyied with respect to equivalence under two groups of automorphisms acting on w;y
and w,, respectively. Such identifications had already earlier ben carried out by Lunn and Senior
[41] for a classification of subdirect products of groups. It thus may have been known to these
authors before. Other group constructions like semidirect products, central amalgamations etec.
are considered by the present author in [29], [36] [25]. In Chemistry, Ruch et al. [48] identified
places on a skeleton of a molecule with ligands that should be distributed to these places. This
plays an important role in mathematical generators for isomers like the early Dendral [39] and
Molgen [21]. We will give a new application to the construction of ¢-designs below.

Algorithms for solving double coset problems are presented in [14, 30, 17, 40, 50, 51]. In many
cases the number of double cosets is very big. Then one can at least count them by combina-
torial methods, like the Cauchy Frobenius LLemma. We refer to Kerber’s book [26]. So, from
an implementation of Redfield’s cap-product by H. Fripertinger in A. Kohnert’s system SYM-
METRICA we obtained the following numbers of double cosets that we will use in our section
on designs.

Donble Cosets Number
PST(2,23)\524/ PST.(2, 23) 16,828,376,082,405,832
PST.(2,23)\Sa4/PGT.(2,23) 8,414,188,491,217,916
PGT.(2,23)\Sa4/ PGT.(2,23) 4,207,094,330,061,055
PGT.(2,25)\Saq/ PGT.(2,25) 1,657,180,580,754,274 540
PTT.(2, 25)\ Saa/ PT1.(2, 25) 414,295 145,235,066,413
PGT.(2,25)\Sag / PTT.(2, 25) 828,590,290,377,152,694

AGT.(1,25) + \Saa/PTT.(2,25) | 10,771,673,642,332,865 588
AGT(3,3)0\Sa7r /AGT(3,3) 118,397,102,441,920,363
AST.(3,3)\Sa7 /AGL(3,3) 236,794,204,702,349,473
AST.(3,3)\Sar/ASTL(3,3) 473,588,409,404,698,946

AGT(3,3)\Sar/ PTT.(2,25)+ 1,150,819,833,931,867,436
Sp(6,2)28\ S28/Sp(6, 2)2s 144,708,746,195,525,184

Usually, in applications most of the orbits of a group are long orbits. The elements in such
orbits then have a trivial stabilizer. Usually, it is difficult to determine the number of these
orbits. We give at least a lower bound for this number. Orbits different from long orbits are
usually called short orbits.



Lemma 1 Let a group G act on a set Q and let each g € G, g # 1d, have at most ¢ fived
points. Then there are at most a, = 2 - ¢/|G| short orbits. The number a; of long orbits is at
least |Q/|G| — (1 — 1/|G|)e. If the total number of orbits is a then

Proof Let ' = U,.;s Calg), where the union runs over all g € & different from the identity.
Then all short orbits are formed from elements in €. So, counting these orbits by the Cauchy-
Frobenius Lemma would require to know the number of fixed points for each group element,

including the identity. We use the crude bound |Co/(id)| = [V <37, 4.4 |Ca(g)]- Then we get

for the number a, of short orbits

s = Z |(YQ/ = (|(YQI 7(] |+ Z |(YQ )
Iﬂl v || oFid
2c
< 1Calg)] < —-
Iﬂl q;] ||

For the number a; of long orbits we get

1 , .
“ - & 3 [Caly T q;m = (Calid) — Co(id)
= el > el 3 Calol)
> (190 = Y6 = 19— (16~ 1)e)

g#Fid

From this we obtain the first inequality. The second one is obtained from a combination of the
above arguments with the Cauchy-Frobenius Lemma. So, we multiply

a = (19 + |Ca
1+ 3 1Catal)

by 2 and use the above bound
[Calg
< o1 351

to gef
21

20— ag >
(&




which is equivalent to the claimed inequality.

Example. PG1(2,23) has a = 83 orbits on 8-sets such that the second equality gives a, <
44. Actually, there exist exactly 39 short orbits in this situation. So, the bound seems to be
reasonably good. But for our purpose to find designs with trivial automorphism group it is not

good enough.

We obtain a sharper bound by considering only points which are fixed by some subgroup of
prime order of PGL(2,p), p an odd prime. We are interested in the action of PGL(2,p) by
multiplication from the right on the set of right cosets of PGL(2,p) in S,11, 1. e. we investigate
the double cosets PGL(2,p)\Sp41/PGL(2,p).

Theorem 4 PG(2,p) has at least

1
(p+ Dplp — 1)

{(p—2)t— {Ep DS @ i (1 a +

p+1) dlp+1,dprime

)+ B ST e G )

) dlp—1,dprime

long double cosets in S,4q.

Proof et G = PGL(2,p) and let U < G < S,11. Then GrlUU = Gr for some © € S,4q if and
only if tUnx~" < (. For some fixed /' < (& the elements 7 conjugating [/ onto {// form a coset
of Ng .. (U). So, there are |Ng ., (I/)| such elements. We have to multiply this number by the
number of choices for U" and then divide by |G|, because these elements fall into cosets of G.
Then the number of cosets fixed by U is determined. Now, U has G : Ng(U) conjugates in
each of which has this number of fixed points. Lastly we have to sum these numbers of fixed
points over all subgroups U of some prime order. Subtracting this number from the number of
cosets of G in 5,11, which is (p—2)!, gives a lower bound for the number of cosets which are not
fixed under any non-trivial element of (. All these cosets then form double cosets consisting of
|G| cosets such that dividing by |G| gives a lower bound for the number of long double cosets.

We use some well known results on subgroups of PGL(2,p), as can be found in [24]. The
elements of G = PGL(2,p) and so also the subgroups U of prime order have at most 2 fixed
points.

The fixed point free subgroups U lie in some cyclic subgroup (' of order p + 1 from a single
conjugacy class and we have Ng(U) = Ng(C) of order 2(p+1). A generator of U has (p+1)/d
cycles of length d if |U| = d. The centralizer of U then has order d*+"/4((p 4 1)/d)! [26] and

the normalizer induces in addition an automorphism group of order d — 1 on /. So,
[N, ()] = dPH(p - 1) /d)L - (d 1)

8



in this case. We have |G : Ng(U)| = p(p — 1)/2 as the number of choices for U and as well for
U'. The number of cosets GGr fixed by such subgroups U of order d is

_ Pl Dy pep 1 !
a - et Do e 1)

B P(P*U p+1)/d
= m(d*])d( 1 (p+1)/d)!

Dy )

If there is only one fixed point then |[U| = p and |Ng
Then we have |G : Ng(U)| =p+1 and

p+1(U)| = P(P* ])'

1
(p+ Dplp — 1)

(p+1)°p(p—1) =p+1

cosets GG are fixed by such subgroups U.
If U of order d has two fixed points then d|(p — 1). We have

[Nyt ()] = 247 ((p = 1) )L (d —1).

[/ is contained in the cyclic subgroup of order p — 1 of a dihedral subgroup ) of (& of order
2(p — 1) and which lies in a single conjugacy class. Then Ng(U) = D such that the number of
cosets G fixed by such subgroups U of order d is

! plp+1) 1

9 (p+ Dp(p —1)
_oplp+1) o\ gr—1)/d
= 74(737])(4 1)d ((p—1)/d)!

b p— 1
}QQdTpd (d 1)

{ } |qu+1([]) {

IWI

In case of ¢ = 23 we obtain that PG.(2,23) has at least 4,207,092,457,345,954 long double
cosets out of a total of 4,207,094,330,061,055 double cosets. So, only a very small fraction of
the number of all double cosets is small. Long double cosets in PGL(2,23)\S24/PST1(2,23) or
PSTL(2,23)\S24/PST(2,23) are obtained by splitting each long double coset in

PGIL(2,23)\S24/ PGL(2,23) into 2 or 4 long double cosets, respectively. Thus, also for these

cases we easily obtain an even much larger number of long double cosets.

Since many isomorphism problems can be transformed into double coset problems, results on
the number of long double cosets correspond to results on the number of objects with trivial
automorphism group from a large scale of structures. We give an application to ¢t-designs in
the next section. For #-designs no easy way was known before to obtain bigger examples with
trivial automorphism group.



A great many of instances for gluings arise from creating objects from smaller ones by adding
new features or forming extensions. We use the notion of homomorphisms of group actions for
a formal setting.

Definition 1 (Homomorphism of group actions) lLet Gy be a group acting on a set €
and Gy be a group acting on a set Qy. A pair o = (0q,06) of mappings, where oq maps 4
into Qg and o 1 Gy — (G is a group homomorphism, is a homomorphism of group actions if
a is compatible with both actions, i.e. for all ¢ € Gy and all w € Oy

,Q)’TQ (TQ.O”G_

=w
If both components of o are surjective o is an epimorphism, if both components are bijective o
is an isomorphism.

If o is not surjective orbits of the image group can be determined by the Split of Orbits Lemma
from (75-orbits. So, we futher on will restrict to the case of surjective o5. Then, the action of
(75 can be replaced by an appropriate action of Gy on Q5. We will thus simplify the notation
by these assumptions.

Theorem 5 (Homomorphism Principle) Let a group G act on two sets 0y and Qo and let
oy — Qy be compatible with both group actions. Then the preimage sets of two elements
of Qo from the same G-orbit intersect the same G-orbits on Q4. If o(w) = &' for two elements
w,w’ € Qy then any g € G with w9 = &' must lie in the stabilizer of o(w).

By Theorem 5 a set of orbit representatives from the (G-orbits on €y can be obtained by
first determining orbit representatives from the (G-orbits on €2y, together with their stabilizers,
and then determining representatives from the stabilizer-orbits on the preimage sets of the
representatives from ),.

If G acts trivially on €5 then the image points are invariants. This is a widely used method to
show that two preimage points are from different orbits.

If the group acts non-trivially on €5 then the stabilizers are much smaller than . As well the
preimage sets are small compared to €. So, the problem size is drastically reduced. In many
cases, the stabilizers are even trivial, such that the full preimage sets can be taken as sets of
representatives. Then an explicit listing can be avoided.

There are many important examples of homomorphisms, usually when there is an induced
group action [32]. In computational group theory, the SOGOS system [31] made use of this. In
combinatorics, multigraphs can be mapped to simple graphs setting each edge multiplicity to 1,
see [12], directed graphs can be reduced to undirected graphs, labellings of edges or vertices may
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be omitted etc. In each case the isomorphism types of objects are just the orbits of the symmetric
goup on the set of vertices acting induced on the set of objects by renaming the vertices of
each object. This induced action of the symmetric group is compatible with the simplifications
to simple graphs. So, these simplifications are homomorphisms of the group action. When
applying the homomorphism principle, mostly no group action has to be considered when the
simple graphs are extended to multigraphs or directed graphs. We only have to notice that
most simple graphs have a trivial automorphism group such that the stabilizer of the object
simple graph is trivial. So, in most of the cases the set of full preimages of the simplification
consists of pairwise non-isomorphic objects, i. e. all multigraphs that are reduced to the same
simple graph with a trivial automorpism group are pairwise non-isomorphic.

A very useful homomorphism of group actions is given by mapping each object onto its sta-
bilizer, see also [47]. So, again the action on some set  is transported into an internal group
action, this time the conjugation on the subgroup lattice.

Corollary 1 If A is the set of objects in 0 with full stabilizer U then the orbits of Ne(U) on
A are the intersections of G-orbits with A. Fach orbit of No(U) on A has length Ne(U) : U.

We emphasize an important special case.

Corollary 2 [If a subgroup U is equal to its normalizer in the acting group G then all objects
with stabilizer U lie in pairwise different G-orbits. In particular, if U is a maximal not normal
subgroup of G then all objects fizxed by U and not fived by G lie in pairwise different (G-orbits.

Generally, an orbit of Ng(U) on the set of objects with stabilizer U corresponds to that part
of the G-orbit that has the same stabilizer U. Each of these orbits of Ng(U) of course is in
bijection to the right cosets of U.

Usually, 1t is much easier to determine the fixed points of a subgroup U than to find only those
objects with full stabilizer UU. If all minimal overgroups are known, then one can compute their
fixed points as well and subtract them from the set of fixed points of UU. Then there remain those
with full stabilizer /. In the finite case, the number of orbits then can be determined by first
computing the number of fixed points of /' by the principle of exclusion-inclusion, equivalent to
Mobius inversion on the subgroup lattice, and then dividing by the index of U/ in its normalizer.
This can be done by a matrix calcul, see Burnside [15] or Kerber’s hook [26]. Since the action
on sets of mappings is of importance we repeat the explicit formula for this case from [33].

Theorem 6 (Orbits of Mappings) let a group G act on a set X and let Y be another set.
For any subgroup U of G the set (YX)ir of mappings fized by U is given by

(YX)U = H U {?/}B

B U—orbit yeY

11



where the union denotes all mappings which are constant on the orbit B and the product of sets
of mappings defined on disjoint sets is just the cartesian product. Then for each U a system of
representatives from the orbits of Ne(U)/U on

I U’y U IT Ui’

B U—orbit yeY U<mar V<G B V—orbit yeY

give a full system of reprentatives from the (G-orbits with stabilizers from the conjugacy class of

U.

The main problem in applying the Mobius inversion is the requirement that all overgroups of
the subgroup U must be known. In some situations we need less information.

Definition 2 (Control of Fusion) let a group G act on a set Q, let U be a subgroup of G,
and let A be a subset of Q). Then U controls the G-fusion on A if for each 8,05 € A and a
g € G with 6] = &3 there exists some w € U such that 6} = 4,.

The homomorphism principle 5 describes one occurrence of such a situation. There A is just
the preimage set of some point in 2, and U is its stabilizer. Here we exhibit another case.

Theorem 7 (Localization) Let a group G act on a set Q, let U be a subgroup of G, and let
A be a set of fired points of U. If for all 6 € A the stabilizer N (8) controls the G-fusion on
{U%g € G, U < Ng(6)} where the action is the conjugation then Ne(U) controls the G-fusion
on A.

Thus, a control of fusion within the subgroup lattice yields a control of fusion on some exterior
action of the group.

Corollary 3 Let U be a subgroup of a group G where (G is acting on a set Q. If U is the
unique subgroup of some isomorphism type in the stabilizer N () of each point § fized by U
then Ng(U) controls the G-fusion on the sel of fived points of U.

Another instance results from Sylow’s Theorem.

Corollary 4 Let U be a largest p-subgroup of each Ng(§) where § is fized by U. Then Ng(U)
controls the G-fusion on the set of fizred points of U.

If we interpret the approach as guessing the automorphism group of the objects we require that
our guess at least covers a Sylow subgroup of the full automorphism group.

If U is even larger than a Sylow p-subgroup P of a stabilizer then U will have less fixed points,
in general. Then the want to reduce the group that controls GG-fusion on this smaller set also.
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Theorem 8 (Reduction) lLet U be a subgroup of a group (G where (G is acting on a set §)
such that U contains a Sylow p-subgroup P of the stabilizer of each of its fixed points. Then
Na(P)N Ng(U) controls the G fusion on the set of those fixed points that are not fized by any
proper overgroup < U" U > of U for h € Ng(P).

While the Moebius inversion above requires the knowledge of all minimal overgroups of U
we here can construct the specific overgroups whose fixed points have to be taken out of
consideration. On the remaining set of fixed points of U the smaller subgroup D = Ng(P) N
Ng(U) controls G-fusion. We remark that DU = Ng(U) in this case. The objects taken out
then are fixed points of a kown larger group V =< U" U/ > for which we can proceed in the
same way. Of course V then still contains the Sylow subgroup P of the full stabilizers such that
Ne(P) still controls fusion on the set of fixed points of V. So, we can apply the same technique
again. But some of these groups V may lie in the same conjugacy class. So, this problem has
to be solved first. Tf I/ is contained in V and V¥ for some g € G then also U9 is contained in
V. Instead of deciding the conjugacy of overgroups of U/ one can determine those conjugates of
U that are contained in the same overgroup V. The inverses of the conjugating elements then
will produce the conjugates of V' containing U.

In many cases, if U is sufficiently large, each of the overgroups constructed has no fixed points.
So, then again Ng(U) controls the G-fusion on the set of fixed points of U. But it should be
warned that even then U need not be the full stabilizer of its fixed points. This occurs for exam-
ple if U = PSTL(2,11) is prescribed as an automorphism group of a 5-(12,6,1) design, a Witt
design with full automorphism group Mi,. There are two such designs which are interchanged
by the normalizer PGL(2,11) of U. Prescribing PST(2,23) as an automorphism group of a
5-(24,8,1) design, the big Witt design, as well results in two solutions which are interchanged
by PG1.(2,23). The Mathieu groups, which are the full automorphism groups of these designs,
are not, obtained in this way.

It is a strong feature of this approach that in many cases one can decide that all objects
admitting a certain group of automorphisms all must be pairwise non-isomorphic without even
knowing the objects.

As an example consider PG (2, p) for some prime p. This subgroup of S,41 contains a Sylow
p-subgroup P of S,41 and even the normalizer of P. So, all objects fixed by PGL(2,p) lie in
pairwise different orbits under S,;4. The smallest subgroup for which this argument holds in
this case is the holomorph of P acting with an additional fixed point. For any overgroup U of
P any overgroup of the holomorph of P controls the 5,44 fusion on the set of fixed points of
U. In particular PGL(2,p) controls the S,41 fusion on the set of all fixed points of PSL(2,p).
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4 Tterative Constructions

The homomorphism principle is well suited for an iteration. So, a problem is simplified in several
steps and the solution strategy starts with the simplest version and stepwise tries to lift the
solutions to the preimage spaces. In our aim to construct objects in each step some kind of
extension occurs, depending on the actual structure.

We want to discuss some general aspects of such extensions and consider a single extension
step. So, suppose an object w and another object § are the building parts of a new object 7,
which is an extension of w by 4. For the same pair (w,d) there will be several extensions, in
general. These have to be classified up to isomorphism.

Usually, forming 4 means to identify some structure S derived from w with a respective struc-
ture Sy derived from 4. An automorphism of w preserving Sy can be applied to w without
changing the isomorphism type of the extension. The same holds for automorphisms of § pre-
serving S. So, we frequently are led to a situation where the Gluing Lemma applies. A more
detailed aproach may even use prescribed stabilizers to single out objects with certain auto-
morphisms.

The building parts will be considered as distinguished parts of the extension, and classify-
ing these objects will only solve the isomorphism problem up to these substructures being
distinguished. By selecting canonical representatives from these orbits one will obtain only
semicanonical representatives of the general isomorphism classes.

We thus proceed in two substeps. Firstly, we classify triples (w,d,~) and from these classes we,
secondly, form the classes of objects ~.

Theorem 9 (Iteration Step) let a group A and a group B act faithfully on the space £} x
A x 1" such that the projection onto 0 x A is compatible with the group action of A and
the projection onto T' is compatible with the group action of B. For each triple (w,d,~) let
Na((w,8,7)) = Ng((w,8,7)). Then representatives for the B-orbits on T and their stabilizers
in B can be obtained by the following steps.

o [or each representative (w,d) from an A-orbit and its stabilizer compute representatives
from the orbits of the stabilizer on the set of extensions (w,d,v), where vy varies, together
with their stabilizers Na((w,d,7)). Declare all such v as candidates for representatives.

o Run through the representatives (w,d,v) and do:

if v is a candidate declare v to be a representative, determine all (W', 8, ~) for this ~. For
each (W', 8',7) decide whether there exists some b € B such that (w,d8,7)" = (W', &, 7).
If such a b exists then enlarge Na((w,d,7v)) by the coset Na((w,d,7))b. Determine the
representative (W', 0", 4)* of its A-orbit and test whether v* = ~. If the test is negative
then ~* is removed from the set of candidates.
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The condition that Na((w,d,7)) = Ng((w,d,v)) is fulfilled if both normalizers act faithfully on

the object (w,d,~) and all its automorphisms are contained in A and in B.

The proof of Theorem 9 is straightforward, using the homomorphism principle twice. The two
projections are the homomorphisms needed. The most interesting part is the determination of
Ng(7). Here the bijection between an orbit and the set of right cosets of a stabilizer is used.

An important special case of Theorem 9 is the Leiterspiel by B. Schmalz[49] which computes
double coset representatives in this way.

Further examples are provided by semidirect products of groups where homomorphisms from
a factor group into the automorphism group of the normal subgroups have to be classified,
see [29], [34], [36]. A fast graph generator relying on these principles is described in [20]. In a
generator for isomers, ligands have to be placed onto places of a skeleton [48], [25], and below
we will form extensions of #-design.

There are important, special cases.

e Homomorphism Principle: If (w,d) is uniquely determined by « then the difficult second
part is not needed.

o Orderly Generation (R. Read [46], 1. Faradzev [19]: If there exists a total ordering < on
Q) x A and each v with v < 4" is an extension of some (w, §) such that (w,d) < (w,§)”
then only smallest elements of all orbits need to be extended and a test for v < 4” suffices
for these extensions.

o Canonical Generation (B.D. McKay [42]): If there exists a total ordering < on 2 x A
and a function mapping each (w,d) onto the minimal representative of its A-orbit and
each v contains a canonical orbit of pairs (w,d) then it suffices to construct only those
candidates in which the extended pair (w, d) is canonical.

In addition, invariants may be used to reduce the computation time. Fach first appearance of a
new value of the invariant indicates that a new isomorphism type has been found. A comparison
of such a value with the previous values can be obtained in constant time using a good hash
function.

The requirements for orderly generation often can be fulfilled in combinatorial construction
problems. Here, in an extension step, often some set is extended by just one element. We
consider a fairly general version but explicitly fix the action.

Suppose a group (7 acts on a finite set X. We impose on X an ordering < such that also the
set 2% of all subsets of X is lexicographically ordered. Fach orbit S¢ for some S € 2% contains
a lexicographically minimal element Sy which we denote as the canonical representative with
respect to <. In short we say S € canon(2%,G) iff § < S%. Then we have the following
fundamental lemma [20].
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Theorem 10 (Orderly Generation) If S € canon (2¥,G), T C S, and T < S then also
T € canon (2%, ).

Proof: l.et S =T, U Ty and Ty < S but T} not a canonical representative. Then there exists
some g € (¢ such that TY < Ty. W T{ = {xy,---,2;} where 1 < 73 < --- < x; then for some
i <t wehave Ty = {xq,- -+, 2; 4,20, -, 2/} and 2; < 2l Since S =T UTY D {xy, -, 2;},
we obtain S7 < T} < S contradicting the hypothesis on 5.

Thus, we only have to enlarge representatives T' of smaller cardinality by elements = which are
larger than each element in T to obtain candidates for representatives of greater cardinality.
This approach can be refined by noticing that there are some further elements y larger than
each element in T which can be excluded as =.

Lemma 2 (Semicanonicity) Let T' = {x, -, 2} be canonical, where x; < 19 < -+ < 7.
Then fory € aNolmaih) for v < o < wipq and i < t the set TU{y} is not in canon (2%, G).
Ifi =t then ify is not minimal in its orbit under Ng(T) the set TU{y} is not in canon (2%, 7).

Proof: Let y = 29 for some g € Ng({x1,---,2;}) and some 2 with #; < @ < 2,47, 1 < t.
Then

({are oo} Ufa}) < {oy- o} U o) < TU {y)

such that the subset {xy,---,x;,y} of T is smaller than T but not canonical. Therefore by
Theorem 10 also T'U {y} is not canonical. The second case is obvious.

The candidates obtained after removing the cases of the preceding lemma are semicanonical

[44].

A test for minimality for each remaining candidate S now has to decide whether there exists
some ¢g € (7 such that 59 < S.

Often the required solutions have to fulfill some constraints. Checking these constraints is
usually much faster than a canonicity check. So, a sieving with respect to the constraints will
save time. One may even delay a canonicity check to the end of several extension steps hoping
that after sieving only a few candidates remain. Now, if a candidate S is not minimal in its orbit
then already its predecessor may not have been minimal also. In the light of Theorem 10 it is
therefore useful to determine the first extension step where this non-canonicity could have been
detected. Then all further extensions of this candidate must also be rejected. Depending on
the selectivity of the additional constraints a delicate balance of steps with constraint checking
only and steps with canonicity check combined with tracing back to the earliest detection point

is needed for a fast strategy.
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5 Groups and Designs

In this section, the theory shall be illustrated by a task from combinatorics. We apply the
theorems of the preceding section to the problem of constructing #-(v, k, A) designs up to iso-
morphism. The problems are first to find such designs for some large ¢ but small v and then to
solve the isomorphism problem for these designs. A successful strategy has been to prescribe
a big group A of automorphisms and reduce the question of which k-sets should be taken as
blocks to the question of which A-orbits on k-sets should be combined to form the set of blocks.
So, a big group will reduce the problem size considerably.

It remains the task to find #-designs with no non-trivial automorphisms and it is to be expected
that most of the designs will be of this type. But there are some parameter sets where this
expectation is wrong. So, it is known that there is only one isomorphism type of designs for
each of the parameter sets 2-(7,3,1), 3-(8,4,1), 3-(10,4,1), 5-(12,6,1), 5-(24,8,1), each with
a big automorphism group, PGL(2,3), AGL(3,4), SE] My, and Mgy, respectively. Tt is not
clear whether there are only finitely many such cases. On the other hand, our results below will
confirm that most #-designs will have a trivial automorphism group.

Firstly, for collecting k-orbits of a group one has to get these orbits. The preceding section
provides at least three ways to approach this problem.

e Orderly generation
e Homomorphism principle a la Leiterspiel (snakes and ladders) [49]
e Prescribed stabilizers

While the use of orderly generation on a high level description is sufficiently explained in the
preceding section the other two topics need some explanation. The Leiterspiel is an example for
Theorem 9. It proceeds from orbits on (k — 1)-sets to orbits on k-sets in two steps. In the first
step sequences are classified consisting in the first entry of a (k— 1)-set and in the second entry
of a single point not contained in the first entry. lterating these two up and down steps results
in a growing amount of information to be stored to find out at which step representatives from
previously different orbits fuse into one orbit.

The prescribed stabilizer method is useful for determining k-orbits with non-trivial stabilizers
directly. So, from a knowledge of the subgroup lattice of the prescribed automorphism group
one starts with a set of representatives from those conjugacy classes of subgroups that may
occur as a stabilizer of a k-set. Notice that a subgroup may only fix a k-set if the sizes of point
orbits may be added up to k. For illustration we explain an example from [37].

The only non-trivial subgroups of PSI(2,23) that leave a 10-set invariant are subgroups of
order 2. So, one can conclude by the Cauchy-Frobenius LLemma or some direct argument that
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there are exactly 66 orbits with stabilizers of order 2 and 290 orbits with trivial stabilizers.
Since PST(2,23) is 3-homogeneous, each 10-orbit is a 3-design. The 3-designs formed by the
orbits with stabilizer of order 2 have only half as many blocks as those with a trivial stabilizer.
Fach pair of these smaller designs then forms a design with the same number of blocks as the
bigger designs. Thus, by grouping the smaller designs into pairs we get 33 designs with the
same size as the remaining 290 designs. So, all 10-sets are partitioned into 323 3-designs with
the same parameters. Such a partition is called a large set. Large sets are important because
there some famous iterative constructions of infinite families of #-designs need large sets as a
starting point.

In more general situations, a Mobius inversion as mentioned after Corollary 2 in the preceding
chapter can determine those subgroups that are the full stabilizers of k-sets.

A t-design consists of a selection of k-sets as blocks such that each t-set is contained in exactly
A blocks. Constructing a #-design with a prescribed group of automorphisms A means to select
appropriatwe A-orbits on k-sets. If a #-set T is contained in a blocks from an orbit K4 of
k-sets then also each T for aun A is also contained in a blocks from this orbit. So, only orbit
representatives need to be considered. Kramer and Mesner [27] formalized this approach by a
matrix equation. The matrix contains a row for each t-orbit and a column for each k-orbit.
The entry for row T4 and column K” is the number of k-sets in K* that contain 7. Then
selecting columns such that each T'is contained in exactly A k-sets from these columns amounts
to solving a diophantine system of equations with a 0 — 1 vector and right hand side a column
vector with constant entry A.

Though solving this problem implies solving the binary packing problem which is NP-complete,
there are several algorithms which are successful at least for moderately sized problems. For
very small A one can use backtracking [42] or some clever tabu search [43, 11]. These programs
constructed the largest known Steiner 5-systems on up to 244 points. That approach is also
successful when there are only a few rows and many columns. For larger values of A a version
of the I.LI-basis reduction algorithm is applied, see [28, 54]. The software package DISCRETA
developed in Bayreuth by A. Betten, A. Wassermann and the author contains implementations
of these algorithms. A graphical user interface allows an easy handling of them. The system led
to many new results some of which are listed in the introduction.

The new 8-designs with automorphism group AS/L(3,3) were found as solutions of the Kramer-
Mesner system of diophantine equations. There were many solutions and the number of iso-
morphism types is obtained using Theorem 1. Using DISCRETA we find that AGL(3,3) is not
admitted as a group of automorphisms of any of these designs. So, the normalizer AGL(3,3)
of ASL(3,3) has orbits of length 2 on the set of these designs. Since AGL(3,3) is a maximal
subgroup of Syr and AST.(3,3) is a maximal subgroup of A7, see [38], then ASL(3,3) is the full

automorphism group of these designs. The number of isomorphism types can thus be obtained
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by dividing the number of solutions by 2. We have determined this number for the smaller cases
in this way.

This argument was already applied by Schmalz to the classification of t-designs. The special case
Corollary 2 was later used to show that all 4,996,426 7-(33,8,10) designs with automorphism
group PT'[(2,32) are pairwise non-isomorphic.

The known Steiner 5-designs can also be classified by this approach. There are no 5-(p +
1,6,1) designs admitting PGL(2,p) by a result of Denniston [18]. So, all such designs found
by prescribing PST(2,p) are grouped into isomorphic pairs under PGL(2,p) and these are
the isomorphism types. Thus, the number of isomorphism types in this case is just half the
number of solutions. This could be applied to obtain the exact number of isomorphism types
for p = 11,23,41,71 and lower bounds for further incomplete sets of solutions. In particular,
there are exactly 3 isomorphism types of 5-(84,6,1) designs consisting of orbits with trivial

stabilizer only and group PST.(2,83) [11].

The localization technique Theorem 8 was applied to classify the 8-(31,10,A) designs with
prescribed group PST(3,5). It can also be used to solve the problems given in Kramer and
Mesner’s paper [27] mentioned above. There subgroups of the holomorph of (Vi3 containing (V43
had been prescribed as groups of automorphisms. For the full holomorph which is the normalizer
of C131n Sy3 all designs found are pairwise non isomorphic. Thus, we find 28 isomorphism types
of 2-(13,5,45) designs with this automorphism group. For the unique subgroup of index 2 there
exist 890 designs allowing this group. After removing the 28 designs of the overgroup which
we already considered the remaining designs fall into orbits of length 2 under the action of the
holomorph which controls the Sq5 fusion. So, there result 431 new isomorphism types. Similarly,
for the unique subgroup of index 3 we obtain from 24643 designs admitting this group 8205
new isomorphism types. The subgroup i3 admits more than 21,030,000 solutions such that
with this automorphism group there exist more than 3,500,000 further isomorphism types.

We now proceed with an analysis of a well known construction and applications of it to 7- and

8-designs.

The extension method of van Leijenhorst [53] and Tran van Trung [52] builds a new design from
two given designs with some appropriate parameter sets. The construction can be explained in
the following way. From any -(v, k, A) design D one can obtain two smaller designs. A point
x 18 fixed and the blocks are classified into those that contain x and those that do not contain
. Then {B\ {2}|B € D} is a (t —1)-(v — 1,k — 1, ) design, the derived design at a, and
{BIBeD,x¢ Blisa (t —1)-(v—1,kXN)(v—Fk)/(k—1+1) design, the residual design at z.
Of course it looks promising to reverse this process. Then two given (¢ — 1)-designs Dy with the
parameters of a derived and D, with the parameters of a residual design should be combined
to a t-design. The construction simply has to add a new point to each block of Dy, obtaining
Dy x {v}, and then forms D = Dy x {v} U Dy. Unfortunately, only very rarely D is a t-design,
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as in the case of Alltop’s Theorem [1]. But, as van Leijenhorst and Tran van Trung noticed the

result is at least a ( — 1)-(v, b, A+ Mo — k)/(k —t 4+ 1)) design.

We will take a closer look at this construction. So, suppose the new point added is v. Then any
(t — 1)-set T" not containing v is contained in A blocks from Dy *« {v} and AMv — k)/(k —1+1)
blocks from Dy. A (1 — 1)-set 7" containing v is only contained in blocks from Dy x {v}. So, after
removing v from 7" and each block in Dy*{v} we obtain the number of blocks from Dy containing
a (t — 2)-set. Therefore, D is a (¢ — 1)-design if this number is equal to A+ Ao —k)/(k—t+1).
But this holds because the (1 — 1)-design Dy is also a (¢ — 2)-design with just this parameter.

We notice, that we know more about D. Fach t-set containing v is contained in exactly A blocks.
Only those f-sets not containing » may be contained in a different number of blocks.

Another important aspect results from the fact that in the construction both designs D; and
Dy can be replaced by any other design with the same parameters. So, even when starting with
only two designs we can replace them by isomorphic copies to get a large number of extensions.
Of course, many of them will be isomorphic but one can also obtain non-isomorphic designs
in this way. We want to determine the isomorphism types in important cases. So, if D; and
Dy are replaced by isomorphic copies then one can apply a permutation to the point set such
that at least one of Dy x {v} or Dy is in its original form. We therefore assume that only D, is
replaced by an isomorphic copy. Then we formally have applied a permutation = on the set of
points {1,---, v — 1} to the elements in the blocks of Dy . We denote the result by D7 and get
the extension D(xw) = Dy * {v} U DJ. In this situation the Gluing Lemma 3 applies.

Theorem 11 Let Dy be a (t — 1)-(v — 1,k —1,X) design with automorphism group Ay and Dy
be a (t—1)-(v—1,k Ao —k)/(k—1t+1)) design with automorphism group As, where the point
set in each case is V! = {1,--- v —1}. Then there exists an isomorphism

¢ : D(my) — D(72)
for permutations m, 79 on V' such that ¢ fires v if and only if
/41771/42 = /41772/42.

For the proof notice that any isomorphism ¢ fixing v has to map the derived design of D(m)
at v onto the derived design of D(my) at v. The restriction to V' is an automorphism ay of Dy.
Similarly, the residual designs are mapped one onto the other such that m; ' ¢my restricted to
V' is an antomorphism oy of Dy. Thus, 7, 'aams = oq and 75 = aq7; 'as. On the other hand,
if 7y and 7, lie in the same double coset modulo Ay and A, then 7y = aym; 'y, for some a; in
A;, and aq7; oy extended by the fixed point v maps D(m1) onto D(x3).

The group of all permutations fixing the new point v acts on the set of design extensions and
its orbits are refinements of the general isomorphism classes of designs. So, we can obtain the
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general isomorphism classes if we can decide which of the special extension classes belong to
the same general class. This can be done by the following result.

Theorem 12 lLet Dy and Dy be as before with automorphism groups Ay and Ay respectively.
Let D(my) and D(wy) be two design extensions of Dy and Dy. Suppose, ¢1 : D — D(mq) and
o2 1 D D(my) are two isomorphisms from a design D to D(m) and D(xy). Then there
exists an isomorpism ¢ : D(m) — D(xwq) fixing some point x if and only if there exists an
automorphism o of D mapping the point ¢, ' () to the point ¢, ' (x). In particular,

Aut(D(x1))), = A1 N AT

The number of isomorphism types of extensions is al least
1
;|A1\Sq,//42|

For the proof notice that for any such o the composition of isomorphisms ¢, 'ag, is an iso-
morphism ¢ fixing v. On the other hand, given such a ¢ we obtain a by a = ¢¢0¢,". The
special case ¢1 = ¢y yields the description of the stabilizer of v in the automorphism group
Aut(D(x1)). From the description of the special isomorphism classes by means of double cosets
in the Gluing LLemma 3 we obtain the lower bound.

More generally, if there are ny t-(v — 1,k — 1, X) designs with automorphism group A; and ny
t-(v — 1, k, ) designs with automorphism group As and m double cosets with stabilizer order
up to [ then there exist at least ny X ny X m/v isomorphism types of t-(v, k, A+ X') designs with
automorphism group order up to [ x v.

The pairs of designs for which the extension method can be applied can be obtained from any
t-design. One only has to take a derived and a residual design and then can combine them again
twisted by a renaming of the points of one of the two designs. Thus, from only one #-design
there results a large number of (1 — 1)-designs.

In particular each of the new 8-(27,13, 1) designs with automorphism group AS/T(3,3) first
gives by Alltop’s construction a 9-(28, 14, X) design with automorphism group AS/L(3,3)+ and
applying the extension construction with twisting to the derived and residual designs of these 9-

ST(3,3)\Sor JASL(3,3)]/28 > 16913871764453533
new 8-(28, 14, X + X' designs with various groups of automorphisms.

designs using the described procedure yields

We now look for situations where it can be shown that the new point v must be fixed by all
isomorphisms between any extensions of two given designs. Then the double cosets above are in
bijection to the isomorphism types. Also the stabilizers of v are the full automorphism groups
of the designs obtained by extension and instead of the lower bound we have an exact number
of isomorphism types.
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Lemma 3 Let cach t-subset T of X lie in a1(T) blocks of Dy and in ax(T) blocks of Dy. If for
cach point p there exists a T containing p such that for all permutations © XA # a1(T) + az(T7)
then in each extension the new point x is the only point such thal every t-subset containing x
lies in exactly X blocks.

Proof The t-subsets that contain = are contained in exactly the blocks that result from adding
x to the blocks of Dy. Thus those f-subsets lie in exactly A blocks. So, any isomorphism a of
any extension D, mapping = to a point p # a will have to map the set of blocks containing
some t-subset T" with = € T onto the set of blocks containing T where p € T”. Thus, both
sets of blocks must have the same cardinality. Now, T" is contained in exactly A blocks and
T" = T is contained in a;(T") blocks of Dy. The remaining blocks containing 7”7 are from D,
such that the renaming = of the points in Dy causes these blocks to contain T”. So, for this =
the existence of o would imply A = a1(7T”) + a2(7T'™) contrary to our assumption.

Of course it 1s not feasible to run through all permutations 7 to check whether the assumptions
of the LLemma are satisfied. So, we look for sufficient conditions that are easier to check and
still give the conclusion of the Lemma. First, we have orbits of the automorphism groups Ay of
D; and A, of D, on the set of all i-subsets. All T from such an orbit are contained in the same

number of blocks of the respective design. A permutation # maps an orbit ﬂA1 into several
orbits Tf‘?. et

T ST e T

3

where 7 and j run through the orbit numbers. Then
Z a;; = | T

and

Z iy = T.A2

Tf the Condiﬁon ar(T) + ax(T™) = X is violated then a cannot exist. Therefore all a;; where
ar (T + (12( ?) # X are zero. If the remaining system of Diophantine equations has no
solutions then o cannot exist. So, this set of equations yields a sufficient condition to conclude

that all isomorphism types of extensions of two particular designs are in bijection to the double
cosets of Ay and Ay in S,_4.

A special situation occurs when a prescribed automorphism group is transitive on the set of
points.

A very prominent example is formed by the smallest 6-designs. These designs have parame-

ters 6-(14,7,4) and are constructed by Alltop’s Theorem from a 5-(13,6,4) design, [28]. The
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automorphism group of the 5-design is (/13 and there exist exactly 24 solutions of the Kramer-
Mesner system of equations. Thus the isomorphism types are given by the orbits of the normal-
izer Hol(Ch3) of Cizin Siz on the set of points which have sizes 1 and 12. So, there are exactly
2 isomorphism types of 5-(13,6,4) designs with automorphism group (5. By an argument of
Kreher and Radziszowski in [28] the isomorphism types of the extensions often can also be
determined in such a situation.

In Alltop’s construction, the blocks of the residual design that by which the derived design is
extended are uniquely determined by the derived design. So, all automorphisms of D extend to
the extended design DT. Therefore,

Aut(D) = Aut(DV),.

Taking the derived designs at other points thus give designs whose automorphism groups are
the corresponding other point stabilizers.

Theorem 13 Let A be the full automorphism group of t-(v, k, X) designs where v = 2k 41 and
v—1

bt
then two Alltop extensions DY and Dy of t-(v,k, \) designs Dy and Dy with full automorphism

group A are isomorphic if and only if Dy and Dy are isomorphic.

t is even or A\ = 15( ) If A acts transitively on the point set but has no transitive extension

The proof is immediate from the fact that the full automorphism group of an Alltop extension
here either is transitive or has the new point as a fixed point. So, if A cannot be transitively
extended then the derived design at the new point is not isomorphic to any other derived design
and thus characterizes the isomorphism type of the Alltop extension.

In case of the 5-(13,6,4) design the extended design still has (5 as its full automorphism group
with an additional fixed point 14. So, all other points form just one orbit and have a trivial
stabilizer. Therefore the other derived designs have trivial automorphism groups. In particular,
different isomorphism types of 5-(13,6,4) designs with automorphism group (3 extend to dif-
ferent isomorphism types of 6-(14,7,4) designs. The new 9-(28, 14, A) designs are obtained from
8-(27,13, X) designs by using Alltop’s construction. Here, the automorphism group AS/(3,3)
acts transitively but cannot be transitively extended. Otherwise, the extended group would
have to be at least 2-transitive and there is even no primitive group on 28 points different from
the alternating and the full symmetric group containing AST1(3,3), see for example [16]. So,
different isomorphism types of 8-(27, 13, A) designs with automorphism group AS/(3,3) extend
to different isomorphism types of 9-(28, 14, X) designs.

There are many further situations where the automorphism group is transitive and Alltop’s
construction applies. So, it is sufficient in these cases to verify that the group is not the stabilizer
of a point in a primitive group. Then the Theorem allows to determine the isomorphism types
of Alltop extensions from the isomorphism types of the given designs.
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We now again consider the general situation of extensions and assume a transitive automor-
phism group on the design with the larger block size.

Theorem 14 Let Ay be the automorphism group of a (t —1)-(v— 1,k —1,X) design Dy and A,
the automorphism group of a (t — 1)-(v — 1k, Mv — k)/(k —t 4+ 1)) design Dy both defined on
a point set V. Let Ay act transitively on the set of v — 1 points and let none of the extensions
be a t-(v,k,X) design. Then the isomorphism types of extensions of Dy and Dy to a (1 — 1)-
(v, kMo —1t+1)/(k—1t41)) design are in bijection to the double cosets A\Sym(V)/As. The

automorphism group of an extension of Dy by D] for some permutation © is Ay N A",

Proof By the L.emma it suffices to show that for each point of the point set different from
the added point there exists a t-subset 7' such that this 7" is not contained in A blocks of the
extension design. Since A, is transitive on these points, each orbit of Ay on ¢ subsets contains a
block containing a fixed point p. So, we only have to find one orbit 742 such that a;(7T) +ay(T)
is different from A. This means that the extension is not a t-design, as assumed in the Theorem.

Corollary 5 If for a prescribed automorphism group A there exist ny designs with parameter
set (t—1)-(v—1,k—1,X) and ny designs with parameter set (t —1)-(v, bk, \Mv —k)/(k—1+1))
then under the assumptions of the last Theorem there exist nq -nq-|A\Sym(V')/A| isomorphism
types of extensions.

In the last Theorem, it suffices to find only one t-orbit of A, such that any #-subset T' from
this orbit lies in strictly more than A blocks of D,. Then one can also conclude that none
of the extensions will be a #-design. This holds for example for each of the 113 7-(24,9,40)
designs with automorphism group PG1(2,23) as can be verified by DISCRETA. So, by the
Corollary forming the extensions with any of the 138 7-(24,8,5) designs with automorphism
group PST(2,23) yields as many isomorphism types of 7-(25,9,45) designs as there are double
cosets of these automorphism groups in Sy4. Thus, we obtain in this way exactly

113 x 138 x 8,414, 188,491,217,916 = 131,210, 855, 332, 052, 182, 104

isomorphism types of 7-(25,9,45) designs.

In the introduction we have given a table on extensions of designs with results obtained from
this approach. We discuss some entries of that table.

e The lower bound for the number of 7-(26,10,342) designs in the last row is obtained by
multiplying the numbers of designs with the parameters 7-(25,9,54) and 7-(25, 10, 288)
in that row by the number of double cosets of the identity in S,5, i. e. 25!, and then
dividing by 26, which is the maximal number of designs that may be isomorphic after
making the new point an ordinary point. It is likely, that all these designs are pairwise
non-isomorphic such that the last division is superfluous.
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e The new point v is distinguished in some extensions in the following cases:

Row No. 1: the third and fourth 7-(24,10,240) designs from the list in [4], Row No. 3:
all extensions, Row No. 4: all of 10 extensions tested, Row No. 5: all of 15 extensions
tested, Row No. 6: each of 21 7-(26,9,54) designs, Row No. 8: at least five 7-(27, 11,2295)
designs, Row No. 9: the nineth 7-(27,11,2295) design from the list in [4], Row No.10: all

of 500 extensions tested.
e Row number 8 shows an example of totally different automorphism groups.

e Row number 7 is interesting, because the 7-(26, 13, 13524) design results from first taking
the residual design of a 7-(26,12,5796) design and then extending that by Alltop’s con-
struction. Thus, here the existence of only one design suffices for the Tran van Trung-van

Leijenhorst construction. Taking the residual design reduces the automorphism group to
the stabilizer of a point, in this case AT'L(1,25).

e Row 11 with the group Sp(6,2) acting on 28 points is similar. There are some further
values of A for which there exists a 7-(26, 13, A) design with automorphism group Sp(6, 2).
For each of them the same construction can be applied. In each of these cases we cannot,
give the number of isomorphism types of extensions.

e Row 12 uses the results from row 1 and row 4. So, in this case we are supposed to see
all kinds of subgroups of PG1.(2,23) as automorphism groups. We then can combine any
such pair and form their double cosets in Sy5. This number of double cosets then has to
be multiplied with the number of solutions belonging to these automorphism groups. So,
this illustrates the theory given above.
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