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Abstract. We show the existence of simple 8-(31,10,93) and 8-(31,10,100) designs. For each
value of A we show 3 designs in full detail. The designs are constructed with a prescribed group
of automorphisms PSL(3,5) using the method of KRAMER and MESNER [8]. They are the first
8-designs with small parameters which are known explicitly. We do not yet know if PSL(3,5)
is the full group of automorphisms of the given designs. There are altogether 138 designs with
XA = 93 and 1658 designs with A = 100 and PSL(3,5) as a group of automorphisms. We prove
that they are all pairwise non-isomorphic. For this purpose, a brief account on the intersection
numbers of these designs is given. The proof is done in two different ways. At first, a quite general
group theoretic observation shows that there are no isomorphisms. In a second approach we use
the block intersection types as invariants, they classify the designs completely.
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1. Introduction

In this paper, t-designs with prescribed automorphism group are constructed. The
method was introduced by KRAMER and MESNER in [8]. We choose as group
PSL(3,5) and construct 8-(31,10,A) designs with two different values of \. We
get 1658 designs with A = 100 and 138 designs with A = 93. Some questions
immediately arise:

1. Are the designs all distinct, i.e. pairwise non-isomorphic, or, if not, which of
them form a transversal of the isomorphism classes?

2. What is the full group of automorphisms of each of the designs?
3. Are there designs for other values of A7
4. Are there more designs with a possibly smaller group of automorphisms?

In the following sections, we will answer question 1 twice and question 3 partly.
Problem 2 would be easily solved if it were known that PSL(3,5) is a maximal
subgroup of S3;. Note that this fact would imply that 1 is true. Indeed, we will
show in section 7 that designs with the same automorphism group are isomorphic
if and only if they are isomorphic under the normalizer of this group.
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The plan of this paper is the following: In sections 2 and 3, the method of Kramer
and Mesner is briefly sketched. We will give a list of all orbits of the group on 10-
subsets which is needed to describe the designs. In section 4, we recall basic facts
about parameters of designs and about intersection numbers. We introduce the
equations of MENDELSOHN and KOHLER. Moreover, we define intersection numbers
of higher order and list the relevant generalizations of the parameter equations.
These are due to TRAN VAN TRUNG, QUI-RONG WU and DALE M. MESNER. We
also define global intersection numbers and use the generalized equations to provide
means for checking them.

The following two sections 5 and 6 are devoted to the 8-(31,10,100) and 8-
(31,10,93) designs, respectively. For each of these cases, the parameter equations
are shown. As the numbers involved tend to become quite large in some cases, this
can be of great help avoiding tedious hand-calculations. In fact, all these calcula-
tions were done by a computer using a long-integer arithmetic. For each value of
A, 3 designs are listed in full detail. They should serve as examples. The interested
reader may reconstruct the full set of designs using our program DISCRETA [6]
which is freely available on the internet. The numbering of designs is imposed by
the order in which the solutions are computed by the equation solver of DISCRETA
(this program is deterministic, so that the order is always the same). See [17] for a
more detailed treatment on solving large equation systems with integral coefficients.

Finally, in section 7 the two announced proofs of problem 1 are given. The first
applies group theoretic methods together with some (small) computer calculations.
The second is a more combinatorial one. It uses intersection numbers as invariants
to show that no two designs are isomorphic.

Problem 4 is beyond the scope of this paper.

2. The Group and its Orbits

We denote the elements of the field GF(5) by 0,1,2,3,4. The elements of the
projective geometry PG (5) can be identified with the one-dimensional subspaces
of GF(5)%. We number them in the following way using representatives (a, b, c)!:

12(1,0,0)° 8=(1,0,1)° 15=(3,1,1)" 222(0,3,1)" 29=(2,4,1)"
22(0,1,0)° 9=(2,0,1)° 16=(4,1,1)" 23=(1,3,1)" 30=(3,4,1)°
32(1,1,0)" 10=(3,0,1)" 172(0,2,1)" 24=(2,3,1)" 312 (4,4,1)°
4=(2,1,0)" 112 (4,0,1)* 18=(1,2,1)" 25=(3,3,1)"
52(3,1,0)" 122(0,1,1)" 19=(2,2,1)" 26=(4,3,1)"
6=(4,1,0)" 13=(1,1,1)" 20=(3,2,1)" 272(0,4,1)"
72(0,0,1)° 14=(2,1,1)* 21=(4,2,1)" 28 = (1,4,1)*

The group PSL(3, 5), represented as a permutation group on PG»(5) is generated
by the following permutations:
(126)(345)(81216 1127 28)(9 172010 22 24)(13 21 15 31 23 29)(14 26 19 30 18 25),
(13546)(813182328)(91929 14 24)(10 25 15 30 20)(11 31 26 21 16),
(1456)(8211816)(9302920)(10 14 1524)(11 23 26 28)(12 1727 22)(13 31)(19 25),
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(17276)(211)(392215)(4101219)(58 1723)(13 25 18 14)(16 31)(20 30 24 29).
The group is of order

(5% —1)(5% — 5)(5% — 5%)
5—1

= (52 +5+1)(5% - 1)(5 — 1)5° = 372000. (1)

We are now going to construct ¢-(v,k,\) designs on the set V. = PGy(5) of
vertices and with A = PSL(3,5) contained in their automorphism groups. So, the
parameter v = 31, and we are after 8-designs, so t = 8. Moreover we put & = 10 and
leave A open, in fact our method of construction showed that A = 93 and A = 100
are fine.

We start with computing orbits of A on i-sets, i < 10. The numbers of orbits are
shown in table 1.

Table 1. Number of orbits of PSL(3,5) on i-subsets of PG2(5)

i J]o 1 2 3 4 5 6 7 8 9 10
#i-orbitsof A1 1 1 2 3 5 12 22 42 92 174

A design with parameter & = 10 is a collection of blocks of size 10. If it has
A as subgroup of its automorphism group, the set B of blocks decomposes into a
collection of orbits of A on 10-sets. In order to describe the design, we only need
to know which orbits (among the total set of orbits of A on the set (l‘g) of all the
10-subsets of the set V' of points) belong to the design. Therefore, we label the
A-orbits and refer to these numbers later on.

The following table shows all 10-orbits of A on V. The stabilizer order is indi-
cated by a subscript. The orbit length is the index of the stabilizer in A. We give
the lexicographically minimal representative within each orbit. This list of repre-
sentatives is not lexicographically ordered, due to the fact that we do not generate
orbits via orderly generation. Instead of orderly generation, we use an algorithm
Leiterspiel [12] (snakes and ladders) to provide orbit representatives and further
knowledge needed for the evaluation of Kramer-Mesner matrices (see below). As
the representatives all start with the sequence 1,2,3,4,... of consecutive numbers,

only the last of these numbers is shown. The beginning is replaced by the symbol

10-orbits: 13: {...,8,12,13}s 26: {...,5,7,8,9,13,20},
1: {...,5,7,16,20,24,28}g00  14: {...,8,12,14}, 27: {...,5,7,8,9,14,18},
2: {...,10}s0 15: {...,8,12,19}¢ 28: {...,5,7,8,9,13,15},
3: {...,5,7,8,12,21,25}4 16: {...,5,7,8,9,12,13}, 29: {...,5,7,8,12,14,19};
4: {...,9,12}5 17: {...,5,7,8,9,12,28}, 30: {...,5,7,8,9,12,22};
5:{...,5,7,8,12,16,20}5 18: {...,5,7,8,12,14,18}, 31: {...,5,7,8,9,12,14},
6: {...,5,7,8,12,16,24}5 19: {...,5,7,8,12,14,28}5 32: {...,5,7,8,9,12,18}4
7 {...,5,7,8,12,14,25}, 20: {...,5,7,8,9,13,16}5 33: {...,5,7,8,9,13,22}4
8: {...,5,7,8,9,13,17}1 21: {...,5,7,8,9,13,28}, 34: {...,5,7,8,9,13,14}4
9: {...,5,7,8,9,13,30}, 22: {...,5,7,8,12,13,20}; 35: {...,5,7,8,9,13,27},
10: {...,5,7,8,12,13,21}, 23: {...,5,7,8,9,12,24}; 36: {...,5,7,8,9,14,31}5
1: {...,5,7,8,9,12,21}, 24: {...,5,7,8,9,12,17}5 37: {...,5,7,8,9,12,27}
12: {...,5,7,8,9,12,29},4 25: {...,5,7,8,12,14,24}4 38: {...,5,7,8,9,13,23},
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12,16, 20,28}
12,16,20,24},
12,16,21,25},
12,14,25,29}
9,12,19,26};
9,12,19,28},
12,13,21,29},
9,12,18,24},
9,12,18,30}>
12,15, 18,26}
12,21,25,26}16
12,16,20,29},
12,16,20,25},
12,16, 20,21}
12,15,19,29},
9,13,20,26}>
9,12,20,29},
9,13,20,21}4
12,15,19,23}
9,12,16,20}>
9,12,13,29},
12,16,19,29},
9,12,19,23}5
9,12,16,17};
9,12,13,21}
9,12,16,29}
12,16,19,20}5
12,15,23,29}5
9,13,20,24};
9,12,20,26}¢
9,12,17,20},
12,19, 20,23},
9,12,18,29},
12,16,19,23}5
12,16,21,28}
9,12,18,26};
9,12,18,20},
9,13,17,20};
9,12,18,31}4
9,12,20,24},
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2,13,20,24}4
,12,19,31};
112.13,20};
,12,16,19},
2713,21,24}1
,12,13,18};
2,13,21,26};
,12,21, 24},
,12,15,29}
,13,17,28}4
,12,15,20}
2,14,28,29}4
,12,19,20};
2,14,18,29},
,17,20,25};
,9,12,16,28}2
,9,12,13,17},
,9,17,19,23},
,9,12,15,27},
,9,12,18,19}4
,9,17,18,26}2
,9,12,17,26}3
,9,17,19,26},
,9,12,15,28}4
,9,12,15,21}
,9,12,19, 24}
,9,12,18,27},
,9,17,20,23},
,9,12,15,17}
,9,12,20,21}
,9,12,20,28}4
,9,
,9,
,9,
,9,
,9,
,9,
,9,
,9,
,9,
,9,
,1
,9
,9
,9
,9
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12,14,20},
13,21,27}
12,28,31}
12,19,21}
12,14,19},
12,21,31}
12,15,18},
13,14,17}
12,13,19}
14,17,25}
2,14, 25,28},
.12, 14,28}
713,21,24}2
,12,17,18}
,12,18,25},
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12,27,28};
12,13,28};
12,1519}

,12,19,27}4
,12,18,21}4

2 13 20,21}

2,20,21,28}4

,13,17,21}1

2,14,18,25}

,13,18,20}5

,13,14,20}4

,13,15,20}2

2,14,24,25}s

,12,14,21},

2,15,18,21}

,13,14,18};

,13,15,17}

2,13,24,26}4

,14,17,18}

,12,13,27}

2,15,19,20}4

,13,15,27}4

2,13,20,30}>
,12,13,15}0
,13,15,28}5
,12,14,16}4
,12,16,27}s
,12,13,16}¢6
,12,13,14}¢
,13,14,27}¢
,14,17,21}3
,12,14,27}

2 14,18,19}4
,12, 14,15}
13,18,25}20
,13,14,15} 10

2 15,19,20,23}s

2713720,21724}3

2,14,21, 24,28}

2,14,21,28,31}4

2,15,19,21,26} 04

2,14,18,21,31}3

3,21,24,29,30}120

i—‘}—‘}—‘}—‘HHH@@@H@@@@@@@@@H@H@@H@@H@H@@@H@HH@@@@@@

The designs are constructed using the Kramer-Mesner matrix Mt v = (m;;) which

consists in our case of 42 rows and 174 columns (recall that A = PSL(3,
and k = 10, cf. table 1).

M et = (A ...

5),t =8

Theenuy7nﬁisthenunmerofksubmws1nthej¢h
orbit of A on k-subsets containing the representative of the i-th orbit on ¢-subsets.
Hence, the {0, 1}-solutions of the diophantine system of equations

,)\)t with 2 = (iEl,ZEQ,...,

z;) and z; € {0,1} for 1 < j <1

(2)

are exactly the possible ways of choosing suitable block orbits (the chosen columns)
which fulfil all the conditions of a ¢-(v, k, A) design admitting the prescribed auto-
morphism group A. Namely, such a solution is a collection of group orbits on k-sets
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such that each representative T of a t-orbit is contained in exactly A k-sets from all
the chosen k-orbits.

This system was completely solved by the LLL-based algorithm as described
in [17]. There are exactly 138 solutions for A = 93 and 1658 solutions for A = 100.
No solutions exist for other values of A < 126 for this system of equations.

The enumeration of all solutions is a backtracking-algorithm over the integral
linear combinations of the LLL-reduced basis-vectors of the corresponding Kramer-
Mesner system. To speed up the search one can parallelize the program. [3] de-
scribes a parallel version of the algorithm. Nevertheless, the designs here were
found with the sequential version of the program within a few hours.

4. Intersection Numbers of Designs

In this section, we recall some basic facts about parameters and intersection num-
bers of designs. We will make use of intersection numbers in section 7 when proving
the fact that the 8-designs with PSL(3,5) are pairwise non-isomorphic. Intersec-
tion numbers have a long history in design theory, early results were obtained by
MENDELSOHN [10] and STANTON and SPROTT [14]. They can be generalized to
higher ¢, we will show them soon. The equations of KOHLER [7] support the evalu-
ation of these formulae. We will also speak about generalized intersection numbers,
which already appeared in [10]. Recent progress was made by TRAN VAN TRUNG,
Qiu-RoNe WU and DALE M. MESNER [16].

Let D = (V,B) be a t-(v,k,\) design on the set of points V with |V| = v. Let

= {By,..., By} be the blocks with B; CV fori=1,...,b.

le disjoint subsets I and .J of V with |I| =4, |J| = j and i + j < t. Define

Nij=|{Be€B/ICBAJNB=1} (3)

(A0 = A, A1,0 = r the number of blocks which contain a given point and g0 = b).
RAY-CHAUDHURI and WILSON proved in [11] that these numbers A; ; are indepen-
dent of the choice of the sets I and J (depending only on their cardinalities i and
j). They can be computed by the following formula

My = A(”;:j)/@j). (4)

The following recursion holds for i + j < ¢:
Aij = Nij—1 = Aig1,5-1- (5)

This is the same recursion as in the well-known Pascal-triangle of binomial coeffi-
cients. Here, one also speaks of the intersection triangle of the design. For sake of
simplicity, set A; := ;0.

For an arbitrary fixed m-subset M of V define for 0 < i < m:

a;i(M):={B € B|[M N B| = i}| (6)
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the i-th intersection number of M with D. The reference to the set M will sometimes
be omitted. It should then be clear from the context which set M we are referring
to.

Let M be an arbitrary m-subset of V. Fix j with 0 < j < t¢. Counting the set

{(J.B)||J|=j, BeB,JCBNM}

in two different ways, one arrives at the equations of MENDELSOHN [10]:

3 (Joon= (o

i=j

(for all j =0,1,...,t). Writing down the system of equations we obtain a matrix
which is nearly upper triangular. Depending on the relation between m and ¢ one
either has an upper triangular matrix (for m < t) or a matrix which is upper
triangular in its left (¢ + 1) x (¢ + 1) submatrix but which has some additional
columns ¢+ 2,...,m + 1 (for m > t). Most important for us are the cases when
m =k and M = By € B is chosen to be a block of the design itself. In this case,
ay(By) is always equal to 1 since we allow only simple designs.

We remark the following fact for the case m > ¢. Assume we know the intersection

numbers ai41(M),..., (M) (the late intersection numbers). Then, since the
coefficient matrix has 1-s on the main diagonal one can easily compute the remaining
numbers ag(M),...,a;(M) (the early intersection numbers). The terms early and

late intersection numbers should not be mixed up with intersection numbers of
higher order which will be introduced in the sequel. KOHLER gives explicit equations
for the early intersection numbers. In [7], he proves that

ai(M) = Yo (1" () ()
() () () v (M),

for0 <i<t.

For any By € B, the vector (ag(Bg),--.,ar(Bo)) is called the block intersection
type of By (in the design D). The equations of Kohler show that only the essential
block intersection numbers are needed, that is (as41(Bo), - .., agr—1(Bo)). We will
call this vector the essential block intersection type.

Clearly, block intersection types are constant on orbits of the automorphism
group. So, when computing designs as orbits of some automorphism (sub-) group,
we need only specify block intersection types for each of our orbit representatives.
We will do so later when we specify the 8-(31,10, A) designs as sets of orbits.

Let now K = {K3,..., K;} be the representing sets for the A-orbits of blocks in
the design (not to be mixed up with all A orbits as in section 2). Let K}, be the
corresponding orbit under the action of A (h =1,...,1). Clearly, 22:1 \Kh\ =b.
We define the global intersection number as

(8)

D) = [(1Bu.B} € (51 Ban Byl = ) )
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By adding up the intersection types of all blocks of the design one gets the following
formula — we count all intersections twice, therefore the factor 1/2:

l
() = 3 X eilB) = 3 SRl () (10)

The vector (ag(D),...,ar(D)) is the global intersection type of pairs of blocks of

3

the design. Clearly,

gai(D) = (;) (11)

but we will find more equations for global block intersection types in the follow-
ing. In order to achieve this, let us introduce intersection numbers of higher order
(already introduced by MENDELSOHN [10]).

For an arbitrary fixed m-subset M of V and b > s > 1 define for 0 < i < m:

al20) = (B Bid e (D) IDenBn 0B =i, a2
the i-th intersection number of order s of M with D. In the case when s = 1, this
reduces to ordinary intersection numbers. If s is at least two and if m is at least k,
agcs) (M) = 0 for each M C V as we have excluded designs with repeated blocks.

It can be shown (see TRAN VAN TRUNG, QIU-RoNG WU, DALE M. MESNER [16])
that the following generalization of the equations of Mendelsohn holds (for an ar-
bitrary m-subset M of V, b > s >1and 0 < j < #):

(oo (5)2)

i=j

The following generalization of Koéhler’s equations was also proved in [16]. Again,
let M be an (arbitrary) m-subset of V and 0 < i < ¢. Then, for each b > s > 1,

af” (M) = Yo (=DM () () ()

14
(T () () el (). "
For s = 1, these formulae reduce to (8), i.e. the equations for ordinary intersection
numbers. Again, we see that only the essential block intersection numbers (of higher
order) (agi)l(B), e ,aé‘?l(B)) need to be specified (for B a block of the design).
Global intersection numbers of order s of the design D can be defined in the
following way:

B

o)D) =By B €

JIREAE (15)
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Clearly, in the case s = 2, we get back the values «;(D) which we already know.
Again, global intersection numbers can be computed by cumulating intersections
over all block orbits:

l

8 ]- s§— ]. > s—

a'(D) = =3 o™V (B) = =YKl oV (K. (16)
BeB h=1

These numbers can be checked in the following way: Choose M =V and apply (13).
This gives for j =0,...,t and all b > s > 1:

()= () ().

i=j
To see this, one verifies that ags) (D) = al(.s)(V), by definition. We stopped the
summation on the left after the k-th coefficient since clearly, ozgs) (D)=0fori>k
(moreover: ozgf) (D) =0 for s > 1). In the case when j = 0 (and s = 2), we get
back equation (11) — recall that ong) (D) = a;(D).

Applying (14) with M = V we are able to compute al(.s) (D) (0 < i < t) from
(agi)l (D),..., agf) (D)). The latter vector is called the essential global block inter-
section type of order s of the design. For s > 1, ozgf) (D) vanishes.

5. 8-(31,10,100) Designs
5.1.  Parameters and Intersection FEquations

The intersection triangle of A; ; for i + 7 <t is:

17,530500 11,875500 7,917000 5,187000 3,334500 2,099500 1,292000 775200 452200
5,655000 3,958500 2,730000 1,852500 1,235000 807500 516800 323000
1,696500 1,228500 877500 617500 427500 290700 193800

468000 351000 260000 190000 136800 96900
117000 91000 70000 53200 39900
26000 21000 16800 13300

5000 4200 3500
800 700
100

(18)

The following values are helpful for the verification of some of the intersection
numbers:

b2 = 307,318430,250000

N\
N o
~
I

153, 659206, 359750
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b3 = 5387,445741,497625,000000
(g) = 897,907469, 923728, 218500.

The system (7) of Mendelsohn for arbitrary M C V of size m = k = 10 is:

ao(M)

11111 1111 1 1 ay (M) 17, 530500

1234 5 6 7 8 9 10 as (M) 96, 550000

13610152128 36 45 as(M) 76, 342500

141020 3556 84 120 ay(M) 96, 160000

1 5153570 126 210 as (M) = | 24,570000 (19)

1 621 56 126 252 ag(M) 6, 552000

1 728 84210 ar(M) 1,050000

1 8 36120 as(M) 96000

1 9 45 ag (M) 4500
Ozlo(M)

These equations are important in particular if M is a block Bg of the design. In
this case, the essential block intersection type consists of just one number, namely
ag(Byp). The equations (8) of Kdhler for m = k are:

ap(M) = 139500 —1ag(M) —9ao(M)
al(M) = 1,161000 -|-90£9(M) +800¢10(M)
as(M) = 3,622500 —36a9(M) —315a10(M)
az(M) = 5,508000 +84ag(M) +720a10(M)
as(M) = 4,515000 —126 ag(M) —1050 ayo(M) (20)
as(M) = 2,016000 +126 ag(M) +1008 ayo(M)
ag(M) = 504000 —84a9(M) —630ai0(M)
ar(M) = 60000 +36ay(M) +240a0(M)
ag(M) = 4500 —9ag(M) —450[10(M)

If we consider generalized Mendelsohn systems (13), only the right hand side
differs from the case s = 1. For the 8-(31,10,100) designs, we get the following
vectors for s =2 and s = 3:

153, 659206, 359750 897,907469, 923728, 218500

15, 989509, 672500 30,140215, 072989, 385000

1,439055, 276750 813784,799631, 940500

109511, 766000 17083, 762488, 156000
6844, 441500 |, 266, 928655, 539000 | . (21)

337,987000 2,928995, 342000

12, 497500 20820, 835000

319600 85,013600

4950 161700
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Next, we evaluate the generalized Kohler equations (14). Choosing V = M and
using the equalities o{* (D) = a!” (V) and azs)(M) =0 for s > 2 we get:

i

al = 1,222673,487750 —la
al? = 10,177156,470000 +9a’
al? = 31,749357,071250 —36a\’
(2 2

(D)
2 (D)
& (D)
48,285307,980000 +84 ol (D)
39, 565900, 237500 —126 (D) (22)
= 17,679579,372000 +126 a > (D)
= 4,412163,892500 —84a!” (D)
= 528018,660000 +36a!” (D)
39049,188750 —9a?(D)

R
s
RO CECRCRCECRC)
~ < I T I T I <3
SRR R R R R RS
I I I EE
I

(D) = 273,005571,435812, 716500 —1a’ (D)
o\ (D) = 376,703617,540702,270000  +9al) (D)
ol (D) = 193,677461,232560,077500 —36 L (D)
alP(D) = 47,873710,172695,680000 +84a!? (D)
(D) = 6,132782,342156,925000 —126 ol (D) (23)
o) (D) = 410311,724665, 752000 +126 !’ (D)
oV (D) = 13800, 854745, 405000 —84al” (D)
of’ (D) = 913,344782,560000 +36al” (D)
o’ (D) 1,275606,832500 —9al” (D)

5.2.  The Designs

We display 3 out of the 1658 designs for A = 100. The designs are collections of full
orbits from the list of 10-orbits of the group. Here, we list only the orbit numbers
using the labelling of orbits of section 2.

D1 :6, 7,09, 10, 14, 15, 18, 23, 25, 29, 31, 34, 37, 38, 39, 40, 47, 49, 50, 56, 59, 60, 64,
66, 67, 68, 70, 72, 76, 77, 78, 79, 84, 87, 88, 91, 92, 94, 96, 100, 102, 105, 106, 108, 113,
114, 117, 118, 120, 121, 124, 126, 136, 139, 141, 143, 145, 147, 148, 149, 151, 153, 156,
157, 160, 164, 165, 171, 173.

Block intersection types:

ag(Br) = 72 for h € {149}, ag(Bp) = 73 for h € {141, 171}, ayg(By) = 75 for
h € {25, 147}, ag(By) = 76 for h € {56, 87, 91, 102}, ag(By,) = 77 for h € {18, 49,
60, 78, 118}, ag(Bp) = 78 for h € {34, 106, 117, 120, 136, 139}, ag(Bp) = 79 for
h € {9, 10, 64, 68, 76, 77, 94, 96, 124, 126, 164, 165}, ag(By) = 80 for h € {6, 29,
38, 84, 113, 121}, ag(By) = 81 for h € {37, 50, 66, 67, 70, 92, 108, 145, 160, 173},
ag(Bp) = 82 for h € {7, 39, 59, 105, 143, 151}, ag(By) = 83 for h € {23, 72, 79,
88, 114, 148, 153}, ag(Bp) = 84 for h € {31, 100, 156}, ag(By) = 85 for h € {14,
47}, ag(Byp,) = 87 for h € {15, 40, 157}.
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The following table shows the global intersection numbers of all 2-sets of blocks

(all 3-sets of blocks). The column sums are (3) and (3) respectively. The values

of these tables contain a lot of redundancy. According to (14), only agQ) (D) and
agS)(D) really matters. The other values follow. In fact, all the numbers in these
tables have been computed from the orbit data. So, verification of (14) via (22)
and (23) really is a good test for the correctness of our algorithms to compute
intersection numbers.

i o) (D) o (D)
0 1,221974,151000 273,095571,434113,653000
1 10,183450,500750 376,703617,555993,841500
2 31,724180,948250 193,677461,171393,791500
3 48,344052,267000 47,873710,315417,014000
4 39,477783,807000 6,132782,128074,924000
5 17,767695,802500 410311,938747,753000
6 4,353419,605500 13800,712024,071000
7 553194,783000 213,405948,846000
8 32755,158000 1,260315,261000
9 699,336750 1699,063500
10 0 0
>

153,659206,359750  897,907469,923728,218500

(2)

The number gy~ (D) can be computed according to (10) as the following sum.
The pairs of numbers of the form “a x b” give the multiplicity (a) together with the
intersection number ag (b). The greatest common divisor of all the multiplicities is
taken out of the sum.

699, 336750 = %-15500-(6><72-|-18><73+30><75+78><76+72><77+128><78+
210 x 79+ 132 x 80 + 168 x 81+ 96 x 82 + 114 x 83 + 48 x 84 + 18 x 85 + 13 x 87)

Dy 15,7, 10, 11, 14, 15, 17, 24, 25, 27, 28, 29, 30, 31, 39, 40, 45, 47, 49, 52, 56, 58, 59,
60, 62, 65, 69, 71, 76, 77, 78, 80, 83, 86, 87, 88, 95, 98, 99, 100, 103, 104, 105, 106, 110,
112, 113, 120, 126, 130, 131, 132, 134, 141, 142, 144, 145, 146, 148, 149, 151, 153, 156,
157, 160, 164, 170, 171, 173.

Block intersection types:

ag(By) = 74 for h € {56, 77, 141}, ag(By) = 75 for h € {131}, ag(By) = 76 for
h € {58, 69}, ag(By) = 77 for h € {28, 76, 78, 99, 104, 126, 148}, ay(By) = 78 for
h € {24, 47, 52, 71, 86, 106, 110, 151}, ag(By) = 79 for h € {7, 49, 134, 153, 164},
ag(Bp) = 80 for h € {17, 29, 62, 83, 95, 98, 105, 113, 142, 170}, ay(B) = 81 for
h € {15, 87, 88, 132, 145, 157, 171}, ag(By) = 82 for h € {5, 27, 31, 80, 103, 120,
149, 156}, ag(Bp) = 83 for h € {10, 30, 39, 40, 65, 112, 144, 146}, ay(Bp) = 84 for
h € {45, 59, 100, 130, 173}, ag(Br) = 85 for h € {11}, ag(By) = 87 for h € {160},
ag(Br) = 88 for h € {60}, ag(Br) = 89 for h € {14, 25}.

Global intersections:
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oD (D)

o (D)

1,221971,547000
10,183473,936750
31,724087,204250
48,344271,003000
39,477455,703000
17,768023,906500

4,353200,869500

553288,527000
32731,722000
701,940750

0

273,095571,434098,029000
376,703617,556134,457500
193,677461,170831,327500
47,873710,316729,430000
6,132782,126106,300000
410311,940716,377000
13800,710711,655000
213,406511,310000
1,260174,645000
1714,687500

0

_
MOQOOO\]O‘JU(»&OJ[\DP—*O&.

153,659206,359750

897,907469,923728,218500

701, 940750 = %-15500-(42 XT744+24x75+36%76+132%77+116 x 78484 x 79+
216 x80+112x 81 +138x82+123x 83 +68 x84+ 12x 85+4 x 87+12x 88+ 12 x 89)

D31 5,8, 9, 10, 14, 15, 18, 19, 24, 25, 28, 29, 31, 34, 37, 39, 40, 45, 47, 50, 53, 56, 59,
61, 63, 65, 68, 71, 72, 73, 80, 83, 91, 94, 99, 100, 103, 104, 106, 109, 110, 111, 112, 116,
117, 119, 120, 125, 128, 129, 130, 132, 133, 134, 140, 141, 143, 144, 146, 148, 149, 153,
157, 160, 163, 164, 170, 171, 173.
Block intersection types:
ag(Br) = 73 for h € {25, 153}, ag(By) = 74 for h € {24}, ag(By) = 75 for
h e {15, 37, 117, 173}, ag(By) = 76 for h € {104, 120, 133}, ag(By) = 77 for
h € {10, 18, 19, 47, 71, 109, 132, 171}, ag(By) = 78 for h € {61, 80, 91, 129, 149,
160}, ag(Bp) = 79 for h € {8, 29, 40, 72, 103, 112, 125, 128, 157}, ag(By) = 80 for
h € {5, 34, 53, 63, 65, 83, 94, 100, 110, 119, 134, 140}, ag(By) = 81 for h € {28, 50,
68, 99, 106, 111, 144, 148, 163}, ag(By) = 82 for h € {116, 130, 141}, ag(By) = 83
for h € {9, 170}, ag(Bp) = 84 for h € {31, 39, 146}, ag(Bp) = 85 for h € {14, 59,
143}, ag(Bp) = 86 for h € {45, 56, 73}, ag(By) = 87 for h € {164}.

Global intersections:

698, 127750 =

o (D)

o (D)

1,221975,360000
10,183439,619750
31,724224,472250
48,343950,711000
39,477936,141000
17,767543,468500
4,353521,161500
553151,259000
32766,039000
698,127750

0

—_
MO‘D&JR‘I@U‘»&WMP—‘O&.

273,005571,434121,651000
376,703617,555921,859500
193,677461,171681,719500
47,873710,314745,182000
6,132782,129082,672000
410311,937740,005000
13800,712695,903000
213,405660,918000
1,260387,243000
1691,065500

0

153,659206,359750

897,907469,923728,218500

15500 (12x 73+12x 74+ 60x 75+ 72X 76+114 x 774106 x 78 +

129 x 794252 % 80+ 164 x 81 +48 x 82424 x 83+ 48 x 84+ 42 x 85+ 42 x 86+ 6 x 87)

6. 8-(31,10,93) Designs
6.1. Parameters and Intersection Equations

Again, we list 3 of the designs, now with A = 93. We have A; ; =
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16,303365 11,044215 7,362810 4,823910 3,101085 1,952535 1,201560 720936 420546
5,259150 3,681405 2,538900 1,722825 1,148550 750975 480624 300390
1,577745 1,142505 816075 574275 397575 270351 180234

435240 326430 241800 176700 127224 90117
108810 84630 65100 49476 37107
24180 19530 15624 12369

4650 3906 3255
744 651
93
(24)
Some useful values are:
b2 = 265,799710, 323225
(g) = 132,899847,009930
b3 = 4333,429694, 293805, 152125
(g) = 722,238149, 482451, 131530.
The system of Mendelsohn is:
Qg
117111 1111 1 1 aq 16303365
1234 5 6 7 8 9 10 Qs 52591500
13610152128 36 45 Qas 70998525
141020 3556 84 120 Qay 52228800
1 5153570 126 210 as = | 22850100 (25)
1 621 56 126 252 Qg 6093360
1 728 84 210 ary 976500
1 8 36120 Qs 89280
1 9 45 Qg 4185
Q19
The equations of Kéhler are (for M C V', |M| = 10):
ag(M) = 129735 —lag(M) —9a10(M)
a1 (M) = 1,079730  4+9a9(M)  +80ayo(M)
as(M) = 3,368925 —36ag(M) —315a10(M)
as(M) = 5,122440 +84ag(M) +720a10(M)
ay(M) = 4,198950 —126 ag(M) —1050 ayo(M) (26)
as(M) = 1,874880 +126 ag(M) +1008 cvyo(M)
ag(M) = 468720 —84ay(M) —630a10(M)
ar7(M) = 55800 +36 ag(M) 4240 a1o(M)
Ozg(M) = 4185 —9ag(M) —450&10(M)
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The generalized Mendelsohn systems (13) have the following right hand side (for

s=2and s = 3)

132,899847, 009930 722,238149, 482451, 131530

1, 244638, 853640
94716, 711180
5919, 753645 |,
292,324110

10, 808925
276396

4278

13, 829326, 731675 24,243492,007411, 704300

654573,412952, 844840
13741,437313, 520280
214,705518,201720
2,355937,443860
16746, 627800
68,361944

129766

(27)

The generalized KOHLER equations applied to M =V (with m = v) and s = 2
and s = 3 are (the ag.s) (D)-terms with j = k,...,v left out):

Q
¥

= 1,057485,163995
8,802268, 280325
= 27,459839, 186325
= 41,762373,716700
= 34,219947,966750
= 15,291643, 381560
= 3,815721,061425
= 456820, 287300
= 33747,965550

V)

mﬁﬂﬂm/«m/—\fﬁwmmﬁuﬁoﬁ
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Q
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Q
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Q
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Q
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I

6.2. The Designs

N
&
N
&
—1260{”(
+126 o
N
N
0

= 219,666334,479373,519920 —1a)
= 303,004191,078014, 790000 +9a
= 155,785819, 762501, 110000 —36a
38,507550, 969895, 043400 +84 af
4,932944, 011165, 716000 —126 o}
330036, 037337, 047860 +126

= 11100, 547123,029000 —84 af
171,573352,587000 +36
1,023688,288350 —9a

~1af?

+9«a
—36
+84 «x

2
2
2

2

—84al?

+36 a
—9a

2

"SI v IV IRv IR

)
)
)
)
)
)
)
)
)

2

(28)

(29)

D, :1,2,5,7,9,12, 13, 14, 16, 19, 24, 25, 29, 30, 33, 36, 39, 42, 43, 46, 48, 52, 53, 55,
57, 60, 64, 65, 72, 75, 76, 81, 83, 84, 85, 91, 92, 94, 96, 98, 103, 105, 107, 109, 113, 114,
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116, 120, 124, 125, 126, 128, 131, 132, 136, 138, 139, 141, 147, 148, 149, 150, 152, 159,
162, 167, 168, 172.
Block intersection types:
ag(Br) = 10 for h € {1}, ag(Br) = 60 for h € {172}, ag(By) = 66 for h € {148,
167}, ag(Br) = 68 for h € {9, 36, 149}, ag(Bp) = 69 for h € {159}, ag(By) = 70
for h € {128}, ag(Bp) = 71 for h € {25, 30, 65, 76, 96, 126}, ag(Bp) = 72 for
h € {5, 42, 46, 52, 60, 75, 81, 85, 103, 116, 120, 124, 132}, ag(By) = 73 for
h € {98, 105, 141}, ag(By) = 74 for h € {53, 57, 83, 91, 92, 138, 139, 147, 150,
168}, ag(Bp) = 75 for h € {16, 24, 29, 33, 64, 94, 136, 152, 162}, ag(By) = 76
for h € {72, 109, 114, 125}, ag(By) = 77 for h € {7, 39, 107}, ag(By) = 79 for
h € {14, 19, 43, 48, 84, 113, 131}, ag(By) = 80 for h € {55}, ay(Bp) = 82 for
h € {12}, ag(By) = 84 for h € {13}, ag(Br) = 90 for h € {2}.

Global intersections:

ol)(D) o (D)

k3

0 1,056882,079920  219,666334,478026,507920
1 8,807696,037000  303,004191,090137,898000
2 27,438128,159625  155,785819,714008,678000
3 41,813032,779000 38,507551,083044,051400
4 34,143959,373300 4,932943,841442,204000
5 15,367631,975010 330036,207060,559860
6 3,765061,999125 11100,433974,021000
7 478531,314000 171,621845,019000
8 28320,208875 1,011565,180350
9 603,084075 1347,012000
10 0 0
>

132,899847,009930  722,238149,482451,131530

603, 084075 = % -155 - (3 x 10 + 100 x 60 + 1400 x 66 + 3000 x 68 + 400 x 69 +
1200 x 70 + 11400 x 71 4 22800 x 72 44800 x 73 + 17400 x 74 + 15800 x 75 + 7200 x
76 + 6000 x 77 + 12600 x 79 4+ 150 x 80 + 600 x 82 + 300 x 84 + 30 x 90)

D2:1,2,5,7,9,12, 13, 14, 16, 19, 24, 25, 29, 30, 35, 36, 39, 42, 43, 46, 49, 52, 53, 55,
57, 60, 63, 69, 70, 72, 75, 78, 80, 84, 85, 90, 94, 95, 98, 100, 101, 103, 104, 105, 110, 116,
117, 121, 122, 125, 128, 130, 134, 135, 137, 138, 139, 143, 147, 148, 149, 152, 156, 159,
163, 167, 169, 170, 172.

Block intersection types:

ag(Br) = 10 for h € {1}, ag(Bp) = 48 for h € {55}, ayg(By) = 68 for h € {36,
46}, ag(Bp) = 69 for h € {143, 152}, ag(Bp) = 70 for h € {84, 94}, ay(Bp) = 71
for h € {14, 30}, ay(Bpy) = 72 for h € {49, 75, 95, 103, 104, 121, 159, 169},
ag(Bp) = 73 for h € {63, 72, 90, 116, 130, 139, 170}, ag(By) = 74 for h € {9, 12,
16, 29, 52, 53, 85, 117, 122, 125, 128, 147, 149, 156}, ag(By) = 75 for h € {7, 43, 70,
78, 101, 105, 110}, ag(Bp) = 76 for h € {5, 35, 60, 98}, ag(By) = 77 for h € {24,
39, 100, 163}, ag(By) = 78 for h € {80, 135, 167}, ag(By) = 79 for h € {19, 25,
57, 69, 134, 137}, ag(By) = 80 for h € {148}, ag(By) = 84 for h € {42, 172},
ag(Bp) = 86 for h € {138}, ag(Br) = 90 for h € {2}, ag(By) = 92 for h € {13}.
Global intersections:
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oD (D)

o (D)

1,056877,987920
8,807732,865000
27,437980,847625
41,813376,507000
34,143443,781300
15,368147,567010
3,764718,271125
478678,626000
28283,380875
607,176075

0

219,666334,477992,531920
303,004191,090443,682000
155,785819,712785,542000
38,507551,085898,035400
4,932943,837161,228000
330036,211341,535860
11100,431120,037000
171,623068,155000
1,011259,396350
1380,988000

0

_
MOQOOO\]O‘JU(»&OJ[\DP—*O&.

132,899847,009930

722,238149,482451,131530

607,176075 = % 155+ (3 x 10 + 150 x 48 + 1800 x 68 + 1800 x 69 + 4800 x 70 +
3000 x 71 414400 x 72 + 13200 x 73 + 22800 x 74 + 12000 x 75 + 7200 x 76 + 4800 x
77+ 5000 x 78 + 11400 x 79 + 1200 x 80 + 700 x 84 4+ 600 x 86 + 30 x 90 + 300 x 92)

D5 : 1,25 8, 11, 12, 13, 14, 17, 19, 24, 25, 28, 29, 33, 36, 30, 42, 43, 46, 47, 48, 52,
55, 58, 60, 62, 64, 66, 71, 75, 76, 77, 78, 81, 85, 88, 90, 94, 97, 98, 105, 109, 111, 113, 116,
118, 119, 120, 125, 126, 127, 131, 132, 133, 136, 138, 140, 145, 146, 149, 151, 152, 159,
167, 169, 172.

Block intersection types: ag(Bp) = 10 for h € {1}, ag(By) = 48 for h € {172},
ag(Bp) = 60 for h € {159}, ag(Bp) = 66 for h € {167}, ag(Bp) = 67 for h € {152},
ag(Br) = 68 for h € {77}, ag(Bp) = 69 for h € {25, 47, 98}, ayg(By) = 70 for
h e {17, 109}, ag(By) = 71 for h € {24, 60, 75, 126, 136}, ag(By) = 72 for
h e {19, 42, 55, 58, 81, 90, 140, 149, 151}, ag(By,) = 73 for h € {66, 78, 127, 131},
ag(By) = 74 for h € {11, 12, 36, 43, 46, 85, 111, 119, 125, 146}, ag(By,) = 75 for
he {8, 14, 28, 33, 76, 88, 116, 120, 132, 145}, ag(By) = 76 for h € {71, 94, 118,
138}, ag(By) = 77 for h € {5, 52, 97, 133}, ag(By) = 78 for h € {29, 39, 48, 62,
105, 113, 169}, ag(Br) = 81 for h € {64}, ayg(Bp) = 84 for h € {13}, ag(Bp) = 90
for h € {2}.

Global intersections:

o)(D)

o (D)

1,056883,009920
8,807687,667000
27,438161,639625
41,812954,659000
34,144076,553300
15,367514,795010
3,765140,119125
478497,834000
28328,578875
602,154075

0

219,666334,478018,912920
303,004191,090206,253000
155,785819,713735,258000
38,507551,083682,031400
4,932943,840485,234000
330036,208017,529860
11100,433336,041000
171,622118,439000
1,011496,825350
1354,607000

0

—_
MO‘DOOR]O‘JU(»&DJMP—*O&.

132,899847,009930

722,238149,482451,131530

602, 154075 = %-155-(3>< 10 + 100 x 48 4400 x 60 + 200 x 66 4 600 x 67 4+ 2400 x
68 + 4200 x 69 + 4800 x 70 + 9600 x 71 + 12150 x 72 4 8400 x 73 + 14400 x 74 +
21000 x 75 4 5400 x 76 4+ 7200 x 77 4+ 12800 x 78 4+ 1200 x 81 4+ 300 x 84 + 30 x 90)
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7. Isomorphism Problems

This section addresses problem 1 of section 1. We answer the question posed there
by showing that all designs are non-isomorphic. This claim is proved in two different
ways.

7.1.  First Proof

General group theoretic tools quite often suffice to solve the isomorphism problem
for the designs constructed by the Kramer-Mesner method. This approach was
already partly used in [12], [13] and we first briefly report the basic idea from
that papers. Let Sy be the full symmetric group on the underlying point set
V. The following Lemma is useful when constructing objects with a prescribed
automorphism group.

LEMMA 1 Let Dy and Dy be designs with a group A as their (full) group of au-
tomorphisms. Assume that g € Sy maps Dy onto Dy. Then g belongs to the
normalizer of A in Sy .

Proof: A = Stabg, (D2) = Stabg,, (D}) = Stabg,, (D)9 = A9. [ |

If the prescribed group of automorphisms A is a maximal subgroup of Sy different
from the alternating group then all designs found are pairwise non-isomorphic.

If A is not a maximal subgroup one can apply a Moebius inversion on the subgroup
lattice to single out those designs having A as their full automorphism group and
then form the Ng,, (A4) orbits on the set of these designs. These orbits, all of length
|Ns, (A)/A|, are just the different isomorphism types.

A severe drawback of this approach is that it relies on the knowledge of the set of
groups containing A in Sy. Often the information on overgroups can be obtained in
some way from the classification of the finite simple groups. We want to show here
that in important cases we can avoid this laborious task by a localization technique.
We regard A as a guess for the automorphism group of the designs constructed.
A good guess might at least find a correct Sylow subgroup of the automorphism
group. Then the following holds.

LEMMA 2 Let a finite group G act on a set Q. Let wi,ws € Q be fized by a p-
subgroup P of G and g € G such that w] = ws. Let P be a Sylow subgroup of
Stabg(ws). Then W' = wy for some n € Ng(P).

Proof: Since P9 < Stabg(wr)? = Stabg(w() = Stabg(w2) and P < Stabg(ws),
there is some z € Ng(w2) such that P9 = P? by the Sylow Theorem. Then
gzt € Ng(P) and g = nz. Therefore wy = w{ = W and W = w§_1 = ws.

If the prescribed subgroup A of the automorphism group of the objects that are
searched for contains a Sylow subgroup P of all the automorphism groups of the
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objects then only elements from Ng(P) have to be applied to the objects as possible
isomorphisms. In our applications to t-designs it is often possible to show that no
design exists if the proposed subgroup P is extended to a larger p-group. Then the
assumptions of the Lemma are of course fulfilled.

There is a problem if A is not normalized by Ng(P). Then, usually, the set of
fixed points of A is not closed under Ng(P). So we cannot just form the orbits of
N¢g(P) in order to solve the isomorphism problem.

LEMMA 3 Let G be a finite group acting on a set Q and A < G. Let A contain
a Sylow subgroup P of all designs admitting A as a group of automorphisms. If
H = Ng(P) then Ng(A) acts on the set of fized points Fixq(A) of A in Q. If
w! = wy for wi,ws € Fixq(A) and g € H with Ng(A)g # Ng(A) then A <
(A, A9) < Stabg(ws).

Figure 1. Subgroups of Lemma 3

Ng(A)

Nu(A)

N4 (P)

Suppose that D; and D, are two designs admitting A as an automorphism group.
If A is a large subgroup of the full symmetric group S,, then it happens very often
that (4, A9) = S, or A,.

If this situation appears for each g € H \ Ng(A) then the orbits of Ng(A) on
Fizq(A) are the different isomorphism types appearing in Fizq(A). If in addition
Np(A) < A then all designs admitting A as an automorphism group are pairwise
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non-isomorphic. Algorithmically, only representatives from the cosets Ng(A)g in
H have to be considered in forming (A, A9).

A remarkable feature of this approach is that the individual designs are not
touched upon. So, the isomorphism problem may be solved without knowing details
like orbit representatives etc. of the designs.

To solve the isomorphism problem for the 8-designs of this paper we use the fact
that A = PSL(3,5) contains a Sylow-31 subgroup P of S3; (cf. figure 2).

Figure 2. Special Situation for PSL(3,5)
G = Sz

A =PSL(3,5) = Ng(A)
H = No(P) = Hol(Cay)

10
Na(P) = Nu(A)

P =Cs

We choose the group P generated by
(17271918261424301316283125410222321582111715202939126).  (30)

The normalizer of P in the full symmetric group is the holomorph of P, i.e. the
semidirect product of P with its automorphism group. This normalizer is not
contained in A but |Ng,, (P) N A] = 3 x 31. This intersection has 10 right cosets
in Ng,, (P). Representatives of these cosets are given by the powers of the element

9=10(213298251611262821)(32212306181027177)(41424195232015931).

(31)
Fori=1,...,9 we form (A, Agi) and in each case obtain As;. But a design which
has A3y as a group of automorphisms must be the complete design.

Thus, by the above theory, all designs obtained as solutions of the Kramer-Mesner
system for A < (Z) are pairwise non-isomorphic.

7.2.  Second Proof

The second proof of the fact that all designs are non-isomorphic is done using the
intersection numbers of section 4.
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In a first step, the global intersection type aéQ) (D) is used in order to distinguish

between the designs. Clearly, two designs which have different intersection numbers
are non-isomorphic.
Coming back to sections 5 and 6, we find

al? (D1) = 699, 336750
a?)(@rz) = 701, 940750 (32)
9

al? (D3) = 698, 127750

for the designs with A = 100 and

al? (D1) = 603,084075
a%Q) (D,) = 607, 176075 (33)
9

al? (D3) = 602, 154075

for those with A = 93. These numbers are all distinct (which is fine for our pur-
poses!) but for the whole set of designs, there are coincidences.

For the 138 designs with A = 93, we get 84 different values of agQ) (D) in the range
from 591,366075 to 611,268075.

The following table shows the classes of designs sorted according to the value of

aéQ) (D). For each value, the indices i of the designs ©; are given.

591, 366075 for {25} 600, 480075 for {75}

593, 226075 for {110} 600, 573075 for {89}

594, 342075 for {95} 600, 666075 for {134}

595, 830075 for {111} 600, 759075 for {7,36, 68}
596, 853075 for {87} 600, 852075 for {106,131}
597,039075 for {102} 601, 131075 for {101,103, 105}
597, 225075 for {107} 601, 224075 for {10}

597, 318075 for {23,128} 601,317075 for {40}

597, 504075 for {5, 35} 601, 503075 for {127}

597, 597075 for {15,46} 601, 689075 for {39,120, 137}
597,969075 for {8} 601, 782075 for {69}

598, 248075 for {126} 601, 968075 for {62, 88}

598, 341075 for {14} 602, 154075 for {3, 18, 45,94}
598, 434075 for {118,132} 602, 433075 for {13,109}
598, 527075 for {96} 602, 526075 for {66}

598, 806075 for {79} 602, 619075 for {93,133}
598, 899075 for {30, 70,112} 602, 712075 for {34}

598, 992075 for {97,100} 602, 805075 for {56,57,67}
599, 085075 for {48} 602, 898075 for {50,61,90}
599, 643075 for {49} 602, 991075 for {51, 86}

599, 829075 for {44,119} 603, 084075 for {1,21,54,77,108, 113}
599, 922075 for {64} 603, 177075 for {72}

600, 015075 for {41} 603, 270075 for {12, 60, 124}
600, 108075 for {43} 603, 363075 for {81,117}

600, 201075 for {16,122} 603, 456075 for {84}
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603, 549075 for {65}

603, 642075 for {91,115, 116}
603, 735075 for {104}

604, 014075 for {22}

604, 107075 for {26}

604, 386075 for {11, 76,129}
604, 479075 for {31,55}
604, 665075 for {9,136}
604, 758075 for {29, 37}
604, 944075 for {98}

605, 223075 for {47}

605, 316075 for {32}

605, 409075 for {28}

605, 595075 for {33, 73,123}
605, 967075 for {80}

606, 153075 for {19, 92}

606, 618075 for {17,121}
606, 897075 for {59}
607, 176075 for {2,130}
607, 641075 for {4, 6}
608, 199075 for {114}
608, 292075 for {38, 74}
608, 385075 for {99}
608, 478075 for {53}
608, 571075 for {83}
608, 664075 for {24, 42}
609, 315075 for {20}
609, 873075 for {27}
610, 152075 for {78}
610, 803075 for {58}
611,175075 for {63}
611, 268075 for {71,138}
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606, 339075 for {52,82,85,135}
606, 525075 for {125}

Let us make some statistics first: The class sizes are distributed in the following
way:
i1 2
# of classes of size i | 48 23 1

3 4 5 6
0 2 0 1
The average class size is p = 1.643, we get for the variance Var = 0.86 and the
standard deviation ¢ = 0.93.

A better choice for an invariant is the multiset of all block intersection types of a
design. So, one starts with equation (10) and collects equal terms of ag(Bj) (in the

case of the 8-designs). This leads to an additive decomposition of ozi(f) (D) which is
a finer invariant.

For example, the class of designs with ag2) (D;) = 603,084075 for i €
{1,21,54,77,108,113} (and A = 93) has the following different types of block in-
tersections (sorted lexicographically by the coefficients of the terms):

D77: 603,084075 = 1155 x (3 x 10 + 100 x 54 + 600 x 67 + 2400 x 68 + 3800 x
69 + 13500 x 70 + 8400 x 71 + 19200 x 73 4+ 10200 x 74 + 4800 x 75 + 18600 x 76 +
11400 x 77 + 7200 x 78 4+ 1200 x 79 + 3000 x 80 + 600 x 82 + 150 x 88 + 30 x 90)
Ds4: 603,084075 = £155% (3 x 10+200 x 57+ 1800 x 64-+600 x 67+ 6000 x 68+400 x
6944200 x 7044800 x 71+ 15000 x 72+ 10800 x 73+ 16200 x 74+ 13200 x 75+ 7200 x
76410200 x 77+ 5500 x 78 + 4800 x 79+ 1350 x 80 + 2000 x 81 + 900 x 82+ 30 x 90)
D1: 603,084075 = 155 x (3 x 10+ 100 x 60 + 1400 x 66 + 3000 x 68 + 400 x 69 +
1200 x 70 + 11400 x 71 + 22800 x 72 + 4800 x 73 4+ 17400 x 74 + 15800 x 75 + 7200 x
76 4+ 6000 x 77 + 12600 x 79 + 150 x 80 + 600 x 82 + 300 x 84 + 30 x 90)

Dy1: 603,084075 = 1155 x (3 x 10+ 400 x 63 + 1200 x 64 + 600 x 67 + 2400 x 68 +
3600 x 69+ 6000 x 7046000 x 71412950 x 72+ 8400 x 73+ 14400 x 74+ 11400 x 75+
17100 76+ 12000 x 7745600 x 78+ 1200 x 79+ 600 x 80+ 700 x 84+ 600 x 85+ 30 % 90)
D113: 603,084075 = 1155 x (30 x 30 + 100 x 48 + 150 x 60 + 600 x 65 -+ 600 x 66 -+
3600 x 69+ 9000 x 70 4+ 6000 x 71 + 9600 x 72 + 16800 x 73 4+ 12000 x 74 + 15000 x
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75 + 8700 x 76 + 12000 x 77 4+ 5000 x 78 + 4800 x 79 + 1200 x 82 + 3 x 210)

Di0s: 603,084075 = %155 x (30 x 30+ 100 x 48 + 600 x 64 + 1800 x 65 + 800 x 66 +
900 x 68 4 3600 x 69 + 6000 x 70 + 3600 x 71 4+ 13600 x 72 + 10800 x 73 + 13200 x
74417000 x 75+ 15750 x 7646000 x 77+ 6600 x 78 + 2400 x 7942400 x 83+ 3 x 210)

As a matter of fact, all designs (for A = 100 and A = 93) can be distinguished
using this invariant.

The major drawback with using the aéS) (D) for classification purposes is simple:
these numbers are quite hard to compute because lots of intersections are involved.

For sake of completeness, we list the orbit indices of the remaining 5 designs (D,
has already been shown):
Doy: 1,2, 5,8, 10, 12, 13, 14, 18, 19, 24, 25, 28, 31, 32, 33, 36, 39, 42, 45, 46, 50,
51, 55, 60, 61, 64, 66, 68, 72, 75, 79, 84, 85, 86, 90, 96, 98, 100, 105, 107, 108, 109,
111, 114, 117, 120, 127, 128, 130, 131, 133, 134, 135, 137, 138, 141, 142, 144, 149,
151, 152, 154, 159, 167, 169, 170, 172.
D540 1,2,5,7,9, 12, 13, 14, 21, 22, 24, 29, 33, 34, 36, 38, 39, 42, 46, 47, 50, 53,
55, 56, 58, 60, 64, 66, 71, 72, 75, 76, 77, 81, 90, 92, 94, 95, 98, 100, 101, 102, 103,
104, 107, 109, 113, 115, 118, 119, 121, 125, 126, 128, 134, 137, 141, 145, 148, 149,
150, 151, 152, 153, 159, 163, 165, 167, 169, 171, 172.
D 1,2, 7,8, 12, 13, 14, 18, 20, 21, 22, 24, 29, 33, 38, 39, 42, 43, 45, 46, 47, 51,
52, 55, 56, 58, 59, 64, 67, 68, 72, 78, 80, 82, 83, 86, 91, 93, 96, 100, 101, 107, 112,
113, 114, 115, 116, 117, 119, 120, 124, 125, 126, 132, 135, 136, 147, 149, 152, 153,
156, 159, 162, 165, 167, 170, 171, 172.
Di0s: 1,2, 3,5,9, 12, 13, 14, 20, 23, 24, 26, 32, 33, 34, 36, 38, 41, 42, 51, 52, 53,
55, 58, 60, 61, 62, 64, 67, 70, 72, 78, 79, 81, 83, 85, 86, 88, 92, 97, 98, 100, 103, 107,
111, 115, 117, 118, 119, 120, 121, 127, 131, 133, 134, 137, 139, 143, 149, 150, 151,
152, 155, 159, 162, 165, 167, 170, 172.
Di13: 1,2, 3,6, 11,12, 13, 14, 17, 23, 26, 28, 30, 35, 36, 37, 42, 43, 45, 49, 55, 58,
60, 64, 66, 67, 71, 72, 73, 76, 77, 80, 82, 83, 87, 88, 100, 101, 104, 105, 109, 112,
117, 120, 121, 122, 127, 128, 130, 133, 137, 140, 141, 144, 147, 148, 149, 150, 151,
152, 154, 155, 156, 159, 165, 167, 169, 172.

In the case of the 1658 designs of type 8-(31,10,100) we get 219 different values

a{?) (D) in the range from 688,455750 to 716, 169750. The distribution of class sizes
is the following:

i | 1 2 3 5 6 7 8 9 10

# of classes of sizei | 38 20 15 15 14 13 6 8 11 7

# of classes of size 10+4 | 11 14 9 11 5 3 4 5 2 2
# of classes of size 20 + 4 3 1 1 0 1

The average class size is y = 7.57. We have Var = 33.6 and 0 = 5.8.

The largest class of designs is of size 25. Namely, one gets agQ)(i)i) =701,661750
for i € {42, 56, 87, 116, 118, 185, 263, 356, 503, 682, 729, 737, 809, 817, 826, 1085,
1127, 1208, 1288, 1299, 1426, 1459, 1507, 1545, 1585}.
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As remarked above, in all cases the use of block intersection numbers allowes to
distinguish between the designs.

8.
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