The Discovery of Simple 7-Designs with
Automorphism Group PI'L(2, 32)

Anton Betten, Adalbert Kerber, Axel Kohnert, Reinhard Laue,
Alfred Wassermann

Universitat Bayreuth,
Lehrstuhl II fir Mathematik
D-95440 Bayreuth

Abstract. A computer package is being developed at Bayreuth for the
generation and investigation of discrete structures. The package is a C
and C++ class library of powerful algorithms endowed with graphical in-
terface modules. Standard applications can be run automatically whereas
research projects mostly require small C or C4++ programs. The basic
philosophy behind the system is to transform problems into standard
problems of e.g. group theory, graph theory, linear algebra, graphics, or
databases and then to use highly specialized routines from that field to
tackle the problems. The transformations required often follow the same
principles especially in the case of generation and isomorphism testing.
We therefore explain some of this background.

We relate orbit problems to double cosets and we offer a way to solve
double coset problems in many important cases. Since the graph iso-
morphism problem is equivalent to a certain double coset problem, no
polynomial algorithm can be expected to work in the general case. But
the reduction techniques used still allow to solve problems of an inter-
esting size. As an example we explain how the 7-designs in the title
were found. The two simple 7-designs with parameters 7-(33,8,10) and
7-(33,8,16) are presented in this paper. To the best of our knowledge
they are the first 7-designs with small A and small number of blocks
ever found. Teirlinck [19] had shown previously that non trivial ¢-designs
without repeated blocks exist for all . The smallest parameters for the
case t = T are 7-(40320%° + 7,8,40320'°).

The designs have PI'L(2, 32) as automorphism group, and they are con-
structed from the Kramer-Mesner method [7]. This group had previously
been used by [13] in order to find simple 6-designs. The presentation of
our results is compatible with that earlier publication.

The Kramer-Mesner method requires to solve a system of linear diophan-
tine equations by a {0,1}-vector. We used the recent improvements by
Schnorr of the LLIL-algorithm for finding the two solutions to the 32 x 97
system.

1 Introduction

A library of C and C++ routines arose from a project for the constructive
handling of discrete structures on a computer. The routines were written as

part of diploma theses, doctoral theses and other research projects over several
years. Already now the library of DISCRETA is powerful enough to support
ambitious research activities. We describe here those parts of the package which
were used in order to find 7-designs. Other aspects are mentioned in order to
give an impression of the interfaces to users.

To begin with, we recall that a t-(v,k,A)-design is defined to be a pair (V, B),
consisting of a set V' of vertices and a set B of blocks, where V' is of order v and
where each block b € B is a subset of order £ in V. The other two parameters ¢
and A mean that each ¢-subset 7" of V is contained in exactly A blocks.

A direct approach to the evaluation of all the t-(v,k,A)-designs on V is easy
to formulate: Consider the matrix

Mtvk = (mvTK)’

the rows of which are indexed by the ¢-subsets 7' C V' and the columns of which
are indexed by the k-subsets K C V while the entries themselves are defined to

be)
1 fTCK

0 otherwise.

mp g =
It is obvious that the set of all the t-(v k,A)-designs on V bijectively corresponds
to the 0-1-solutions = of the system of linear equations

A

M;i =1

A
This is easy to see but difficult to solve. In the case of the quite moderate
parameters ¢t := 7, v := 33, k := 8 and A := 10 the matrix M%?é has about

6 - 10'3 entries, so that there is no hope systematically to find a solution.

But there exists in fact a way of attacking this problem, namely by imposing
a further condition. (This is, of course, risky, since the set of designs fulfilling
this additional condition might be empty!) We impose the condition that a given

subgroup A of the symmetric group Sy on the set of vertices is contained in the
automorphism group Aut(V, B) of the design in question:

A< Aut(V, B).

(The automorphism group Aut(V, B) consists of the permutations = € Sy that
induce permutations of the set B of blocks!) An interesting case of such a group
i1s a certain subgroup of the symmetric group Ss3 on a set of 33 points which
is usually denoted in geometry by PI'L(2,32). It can be described as follows.
Take the 32-dimensional vector space over GF(2) and consider the set of its
onedimensional subspaces, there are exactly 33 of such subspaces. The general
linear group GL(2,32) induces a permutation group on this set, which is de-
noted by PGL(2,32). This group together with the permutation coming from
the Frobenius automorphism & — k% (when applied to the coordinates of the
vectors) generates the group PI'L(2,32).

As soon as we have imposed this condition A < Aut(V, B) we can consider-
ably reduce our numerical problem: A}, can be replaced by the matrix

M{?k = (m%,K)’

the rows of which are indexed by the elements of an (arbitrary) transversal 7 of
the set of orbits of A on the set (‘;) of t-subsets, while the columns are indexed
by the elements of an (arbitrary) transversal 7' of the set of orbits of A on the
set (‘g) of k-subsets of V' :

T € T(Orb(A, (‘t/)), K € T'(Orb(A, (Z))).

The matrix MtAk 1s therefore of size

|Orb(A, (Z)” x |Orb(A, (Z))L

which is in fact 32 x 97 in the above mentioned particular example, and so the
data reduction is enormous, it is in fact by the factor 2 - 10'° in our example.
The entries of the matrix are defined by

mip i = {K' € Orb(K) | T C K'}|.

(Orb(K) means the orbit of K under the action of A on V.) This matrix is
called the Kramer-Mesner [7] matrix, since their theorem says that the set of
t-(v,k,A)-designs on V' is bijective to the set of 0-1-solutions z of

A
A
It therefore remains to evaluate the Kramer-Mesner matrix and to find a 0-1-
solution of this system of linear equations.

The evaluation of the Kramer-Mesner matrix can be done by application of
two basic principles of Algebraic Combinatorics which we should like to describe
here. The first of the basic principles that come in makes use of the fact that a
transversal of orbits can be obtained from a transversal of double cosets as soon
as we have a transitive group at hand. This fact is described in the following
lemma (which is old, but we do not know where exactly it appeared for the first
time):

The Split Lemma. Let G be a group acting transitively on a set §2. Then the
orbits of a subgroup U of G on §2 correspond byjectively to the double cosets
Ng(W)\G/U by the mapping w9Y — Ng(w)gU, where Ng(w) is the stabilizer of
a fited w € £2 under the G-action.

This lemma is known in special applications, for example coding theory [18] and
theoretical chemistry. In the case of designs we can apply it, since the symmetric
group Sy forms a single orbit on (‘t/) as well as on (‘g) We shall give details in
the following section.

There are also more general situations where this lemma can be applied,
namely in each case when we distinguish labelled and unlabelled structures. Dis-
crete structures are represented by a data structure which in general is not
unique for the object presented. For example a graph has to be labelled, which
means the vertices must be numbered before the computer can handle 1t. But for
n vertices there are n! different labellings with labels 1, ... n. Analoguous ambi-
guities arise with ¢-designs, groups, codes and other kinds of discrete structures,
the unlabelled structure is defined to be an equivalence class of the labelled one,
or, in other terms, an isomorphism class of labelled structures. Therefore we
consider isomorphism problems with highest priority. Usually, the set of labelled
structures is very big, and many of them will be isomorphic. Then one has to
find a group acting on the set of objects such that the isomorphism types are
just the orbits of that particular group. Algorithms for finding a full set of orbit
representatives will finally give the desired 1somorphism types. For example the

set of labelled graphs on v vertices is of order 2(;), and the acting group is the
symmetric group on the vertices again. Since this group acts transitively on the
set of labelled graphs with v vertices and given number of edges, the split lemma
in fact shows that these graphs can be obtained from double coset representatives
in a symmetric group. We can explain here, in addition, the application to coding
theory. A linear code is a subspace of some dimension k, say, of a vector space
V of a dimension n over a finite field GF(g) for some prime power ¢. The code
vectors are n-tuples with entries from G F(q). We consider two codes as equiva-
lent if there exists a permutation of the positions of all entries transforming one
code into the other or we can in addition multiply all entries at fixed positions
by the same constant different from 0. This means that the group GF(¢)* 1.5,
presented as the subgroup U of all monomial matrices in G = GL(n,q) acts
on the set of subspaces. Since GL(n, ¢) is transitive on the set of all subspaces
of a fixed dimension k, by the split lemma the orbits of U on the set of these
subspaces correspond to the double cosets Ngr(n o) (K)\GL(n,q)/GF(q)* 1Sy,
where K is a fixed subspace of dimension k£ of V.

Thus we have demonstrated, how double coset transversals help to evaluate
designs, graphs and linear codes by suitable applications of the split lemma
mentioned above.

It remains to tell something about the evaluation of double coset transversals.
Here the second basic principle comes in which we would like to mention here.

The basic algebraic tool is that of homomorphism, which means compatible
mapping. It serves very well in a stepwise simplification of group actions and
corresponding constructive methods in algebraic combinatorics, to. Here is the
corresponding lemma:

The Homomorphism Principle. Let a group G act on a set 21 and on a set
§25. Let o : §21 — {29 be a mapping that is compatible with both group actions.

Then, for each w € §25 and each g € G the sets o7 (w) and o= (w9) intersect
the same orbits of G on 2y. Ifwi,ws € o7 (w), for some w € §25, and Wi = wo,
for some g € G, then g € Ng(w).

The proof 1s obvious.

We apply the homomorphism principle in two different ways. Firstly, we
assume that a solution of the orbit problem is already known in the image
domain of o. Then only the preimage sets 0~1(w) of representatives w and as
acting group on o~ !(w) only the stabilizer Ng(w) have to be considered. The size
of the full set of all preimages of one orbit is reduced to a fraction and the order
of the acting group is reduced by the same factor, that is by the length of the
orbit in the image domain. Therefore using a series of systematic simplifications
by homomorphisms reduces the overall complexity about logarithmically.

The second way we use the homomorphism principle is to deduce a solution
in the image domain of ¢ from a solution of the orbit problem in the preimage
domain. We call this application a fuston.

A combination of both principles can be used to find double coset represen-
tatives [14].

Theorem 1. Let Ay, Ay, B be subgroups of a group G and Ay < Ay. Then the
following mapping belween the respective sels A;\G of right cosets,

o A\G — A\G |

sending the coset Asg onto the coset Aig is compatible with the action of B
on A\G and A\G by multiplication from the right. If A1 = |, x A2z then
o~ 1(A1g9) = Urex A2mg. A set of double coset representatives for A\G/B is
obtained from a set T of double cosel representatives for A1\G/B by computing
representatives from the orbits of =1 A1t N B on o~ 1(Ayt), for eacht € T.

In order to obtain a set I'y of double cosel representatives for A\\NG/B from
such a set I's for As\G/B let v run through I's, put p = o(y) into I, and for
each element in o=1(p) remove the representative of its double coset from I's.

Proof. In order to prove this we only need to interpret an orbit {Agby, Agbs, .. .,
Agb,} of B on the set of right cosets of a subgroup A of G as the set of those
cosets which lie in the same double coset AgB. The homomorphism principle
yields the assertion, since 1At N B is just the stabilizer of At in B. O

This may suffice as a description of two basic principles of Algebraic Combina-
torics, we should like now to give a detailed description of their application in
order to find the first 7-designs with moderate parameters, to be more precise:
to find a 7-(33,8,10)-design via an evaluation of the Kramer-Mesner matrix of
PI'L(2,32) and then finding a 0-1-solution of the corresponding system of linear
equations.

2 Computation of the Kramer-Mesner Matrix

Recall from above that we have to evaluate two transversals of double cosets in
the symmetric group Ss3. On the left hand side there is in the first case the
stabilizer of a 7-subset of the set of 33 vertices, and in the second case it is the
stabilizer of an 8-subset. On the right hand side we have, in both cases, the
group PI'L(2,32). We shall describe a way of solving these two problems in one
wash by using a so-called ladder of subgroups, which first meets the stabilizer
of a 7-subset and ends up in a stabilizer of an 8-subset. But let us describe that
slightly more general in order to make the generality quite clear. Let us discuss
a way of construction of a double coset transversal in an arbitrary finite group
G.

Since in many cases we cannot find chains of subgroups with small indices
leading from (G downwards to a prescribed subgroup A, we use some deviations
instead of a direct way. In fact, we may proceed going along a sequence of
subgroups A; where either A; < A;_1 or A; > A;_1. The key to this method is
to consider also cases A; < A;_1, where representatives for double cosets A;\G/B
are known and then, by fusion, reduce the set to double coset representatives
for A;_1\G/B. The discussion above leads directly to an algorithm, see [10, 14].
For a recent object oriented version see [20].

An example indicates how one can obtain a set of double coset representatives
in Ss3 where on one side the group A is a Young subgroup being the normalizer
of aset K = {1,...,k} for some k < 33. In the application to the construction
of a 7-design we choose as B the group PI'L(2,32). Of course Ssg is transitive
on the set of all subsets of the same cardinality k. Therefore, by the split lemma,
the orbits of B on the set of these subsets correspond to the double cosets of the
stabilizer A of K in Ss3 and B. We indicate the sequence of subgroups leading
from Ss3 to A, which can be used for a determination of the double cosets.

If B=(By,Ba,...,B) is a partition of {1,...,n} into blocks B; the corre-
sponding Young-subgroup of S, is the normalizer Ng,_(Bi,..., By) of all these
blocks. Then our sequence of subgroups is as in Fig.1.

All orbit problems in this example deal with very small sets of points only.
In contrast to this, the index of a Young subgroup in S, is a usually very big
multinomial coefficient. Of course the set of orbit representatives will be also very
large, since the multinomial coefficient can be reduced at most by the factor | B.

A similar chain of subgroups exists in General Linear Groups. There one can
take the normalizers of subspaces instead of Young subgroups. If (71, T3, ..., T,)
is an ascending chain of subspaces of a vector space V(n, ¢) of dimension n then
we use the subgroup relation

Nerm,o(Ti) > Narin,g) (1) " Narn,g)(Tic1) < Narn,g(Ti-1)

for all z in order to construct a sequence along which we compute representatives
for the double cosets with the monomial group. Again the full General Linear
Group is transitive on the set of all subspaces of a fixed dimension such that the

Ns,,({2,...,33}, {1})

Ns,,.({1,2},{3,...,33})
Nsaa({l}’ {2}’ {3’ EERE 33})

Ns,,({1,2,3},{4,...,33})
Ns,,({1,2},{3},{4,...,33})

Ns.({1,...,7},{8,...,33})

26

; Ns..({1,...,8},{9,...,33})
Neo.({1,...,7}, {8}, {9, ...,33})

Fig. 1.

split lemma applies. Therefore one can use the same algorithm with groups of a
different kind to solve the problem of code construction [1].

A careful analysis of the fusion of the step from the normalizer Ng_, ({1,...,7},
{8,...,33}) to the normalizer Ng,,({1,...,8},{9,...,33}) shows that for each
representative 1" of a 7-orbit of A and for each 8-orbit O; one gets the number
m(T, j) of 8subsets in O; that contain 7'. This is the information needed to
form the Kramer-Mesner matrix M which allows to find a 7-design. The number
m(T, j) is just the entry m%yK for some K € O;. It is easy to see that this
number is independent of the choice of the representative T

We look for 7-(33,8,A) designs having the group B = PI'L(2,32) as an
automorphism group. Such a design then consists of full orbits O;. One has to
choose appropriate columns of M to get the desired design. Each column selected
stands for selecting all 8-subsets of the corresponding orbit for the design. The
condition for a simple design says that in each row of the Kramer-Mesner matrix
the entries of the selected columns must sum up to A.

Since the designs constructed in this way have at least PI'L(2,32) as its
automorphism group, one should ask for the full automorphism group. While

such a question is hard to answer in general, in this case we only have to notice
that by [12] PI'L(2,32) is a maximal subgroup of Szz. Thus, the only possibilities
for the full automorphism group could be PI'L(2,32) or Ssz, the latter case
being impossible since it would require all 8-subsets to be included into the
design because of the transitivity of Ss3 on this set. We therefore conclude that
any incomplete design having PI'L(2,32) as an automorphism group must have
this group as the full automorphism group.

We have included the Kramer-Mesner matrix for this problem for convenience
of the reader at the end of the article. Actually this matrix had appeared already
in [13] together with a description of simple 6-designs. To make our results
comparable to that paper we decided to use the representation of the matrix
there. Our own result differed only by some permutation of the 97 columns and
32 rows.

3 {o,1}-Solutions of Linear Diophantine Systems

Now it remains to solve for the Kramer-Mesner matrix M, an [x s-matrix, the
equation

M -v=2X(,...,1)" for a {0, 1}-vector v . (1)
This is a special instance of the multi-dimensional subset sum problem which is
known to be NP-complete [4]. Our approach therefore uses an algorithm which
generally solves only a weaker problem, but often also gives a solution to (1). In
fact, we could find such a solution for a difficult problem in this way as shown
below.

As in [2, 3, 8] we reduce the problem to that of finding short vectors in a
lattice. At the moment a polynomial method to find short vectors in a lattice is
not known. But the algorithm of Lenstra, Lenstra and Lovész [11] guarantees to
find a nontrivial vector in an m-dimensional lattice that has at most 2"/2 the
length of the shortest nontrivial vector in this lattice. This does not look very
promising, but in practice the so called LLL-algorithm performs much better
than is guaranteed by its worst case bounds.

Meanwhile there were several improvements of the original algorithm and
lattices have been found which are better suited to the subset sum problem,
[8, 15, 16, 17]. So the performance of the algorithm dramatically improved.

Let IR"™ be the n-dimensional IR-vector space with the ordinary inner product
(.,.). A discrete, additive subgroup I C IR" is called a lattice.

Every lattice L is generated by a set of linearly independent vectors b4, ..., b,
€ L, the basis of L:

LIL(bl,,bm)I{l‘1b1++l‘mbm |l‘1,...,l‘mEZ} .

m 1s called the rank of the lattice L.
For a sequence of linear independent vectors by, ... b, € R™ welet b7, ... b%,
be the Gram-Schmidt orthogonalized sequence. We thus have

— . (bi, b5)
br :bi_Zﬂi,jb; fori=1,...,m, where y; ; = r b]*
j=1 <]" J'>

The vectors b7, ..., b}, are linearly independent, but in general they are not in

the lattice spanned by b1, ..., b,,. Note that the orthogonalized vectors b7, ..., b},
depend on the order of the basis vectors by, ..., by,.

Definition 2. A basis by, ..., by, of the lattice L is called LLL-reduced with 6 if

lpij| <1/2 for1<j<i<m, (2)
SIORIP < N0%qr + a1 wbi]? fork=1,...,m—1, (3)

where 6 is a constant with 1/4 < é < 1.

In order to find a lattice basis which fullfils (2) and (3) a finite number of two
kinds of linear transformation are applied:

Algorithm (LLL-algorithm, see [11]). Set k& := 1. Now do until £ = m — 1:

1. Fori=1,...,k— 1 replace by by by — rb;, where r = [pj, ;]| is the nearest
integer to puy ;.

2. if 8[)o%])* > 6% 41 + pr+1£b5||* then interchange byyq and by and set k :=
max(k — 1, 1),
otherwise set k := k + 1.

Remark. With step 1 of the algorithm we achieve condition (2) which assures
that the LLL-reduced basis vectors are ”as orthogonal as possible”.

In condition (3) the vector bz_l_l + ftr41,xb% 1s the orthogonal projection of
the vector br41 on the orthogonal complement of the subspace generated by
by,...,bg—1. In other words to fullfil condition (3) step 2. of the algorithm does
the following: if for some k € {1, ..., m— 1} the last vector of the Gram-Schmidt
orthogonalized sequence b7, ...,by_, b7, is shorter than the last vector of the
Gram-Schmidt orthogonalized sequence b7, ..., b%_,, b} by at least a factor 6 < 1
the two vectors are swaped, i.e. by41 1s the new vector by.

This is the natural generalization of an algorithm by Gauss [5, Art. 171, 183,
272] to reduce binary, respectively ternary quadratic forms.

For a lattice L. C IR" of rank m the successive minima Ay,..., A, of L are
defined through: A; = A;(L) is the smallest radius » of a ball centered at the
origin which contains exactly ¢ linearly independent lattice vectors. It follows
that Ay (L) is the euclidean length of the shortest nonzero lattice vector of L.

The following theorem from [11] states that an LLL-reduced basis contains
relatively short vectors.

Theorem 3. Fvery basis by, ... by, that is LLL-reduced with 1/4 < § < 1 salis-
fies

(m=1)/2
o< (g) M) (4)

In [11] the authors also give the following running time:

Theorem 4. Let by,..., b, be an ordered basis for an integer lattice L such that
|6:]|> < B for 1 < i < m. Then the LLL-algorithm computes a LLL-reduced
basis for L using at most O(m*log, B) arithmetic operations and the integers
on which these operations are performed have length at most O(mlog, B).

Several speedups of the algorithm have been proposed. Schnorr [16, 17] intro-
duces variants which use floating point arithmetic to circumvent the time con-
suming use of long integer arithmetic.

In [17] the authors use the so called deep insertions: Instead of (3) — where
the LLL-algorithm behaves like the bubble sort method — they interchange by
not just with b;_; but with the leftmost vector b;, 1 < i < k, for which ||b]|? is
at least decreased by a factor §.

There are other kinds of lattice basis reduction beside of LLL-reduction. One
classical definition of lattice basis reduction is Korkine-Zolotarev reduction [6]:
Let b1, ..., b, be an ordered basis of the lattice L. We define L; as the orthogonal
projection of L in {by,...,b;_1)". Then L; is a lattice of rank m — i + 1. Further
we denote with L;(b;, ..., b;) with i < k < m as the orthogonal projection of
the lattice spanned by the vectors by, ... by in {(by,..., bi—1)".

Denote with m; : IR® — {by,...,b;—1)" the orthogonal projection so that
b— Tz(b) S <b1, cey bi_1>.

Definition5. An ordered basis by,...,b, of a lattice L is called Korkine-
Zolotarev reduced [6] if it fulfills (2) and if

[[b5]) = Ai(L;) fori=1,...,m .

The following theorem from [15] reveals that Korkine-Zolotarev reduction is
stronger than LLL-reduction.

Theorem 6. A Korkine-Zolotarev reduced basis by, ..., by, satisfies

4 1+ 3
A (D) < 6] <
S <<y

M(L) fori=1,...,m .

The bad news are there i1s no polynomial time algorithm for Korkine-Zolotarev
reduction known. In [15, 17] the authors define a weakened version of Korkine-
Zolotarev reduction:

Definition7. Let 3 be an integer with 2 < 5 < m. A basis by, . .., by, is called -
reduced if it satisfies (2) and if for i = 2,..., m—/F+1 the orthogonal projections
of b;, ..., biyp—11n {(b1,...,b;_1)~ form a Korkine-Zolotarev reduced basis of the
lattice Ti(L(bZ', ceey bi+ﬁ—1))~

A basis by, ..., by, is called B-reduced with § if (2) is satisfied and if

(SHI):H < /\1([/2([)2, . ~~,bi+ﬁ—1)) fori=1,....m—p+1.

Remark. Note that a LLL-reduced basis with é is 2-reduced with é. Actually in
case of # > 2 step 2 of the LLL-algorithm is generalized in G-reduction with §é
to the following:

Instead of looking whether a swap of the vectors byy1 and by would give
a shorter new bj we are searching for the linear combination of the vectors
br,...,br4p—1 as new vector b, which produces the shortest vector b}.

In [15, 17] the length of the basis after f-reduction is bounded as follows:

Theorem 8. Fvery B-reduced basts by, ..., b, of a a lattice L satisfies
||b1||2 S a(ﬁm—l)/(ﬁ—l)/\l(L)Z
provided that 5 — 1 divides m — 1.

The constant ag is the maximum of ||b1(|/[|b3]] taken over all Korkine-Zolotarev
reduced bases b1,...,bs. From [15] we know that oy = %, a3 = % and ag <
B+ A With @ increasing ol/(P=1) converges to 1.

Often the vectors of a reduced lattice basis still are not short enough to solve
the linear diophantine systems. Since a reduced lattice basis depends on the
order of the initial lattice basis, we shuffle the basis vectors after G-reducing the
lattice and repeat this process several times. Kreher and Radziszowski [8] gave
the following improvement of the algorithm: After each f-reduction step we test
if there are pairs (¢, j) with 1 <17 < j < m so that ||b; £ b;|| < ||b;]]. If this is the
case we set b; to b; £ b;. Then we start again with shuffling and S-reduction.

To solve (1) we combine the approach of Kreher and Radziszowski [8] with
the new ideas of Schnorr et al. [3, 15, 16, 17].

This means that we apply lattice basis reduction to the following lattice basis
L to get a reduced lattice basis L'

Col 0
CQM
Col 0
12 0 1
L= ' 0) ' ,
0 200 a1
0 ... 0 1 0
0 ... 0 0 1

where M 1s a { x s-matrix and ¢g and ¢; are constants which control the behaviour
of the algorithm. The choice of ¢y should force an exact solution over the integers
whereas a good choice of ¢; will yield a {0, 1}-solution:

Suppose ¢g is large. Then by the reduction the whole upper block of about
the first s — [columns and [rows will be transformed to 0, because each nonzero
entry would be divisible by ¢y which means that the euclidean length of the
whole correspondending column would be large. Since the rank of the Kramer-
Mesner matrix M is about [only s — [vectors of the reduced basis can consist
only of zeros in the first [rows. ¢; should be approximately the expected value

of A.

The algorithm has found a solution if L’ contains a vector (b;1,...,b;)"
with the following form:

|bz’,z|:1, b“:...:b“:O, |bi,l+1|:~~~:|bi,z—2|zcl ;

)

where [is the number of rows of the Kramer-Mesner matrix M and z = [+ s+ 2.
The Kramer-Mesner matrix M of the 7-(33,8,10) and 7-(33,8,16) designs
has 32 rows and 97 columns which result in a lattice L with 131 rows and 99
columns. We used f-reduction with deep insertions, where we chose 3 = 40,
6 = 0.999999999, ¢y = 30 and ¢; = 10. We found the following solutions after
one iteration which took about 9 minutes on a PC 486 with 66 MHz and 16 MB
RAM:
The 32 x 97 Kramer-Mesner matrix M :

222222222222200
210111000000021111211111111111100
1110000001000100200000000001000111112112111111100
0011000000000021001000000000000100011000000100012131111111110000000000000000000000000000000000000
0001200000000000000001000001001110000000010010010011000100001121111111100000000000000000000000000
0000110000000001000000100020000001001000001100111000000101001000000110021111110000000000000000000
0000013000110100100000101001001000100020001000100101010010000001000100010010001000000000000000000
0000004200000000020000200220000000020000002000000000000200000200000000000002000200000000000000000
0000000220000000002000002000002000002000020000000020000000000200002000022020000000000000000000000
0001000121000001100100000101000000001000100010100100001000000010011100000101001011100000000000000
0000002001200010011011010000110000001101000110010000010000000000100000000100001010011000000000000
0000000200020200000002200020000200000022000000020000200000000000000000000020000000020000000000000
0000000001012000000000101000022000000000000000111000000110010110000100100100010200101000000000000
0200000000002210020000101000001111000000000100000000000000001000110010100000001000010111000000000
0010100000001001001200100000010001000002000000001001011011000100000000000001010000000102110000000
0000110011000010100001020100000000000000101000000101000000010100100000000010000000010211001110000
0011020000000010010000000100100000010001000000000001010000100000100011000010001010212000001001000
0000000220000000000240002000000000000000000000000000000000000000200220000000220200000000002000000
0000010010011000010110010011001110000100000001000001010001000000001000000101100010000000100011000
0200000200000200000200000200020002000000002020000000000000200000000000000200020000000000000020000
0001000001010011000000000001000011000100010000100001000001000011000000100000000020010031010100100
0010100000011000102001001000000001000110000101100100110000000000200000100000000000100000100000300
0200000000000001000001000000000010220100000110000000000010010010011000000100011010021000010000100
0011000000000000100001000000010100011010000001000100000010100000020100000101000000101002000100120
0000000200000000000020020000000000000020000000200000000200000000020020220000000000002000200002000
0010000000000000000110000101000000000000100000010010100002001000001101110011000000001110000002110
0000000000010000010000011010000000000010001020000000200110000200000010010000111000100110001001010
0000000000000000000010010100010110000100000100001010101100000010001010002010011000000000003001100
0000000010000001000000000010100011010001001000011100100010000001001000110001000000000111001011001
0000000005000000000000000000000000000500000000000500050000000000000000000000000000000000050000001
005000000005000000050005000000000050000000000000001
0050000000000050000000000000000000500500000500001

with the solution vectors v for A = 10 and A = 16 respectively:

0011100010100100110001101000010010000000101101100010111100000001001001010000110111011001010111000
1100011101011011001110010111101101111111010010011101000011111110110110101111001000100110101000111

To make the paper self - contained we include from [13] the permutation
representation of PI'L(2,32) and representatives from the orbits on all 7- and
8-subsets that correspond to the Kramer-Mesner matrix.

The group PI'L(2,32) can be presented as generated by the following two
permutations of {1,--- 33}:

a=(124816)(36122417)(5 10 20 9 18)(7 14 28 25 19) (11 22 13 26
21)(15 30 29 27 23)(31)(32)(33)

B = (118 30)(2 21 12)(3 10 28)(4 31 32)(5 24 14)(6 7 17)(8 25 27) (9 19
20)(11 15 13)(16 23 29)(22 33 26).

There are 32 orbits on the set of all 7-subsets and 97 orbits on the set of all
8-subsets.

orbits on T-subsets of V orbits on 8-subsets of V

Nr| representative length Nr representative length
112345 6 T[] 81840 32.[1 23456 9 10]163680

2.1 2345 6 8[163680 33./123456 9 11163680

312345 6 9(163680 34./1 23456 9 12163680

4.1 2345 610[163680 35./11 23456 9 13| 81840

5012345 611[163680 36.11 23456 9 14163680

6.]1 2345 612(163680 37./1 23456 9 15/163680

712345 613[163680 38./1 23456 9 17|163680

8.]1 2345 6 14| 81840 39./1 23456 9 18163680

9.]1 2345 6 15| 81840 40.|/1 23456 9 19|163680

10.{1 2345 6 16/163680 41.|1 23456 9 22| 81840
11.{1 2 345 6 17|163680 42.|/1 23456 9 23| 81840
12.(1 2 3 45 6 19| 81840 43./1 23456 9 24163680
13.[1 2 3 45 6 32|163680 44./1 23456 9 26/163680
14.(1 2345 7 9|163680 45./1 23456 9 27|163680
15.[1 2345 7 10|163680 46./1 23456 9 29| 81840
16.(1 2 3 45 7 12|163680 47.11 23456 9 33|163680
17./1 2 3 45 7 13|163680 48.|1 2 3456 10 11]|163680
18.(1 2 345 7 15| 81840 49.|1 2 3456 10 12]|163680
19.(1 2 3 45 7 20|163680 50.|1 2345610 13|163680
20.|1 2 345 7 24| 81840 51.|1 2345610 15/163680
21.|1 2345 8 10[163680 52.|1 2345610 18]|163680
22.|1 2345 811[163680 53.|1 2345610 19/163680
23.|1 2345 812[163680 54.|1 2345610 20163680
24.|1 2345 8 13/163680 55.|1 2345610 22| 81840
25.|1 2345 8 17| 81840 56.|1 2345610 24163680
26.|1 2 345 8 24[163680 57.]1 2345610 25/163680
27.|1 2 345 8 26[163680 58.|1 2345610 26/163680
28.|1 2345 911/163680 59.|1 2345610 28| 81840
29.|1 2345 912[163680 60.|1 2345610 32| 81840
30.|1 2345 9 17| 32736 61.|1 2345611 12| 81840
31.|1 2 3 45 10 12| 32736 62.|1 2345611 14163680
32.|1 2 345 11 16| 32736 63.|1 2345611 16163680
64.|1 2345611 20| 81840

oTbits on 8-subsets of V 65.(1 2345611 21[163680
Nr| representative length 66.|1 2345611 22(163680
T]iz34567 8] 81840 67.|1 2345611 23163680
2]1234567 9|163680 68.|1 2345611 25/163680
s|li234567 10|163680 69.11 2345611 26/163680
sl1234567 11|163680 70.|1 2345611 27| 81840
s5|l1234567 12|163680 71.|1 2345611 33|163680
6li1234567 13|163680 72.|1 2345612 13|163680
7li234567 14|163680 73.|1 2345612 15| 81840
sli234s567 15|163680 74.|1 2345612 17|163680
oli1234s567 16|163680 75.|1 2345612 20163680
1w0li234567 17|163680 76.|1 2345612 24163680
111234567 18| 81840 77.|1 2345612 26| 81840
1201234567 19|163680 78.|1 2345612 32|163680
131234567 32(163680 79.|1 2345613 16163680
141234568 o|163680 80.|1 2 3456 14 24| 81840
1501234568 10|163680 81.|1 2345616 17|163680
16./]123 4568 12[163680 82./1 2 345616 22(20460
171234568 13|163680 83.|1 2345616 33|163680
18/1234568 14|163680 84.|1 2345617 19/163680
191234568 15|163680 85.|1 2345617 33|163680
201234568 16(163680 86.11 23457 9 121163680
21.{1234568 17163680 87.11 23457 9 17]163680
22.{1234568 19(163680 88.11 23457 9 321163680
23./1234568 20163680 89.11 2 3 45710 20| 81840
24./1 234568 21163680 90.11 2 3 457 10 32| 81840
251234568 23(163680 91.|1 2345712 15/163680
26.[1 234568 24163680 92.11 2 3 45712 17| 81840
27./1234568 26163680 93.11 2 3 457 12 24| 81840
28.l1234568 27|163680 94.|1 2 345713 26[|163680
291234568 30| s1s40 95.|1 2345810 15/163680
301234568 32163680 96./11 2345813 19| 81840
31.]1234568 33|163680 97.]1 2 3 459 12 24| 81840

The solution vectors have an entry 1 in the ¢-th place if and only if the i-th
orbit on 8-subsets is part of the design. Thus, for A = 10 we have

b = 27 x 163680+ 11 x 81840+ 1 x 20460 = 5340060

blocks in the 7-(33, 8, 10) design. The same number of blocks can also be obtained
from the following well known formula:

v 33
(1) (7)
3
BT
The authors thank C. Praeger for pointing out reference [12] to us. We also

thank the referees for helpful suggestions for a detailed presentation of the de-
Signs.

b = A= -10 = 5340060 .

References

1. E. ARNOLD: Aquivalenzklassen linearer Codes, Zulassungsarbeit Bayreuth
1993.

2. E. F. BRICKELL: Solving low density knapsacks. Advances in Cryptology, Pro-
ceedings of Crypto ’83, Plenum Press, New York (1984), 25-37.

3. M. J. CosTER, B. A. LAMAccHia, A. M. OpLyzKo, C. P. SCHNORR: An
improved low-density subset sum algorithm. Proceedings FUROCRYPT ’91,
Brighton, May 1991 in Springer Lecture Notes in Computer Science 547
(1991), 54-67.

4. M. R. GAREY, D. S. JoHNsON: Computers and Intractabelity: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company (1979).

5. C. F. Gauss: Disquisitiones Arithmeticae, German edition by H. Maser,
Chelsea Pub., New York (1965).

6. A. KORKINE, G. ZOLOTAREFF, Sur les forms quadratiques. Math. Ann. 6
(1873), 366-389.

7. E. S. KRAMER, D. M. MESNER: t-designs on hypergraphs. Discrete Math. 15
(1976), 263-296.

8. D. L. KrREHER, S. P. RaDpziszowsKI: Finding Simple t-Designs by Using Ba-
sis Reduction. Congressus Numerantium 55 (1986), 235-244.

9. J. C. LAGARIAS, A. M. ODLYZKO: Solving low-density subset sum problems.
J. Assoc. Comp. Mach. 32 (1985), 229-246.

10. R. LAUE: Construction of combinatorial objects — A tutorial. Bayreuther
Math. Schr. 43 (1993), 53-96.

11. A. K. LENsTRA, H. W. LENSTRA JR., L. LovAsz: Factoring Polynomials
with Rational Coefficients, Math. Ann. 261 (1982), 515-534.

12. M. W. LieBEcK, C. E. PRAEGER, J. SAXL: The maximal factorizations of
the finite simple groups and their automorphism groups, Memoirs of the
Amer. Math. Soc. 432(1990), Chapter 9.

13. S. MAGLIVERAS, D. W. LEAVITT: Simple 6-(33,8,36) designs from
PI'Ly(32). Computational Group Theory, M. D. Atkinson ed., Academic
Press 1984, 337-352.

14. B. ScHMALZ: The t-designs with prescribed automorphism group, new simple
6-designs. J. Combinatorial Designs 1 (1993), 125-170.

15. C. P. SCHNORR: A hierachy of polynomial time lattice basis reduction algo-
rithms. Theoretical Computer Science 53 (1987), 201-224.

16. C. P. SCHNORR: A More Efficient Algorithm for Lattice Basis Reduction. J.
Algorithms 9 (1988), 47-62.

17. C. P. ScHNORR, M. EUCHNER: Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Proceedings of Fundamentals of
Computation Theory 91 in Lecture Notes in Computer Science 529 (1991),
68-85.

18. D. SLEPIAN: Some further theory of group codes. In 1. F. Blake: Algebraic
Coding Theory: History and Development (Benchmark papers in electrical
engineering and computer science), Stroudsburg, Dowden, Hutchinson & Ross
Inc. (1973), 118-151.

19. L. TEIRLINCK: Non trivial ¢-designs without repeated blocks exist for all ¢.
Discrete Mathematics 65 (1987), 301-311.

20. S. WEINRICH: Konstruktionsalgorithmen fir diskrete Strukturen und ihre Im-
plementierung, Diplomarbeit Bayreuth (1993), 274 pp.

This article was processed using the IANTRpX macro package with LLNCS style

