
The Discovery of Simple 7-Designs withAutomorphism Group P�L(2; 32)Anton Betten, Adalbert Kerber, Axel Kohnert, Reinhard Laue,Alfred WassermannUniversit�at Bayreuth,Lehrstuhl II f�ur MathematikD-95440 BayreuthAbstract. A computer package is being developed at Bayreuth for thegeneration and investigation of discrete structures. The package is a Cand C++ class library of powerful algorithms endowed with graphical in-terface modules. Standard applications can be run automatically whereasresearch projects mostly require small C or C++ programs. The basicphilosophy behind the system is to transform problems into standardproblems of e.g. group theory, graph theory, linear algebra, graphics, ordatabases and then to use highly specialized routines from that �eld totackle the problems. The transformations required often follow the sameprinciples especially in the case of generation and isomorphism testing.We therefore explain some of this background.We relate orbit problems to double cosets and we o�er a way to solvedouble coset problems in many important cases. Since the graph iso-morphism problem is equivalent to a certain double coset problem, nopolynomial algorithm can be expected to work in the general case. Butthe reduction techniques used still allow to solve problems of an inter-esting size. As an example we explain how the 7-designs in the titlewere found. The two simple 7-designs with parameters 7-(33; 8; 10) and7-(33; 8; 16) are presented in this paper. To the best of our knowledgethey are the �rst 7-designs with small � and small number of blocksever found. Teirlinck [19] had shown previously that non trivial t-designswithout repeated blocks exist for all t. The smallest parameters for thecase t = 7 are 7-(4032015 + 7; 8; 4032015).The designs have P�L(2; 32) as automorphism group, and they are con-structed from the Kramer-Mesner method [7]. This group had previouslybeen used by [13] in order to �nd simple 6-designs. The presentation ofour results is compatible with that earlier publication.The Kramer-Mesner method requires to solve a system of linear diophan-tine equations by a f0; 1g-vector. We used the recent improvements bySchnorr of the LLL-algorithm for �nding the two solutions to the 32�97system.1 IntroductionA library of C and C++ routines arose from a project for the constructivehandling of discrete structures on a computer. The routines were written as



part of diploma theses, doctoral theses and other research projects over severalyears. Already now the library of DISCRETA is powerful enough to supportambitious research activities. We describe here those parts of the package whichwere used in order to �nd 7-designs. Other aspects are mentioned in order togive an impression of the interfaces to users.To begin with, we recall that a t-(v,k,�)-design is de�ned to be a pair (V;B),consisting of a set V of vertices and a set B of blocks, where V is of order v andwhere each block b 2 B is a subset of order k in V: The other two parameters tand � mean that each t-subset T of V is contained in exactly � blocks.A direct approach to the evaluation of all the t-(v,k,�)-designs on V is easyto formulate: Consider the matrixMvt;k := (mvT;K);the rows of which are indexed by the t-subsets T � V and the columns of whichare indexed by the k-subsets K � V while the entries themselves are de�ned tobe mvT;K := n 1 if T � K0 otherwise.It is obvious that the set of all the t-(v,k,�)-designs on V bijectively correspondsto the 0-1-solutions x of the system of linear equationsMvt;k � x = 0B@�...�1CA :This is easy to see but di�cult to solve. In the case of the quite moderateparameters t := 7; v := 33; k := 8 and � := 10 the matrix M337;8 has about6 � 1013 entries, so that there is no hope systematically to �nd a solution.But there exists in fact a way of attacking this problem, namely by imposinga further condition. (This is, of course, risky, since the set of designs ful�llingthis additional condition might be empty!) We impose the condition that a givensubgroup A of the symmetric group SV on the set of vertices is contained in theautomorphism group Aut(V;B) of the design in question:A � Aut(V;B):(The automorphism group Aut(V;B) consists of the permutations � 2 SV thatinduce permutations of the set B of blocks!) An interesting case of such a groupis a certain subgroup of the symmetric group S33 on a set of 33 points whichis usually denoted in geometry by P�L(2; 32). It can be described as follows.Take the 32-dimensional vector space over GF (2) and consider the set of itsonedimensional subspaces, there are exactly 33 of such subspaces. The generallinear group GL(2; 32) induces a permutation group on this set, which is de-noted by PGL(2; 32). This group together with the permutation coming fromthe Frobenius automorphism � 7! �2 (when applied to the coordinates of thevectors) generates the group P�L(2; 32):



As soon as we have imposed this condition A � Aut(V;B) we can consider-ably reduce our numerical problem: Mvt;k can be replaced by the matrixMAt;k := (mAT;K);the rows of which are indexed by the elements of an (arbitrary) transversal T ofthe set of orbits of A on the set �Vt � of t-subsets, while the columns are indexedby the elements of an (arbitrary) transversal T 0 of the set of orbits of A on theset �Vk� of k-subsets of V :T 2 T (Orb(A;�Vt�)); K 2 T 0(Orb(A;�Vk�)):The matrix MAt;k is therefore of sizejOrb(A;�Vt�)j � jOrb(A;�Vk�)j;which is in fact 32� 97 in the above mentioned particular example, and so thedata reduction is enormous, it is in fact by the factor 2 � 1010 in our example.The entries of the matrix are de�ned bymAT;K := jfK 0 2 Orb(K) j T � K 0gj:(Orb(K) means the orbit of K under the action of A on V:) This matrix iscalled the Kramer-Mesner [7] matrix, since their theorem says that the set oft-(v,k,�)-designs on V is bijective to the set of 0-1-solutions x ofMAt;k � x = 0B@�...�1CA :It therefore remains to evaluate the Kramer-Mesner matrix and to �nd a 0-1-solution of this system of linear equations.The evaluation of the Kramer-Mesner matrix can be done by application oftwo basic principles of Algebraic Combinatorics which we should like to describehere. The �rst of the basic principles that come in makes use of the fact that atransversal of orbits can be obtained from a transversal of double cosets as soonas we have a transitive group at hand. This fact is described in the followinglemma (which is old, but we do not know where exactly it appeared for the �rsttime):The Split Lemma. Let G be a group acting transitively on a set 
. Then theorbits of a subgroup U of G on 
 correspond bijectively to the double cosetsNG(!)nG=U by the mapping !gU 7! NG(!)gU , where NG(!) is the stabilizer ofa �xed ! 2 
 under the G-action.



This lemma is known in special applications, for example coding theory [18] andtheoretical chemistry. In the case of designs we can apply it, since the symmetricgroup SV forms a single orbit on �Vt � as well as on �Vk�: We shall give details inthe following section.There are also more general situations where this lemma can be applied,namely in each case when we distinguish labelled and unlabelled structures. Dis-crete structures are represented by a data structure which in general is notunique for the object presented. For example a graph has to be labelled, whichmeans the vertices must be numbered before the computer can handle it. But forn vertices there are n! di�erent labellings with labels 1; : : : ; n. Analoguous ambi-guities arise with t-designs, groups, codes and other kinds of discrete structures,the unlabelled structure is de�ned to be an equivalence class of the labelled one,or, in other terms, an isomorphism class of labelled structures. Therefore weconsider isomorphism problems with highest priority. Usually, the set of labelledstructures is very big, and many of them will be isomorphic. Then one has to�nd a group acting on the set of objects such that the isomorphism types arejust the orbits of that particular group. Algorithms for �nding a full set of orbitrepresentatives will �nally give the desired isomorphism types. For example theset of labelled graphs on v vertices is of order 2(v2); and the acting group is thesymmetric group on the vertices again. Since this group acts transitively on theset of labelled graphs with v vertices and given number of edges, the split lemmain fact shows that these graphs can be obtained from double coset representativesin a symmetric group. We can explain here, in addition, the application to codingtheory. A linear code is a subspace of some dimension k, say, of a vector spaceV of a dimension n over a �nite �eld GF (q) for some prime power q. The codevectors are n-tuples with entries from GF (q). We consider two codes as equiva-lent if there exists a permutation of the positions of all entries transforming onecode into the other or we can in addition multiply all entries at �xed positionsby the same constant di�erent from 0. This means that the group GF (q)� o Snpresented as the subgroup U of all monomial matrices in G = GL(n; q) actson the set of subspaces. Since GL(n; q) is transitive on the set of all subspacesof a �xed dimension k, by the split lemma the orbits of U on the set of thesesubspaces correspond to the double cosets NGL(n;q)(K)nGL(n; q)=GF (q)� o Sn,where K is a �xed subspace of dimension k of V .Thus we have demonstrated, how double coset transversals help to evaluatedesigns, graphs and linear codes by suitable applications of the split lemmamentioned above.It remains to tell something about the evaluation of double coset transversals.Here the second basic principle comes in which we would like to mention here.The basic algebraic tool is that of homomorphism, which means compatiblemapping. It serves very well in a stepwise simpli�cation of group actions andcorresponding constructive methods in algebraic combinatorics, to. Here is thecorresponding lemma:The Homomorphism Principle. Let a group G act on a set 
1 and on a set
2. Let � : 
1 ! 
2 be a mapping that is compatible with both group actions.



Then, for each ! 2 
2 and each g 2 G the sets ��1(!) and ��1(!g) intersectthe same orbits of G on 
1. If !1; !2 2 ��1(!), for some ! 2 
2, and !g1 = !2,for some g 2 G, then g 2 NG(!).The proof is obvious.We apply the homomorphism principle in two di�erent ways. Firstly, weassume that a solution of the orbit problem is already known in the imagedomain of �. Then only the preimage sets ��1(!) of representatives ! and asacting group on ��1(!) only the stabilizer NG(!) have to be considered. The sizeof the full set of all preimages of one orbit is reduced to a fraction and the orderof the acting group is reduced by the same factor, that is by the length of theorbit in the image domain. Therefore using a series of systematic simpli�cationsby homomorphisms reduces the overall complexity about logarithmically.The second way we use the homomorphism principle is to deduce a solutionin the image domain of � from a solution of the orbit problem in the preimagedomain. We call this application a fusion.A combination of both principles can be used to �nd double coset represen-tatives [14].Theorem1. Let A2; A1; B be subgroups of a group G and A2 < A1. Then thefollowing mapping between the respective sets AinG of right cosets,� : A2nG! A1nG ;sending the coset A2g onto the coset A1g is compatible with the action of Bon A2nG and A1nG by multiplication from the right. If A1 = Sx2X A2x then��1(A1g) = Sx2X A2xg. A set of double coset representatives for A2nG=B isobtained from a set T of double coset representatives for A1nG=B by computingrepresentatives from the orbits of t�1A1t \B on ��1(A1t), for each t 2 T .In order to obtain a set �1 of double coset representatives for A1nG=B fromsuch a set �2 for A2nG=B let  run through �2; put � = �() into �1, and foreach element in ��1(�) remove the representative of its double coset from �2.Proof. In order to prove this we only need to interpret an orbit fAgb1, Agb2, : : :,Agbrg of B on the set of right cosets of a subgroup A of G as the set of thosecosets which lie in the same double coset AgB. The homomorphism principleyields the assertion, since t�1A1t \B is just the stabilizer of A1t in B. utThis may su�ce as a description of two basic principles of Algebraic Combina-torics, we should like now to give a detailed description of their application inorder to �nd the �rst 7-designs with moderate parameters, to be more precise:to �nd a 7-(33; 8; 10)-design via an evaluation of the Kramer-Mesner matrix ofP�L(2; 32) and then �nding a 0-1-solution of the corresponding system of linearequations.



2 Computation of the Kramer-Mesner MatrixRecall from above that we have to evaluate two transversals of double cosets inthe symmetric group S33: On the left hand side there is in the �rst case thestabilizer of a 7-subset of the set of 33 vertices, and in the second case it is thestabilizer of an 8-subset. On the right hand side we have, in both cases, thegroup P�L(2; 32):We shall describe a way of solving these two problems in onewash by using a so-called ladder of subgroups, which �rst meets the stabilizerof a 7-subset and ends up in a stabilizer of an 8-subset. But let us describe thatslightly more general in order to make the generality quite clear. Let us discussa way of construction of a double coset transversal in an arbitrary �nite groupG: Since in many cases we cannot �nd chains of subgroups with small indicesleading from G downwards to a prescribed subgroup A, we use some deviationsinstead of a direct way. In fact, we may proceed going along a sequence ofsubgroups Ai where either Ai � Ai�1 or Ai � Ai�1. The key to this method isto consider also cases Ai � Ai�1, where representatives for double cosets AinG=Bare known and then, by fusion, reduce the set to double coset representativesfor Ai�1nG=B. The discussion above leads directly to an algorithm, see [10, 14].For a recent object oriented version see [20].An example indicates how one can obtain a set of double coset representativesin S33 where on one side the group A is a Young subgroup being the normalizerof a set K = f1; : : : ; kg for some k < 33. In the application to the constructionof a 7-design we choose as B the group P�L(2; 32). Of course S33 is transitiveon the set of all subsets of the same cardinality k. Therefore, by the split lemma,the orbits of B on the set of these subsets correspond to the double cosets of thestabilizer A of K in S33 and B. We indicate the sequence of subgroups leadingfrom S33 to A, which can be used for a determination of the double cosets.If B = (B1; B2; : : : ; Bk) is a partition of f1; : : : ; ng into blocks Bi the corre-sponding Young-subgroup of Sn is the normalizer NSn (B1; : : : ; Bk) of all theseblocks. Then our sequence of subgroups is as in Fig.1.All orbit problems in this example deal with very small sets of points only.In contrast to this, the index of a Young subgroup in Sn is a usually very bigmultinomial coe�cient. Of course the set of orbit representatives will be also verylarge, since the multinomial coe�cient can be reduced at most by the factor jBj.A similar chain of subgroups exists in General Linear Groups. There one cantake the normalizers of subspaces instead of Young subgroups. If (T1; T2; : : : ; Tn)is an ascending chain of subspaces of a vector space V (n; q) of dimension n thenwe use the subgroup relationNGL(n;q)(Ti) � NGL(n;q)(Ti) \NGL(n;q)(Ti�1) � NGL(n;q)(Ti�1)for all i in order to construct a sequence along which we compute representativesfor the double cosets with the monomial group. Again the full General LinearGroup is transitive on the set of all subspaces of a �xed dimension such that the
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Fig. 1.split lemma applies. Therefore one can use the same algorithm with groups of adi�erent kind to solve the problem of code construction [1].A careful analysis of the fusion of the step from the normalizerNS33 (f1;: : : ;7g,f8;: : : ; 33g) to the normalizer NS33 (f1; : : : ; 8g; f9; : : : ; 33g) shows that for eachrepresentative T of a 7-orbit of A and for each 8-orbit Oj one gets the numberm(T; j) of 8-subsets in Oj that contain T . This is the information needed toform the Kramer-Mesner matrixM which allows to �nd a 7-design. The numberm(T; j) is just the entry mAT;K for some K 2 Oj: It is easy to see that thisnumber is independent of the choice of the representative T .We look for 7-(33; 8; �) designs having the group B = P�L(2; 32) as anautomorphism group. Such a design then consists of full orbits Oj. One has tochoose appropriate columns ofM to get the desired design. Each column selectedstands for selecting all 8-subsets of the corresponding orbit for the design. Thecondition for a simple design says that in each row of the Kramer-Mesner matrixthe entries of the selected columns must sum up to �.Since the designs constructed in this way have at least P�L(2; 32) as itsautomorphism group, one should ask for the full automorphism group. While



such a question is hard to answer in general, in this case we only have to noticethat by [12] P�L(2; 32) is a maximal subgroup of S33. Thus, the only possibilitiesfor the full automorphism group could be P�L(2; 32) or S32, the latter casebeing impossible since it would require all 8-subsets to be included into thedesign because of the transitivity of S33 on this set. We therefore conclude thatany incomplete design having P�L(2; 32) as an automorphism group must havethis group as the full automorphism group.We have included the Kramer-Mesner matrix for this problem for convenienceof the reader at the end of the article. Actually this matrix had appeared alreadyin [13] together with a description of simple 6-designs. To make our resultscomparable to that paper we decided to use the representation of the matrixthere. Our own result di�ered only by some permutation of the 97 columns and32 rows.3 f0; 1g-Solutions of Linear Diophantine SystemsNow it remains to solve for the Kramer-Mesner matrix M , an l � s-matrix, theequation M � v = �(1; : : : ; 1)t for a f0; 1g-vector v : (1)This is a special instance of the multi-dimensional subset sum problem which isknown to be NP-complete [4]. Our approach therefore uses an algorithm whichgenerally solves only a weaker problem, but often also gives a solution to (1). Infact, we could �nd such a solution for a di�cult problem in this way as shownbelow.As in [2, 3, 8] we reduce the problem to that of �nding short vectors in alattice. At the moment a polynomial method to �nd short vectors in a lattice isnot known. But the algorithm of Lenstra, Lenstra and Lov�asz [11] guarantees to�nd a nontrivial vector in an m-dimensional lattice that has at most 2m=2 thelength of the shortest nontrivial vector in this lattice. This does not look verypromising, but in practice the so called LLL-algorithm performs much betterthan is guaranteed by its worst case bounds.Meanwhile there were several improvements of the original algorithm andlattices have been found which are better suited to the subset sum problem,[8, 15, 16, 17]. So the performance of the algorithm dramatically improved.Let IRn be the n-dimensional IR-vector space with the ordinary inner producth:; :i. A discrete, additive subgroup L � IRn is called a lattice.Every lattice L is generated by a set of linearly independent vectors b1; : : : ; bm2 L, the basis of L:L = L(b1; : : : ; bm) = fx1b1 + � � �+ xmbm j x1; : : : ; xm 2 ZZg :m is called the rank of the lattice L.For a sequence of linear independent vectors b1; : : : ; bm 2 IRn we let b�1; : : : ; b�mbe the Gram-Schmidt orthogonalized sequence. We thus haveb�i = bi � i�1Xj=1 �i;jb�j for i = 1; : : : ;m; where �i;j = hbi; b�jihb�j ; b�ji :



The vectors b�1; : : : ; b�m are linearly independent, but in general they are not inthe lattice spanned by b1; : : : ; bm. Note that the orthogonalized vectors b�1; : : : ; b�mdepend on the order of the basis vectors b1; : : : ; bm.De�nition2. A basis b1; : : : ; bm of the lattice L is called LLL-reduced with � ifj�i;jj � 1=2 for 1 � j < i � m ; (2)�kb�kk2 � kb�k+1 + �k+1;kb�kk2 for k = 1; : : : ;m� 1 ; (3)where � is a constant with 1=4 < � � 1.In order to �nd a lattice basis which full�ls (2) and (3) a �nite number of twokinds of linear transformation are applied:Algorithm (LLL-algorithm, see [11]). Set k := 1. Now do until k = m� 1:1. For i = 1; : : : ; k � 1 replace bk by bk � rbj, where r = d�k;jc is the nearestinteger to �k;j.2. if �kb�kk2 > kb�k+1 + �k+1;kb�kk2 then interchange bk+1 and bk and set k :=max(k � 1; 1),otherwise set k := k + 1.Remark. With step 1 of the algorithm we achieve condition (2) which assuresthat the LLL-reduced basis vectors are "as orthogonal as possible".In condition (3) the vector b�k+1 + �k+1;kb�k is the orthogonal projection ofthe vector bk+1 on the orthogonal complement of the subspace generated byb1; : : : ; bk�1. In other words to full�l condition (3) step 2. of the algorithm doesthe following: if for some k 2 f1; : : : ;m�1g the last vector of the Gram-Schmidtorthogonalized sequence b�1; : : : ; b�k�1; b�k+1 is shorter than the last vector of theGram-Schmidt orthogonalized sequence b�1; : : : ; b�k�1; b�k by at least a factor � < 1the two vectors are swaped, i.e. bk+1 is the new vector bk.This is the natural generalization of an algorithm by Gauss [5, Art. 171, 183,272] to reduce binary, respectively ternary quadratic forms.For a lattice L � IRn of rank m the successive minima �1; : : : ; �m of L arede�ned through: �i = �i(L) is the smallest radius r of a ball centered at theorigin which contains exactly i linearly independent lattice vectors. It followsthat �1(L) is the euclidean length of the shortest nonzero lattice vector of L.The following theorem from [11] states that an LLL-reduced basis containsrelatively short vectors.Theorem3. Every basis b1; : : : ; bm that is LLL-reduced with 1=4 < � � 1 satis-�es kbik � � 44� � 1�(m�1)=2 �i(L) : (4)In [11] the authors also give the following running time:



Theorem4. Let b1; : : : ; bm be an ordered basis for an integer lattice L such thatkbik2 � B for 1 � i � m. Then the LLL-algorithm computes a LLL-reducedbasis for L using at most O(m4 log2B) arithmetic operations and the integerson which these operations are performed have length at most O(m log2B).Several speedups of the algorithm have been proposed. Schnorr [16, 17] intro-duces variants which use oating point arithmetic to circumvent the time con-suming use of long integer arithmetic.In [17] the authors use the so called deep insertions: Instead of (3) { wherethe LLL-algorithm behaves like the bubble sort method { they interchange bknot just with bk�1 but with the leftmost vector bi, 1 � i < k, for which kb�ik2 isat least decreased by a factor �.There are other kinds of lattice basis reduction beside of LLL-reduction. Oneclassical de�nition of lattice basis reduction is Korkine-Zolotarev reduction [6]:Let b1; : : : ; bm be an ordered basis of the lattice L. We de�ne Li as the orthogonalprojection of L in hb1; : : : ; bi�1i?. Then Li is a lattice of rank m� i+1. Furtherwe denote with Li(bi; : : : ; bk) with i � k � m as the orthogonal projection ofthe lattice spanned by the vectors b1; : : : ; bk in hb1; : : : ; bi�1i?.Denote with �i : IRn ! hb1; : : : ; bi�1i? the orthogonal projection so thatb� �i(b) 2 hb1; : : : ; bi�1i.De�nition5. An ordered basis b1; : : : ; bm of a lattice L is called Korkine-Zolotarev reduced [6] if it ful�lls (2) and ifkb�i k = �1(Li) for i = 1; : : : ;m :The following theorem from [15] reveals that Korkine-Zolotarev reduction isstronger than LLL-reduction.Theorem6. A Korkine-Zolotarev reduced basis b1; : : : ; bm satis�esr 4i+ 3�i(L) � kbik �r i+ 34 �i(L) for i = 1; : : : ;m :The bad news are there is no polynomial time algorithm for Korkine-Zolotarevreduction known. In [15, 17] the authors de�ne a weakened version of Korkine-Zolotarev reduction:De�nition7. Let � be an integer with 2 � � < m. A basis b1; : : : ; bm is called �-reduced if it satis�es (2) and if for i = 2; : : : ;m��+1 the orthogonal projectionsof bi; : : : ; bi+��1 in hb1; : : : ; bi�1i? form a Korkine-Zolotarev reduced basis of thelattice �i(L(bi; : : : ; bi+��1)).A basis b1; : : : ; bm is called �-reduced with � if (2) is satis�ed and if�kb�i k � �1(Li(bi; : : : ; bi+��1)) for i = 1; : : : ;m � � + 1 :Remark. Note that a LLL-reduced basis with � is 2-reduced with �. Actually incase of � > 2 step 2 of the LLL-algorithm is generalized in �-reduction with �to the following:



Instead of looking whether a swap of the vectors bk+1 and bk would givea shorter new b�k we are searching for the linear combination of the vectorsbk; : : : ; bk+��1 as new vector bk which produces the shortest vector b�k.In [15, 17] the length of the basis after �-reduction is bounded as follows:Theorem8. Every �-reduced basis b1; : : : ; bm of a a lattice L satis�eskb1k2 � �(m�1)=(��1)� �1(L)2provided that � � 1 divides m � 1.The constant �� is the maximum of kb1k=kb��k taken over all Korkine-Zolotarevreduced bases b1; : : : ; b�. From [15] we know that �2 = 43 , �3 = 23 and �� ��1+ln �. With � increasing �1=(��1)� converges to 1.Often the vectors of a reduced lattice basis still are not short enough to solvethe linear diophantine systems. Since a reduced lattice basis depends on theorder of the initial lattice basis, we shu�e the basis vectors after �-reducing thelattice and repeat this process several times. Kreher and Radziszowski [8] gavethe following improvement of the algorithm: After each �-reduction step we testif there are pairs (i; j) with 1 � i < j � m so that kbi� bjk < kbik. If this is thecase we set bi to bi � bj. Then we start again with shu�ing and �-reduction.To solve (1) we combine the approach of Kreher and Radziszowski [8] withthe new ideas of Schnorr et al. [3, 15, 16, 17].This means that we apply lattice basis reduction to the following lattice basisL to get a reduced lattice basis L0:L := 0BBBBBBBBBBBBB@ c01 0c0M ... ...c01 0c12 0 0 c11.. . ... ...0 c12 0 c110 : : : 0 1 00 : : : 0 0 1 1CCCCCCCCCCCCCA ;whereM is a l�s-matrix and c0 and c1 are constants which control the behaviourof the algorithm. The choice of c0 should force an exact solution over the integerswhereas a good choice of c1 will yield a f0; 1g-solution:Suppose c0 is large. Then by the reduction the whole upper block of aboutthe �rst s� l columns and l rows will be transformed to 0, because each nonzeroentry would be divisible by c0 which means that the euclidean length of thewhole correspondending column would be large. Since the rank of the Kramer-Mesner matrix M is about l only s � l vectors of the reduced basis can consistonly of zeros in the �rst l rows. c1 should be approximately the expected valueof �.



The algorithm has found a solution if L0 contains a vector (bi;1; : : : ; bi;z)twith the following form:jbi;zj = 1; bi;1 = : : : = bi;l = 0; jbi;l+1j = : : : = jbi;z�2j = c1 ;where l is the number of rows of the Kramer-Mesner matrixM and z = l+s+2.The Kramer-Mesner matrix M of the 7-(33; 8; 10) and 7-(33; 8; 16) designshas 32 rows and 97 columns which result in a lattice L with 131 rows and 99columns. We used �-reduction with deep insertions, where we chose � = 40,� = 0:999999999, c0 = 30 and c1 = 10. We found the following solutions afterone iteration which took about 9 minutes on a PC 486 with 66 MHz and 16 MBRAM:The 32� 97 Kramer-Mesner matrixwith the solution vectors v for � = 10 and � = 16 respectively:00111000101001001100011010000100100000001011011000101111000000010010010100001101110110010101110001100011101011011001110010111101101111111010010011101000011111110110110101111001000100110101000111



To make the paper self - contained we include from [13] the permutationrepresentation of P�L(2; 32) and representatives from the orbits on all 7- and8-subsets that correspond to the Kramer-Mesner matrix.The group P�L(2; 32) can be presented as generated by the following twopermutations of f1; � � � ; 33g:� = (1 2 4 8 16)(3 6 12 24 17)(5 10 20 9 18)(7 14 28 25 19) (11 22 13 2621)(15 30 29 27 23)(31)(32)(33)� = (1 18 30)(2 21 12)(3 10 28)(4 31 32)(5 24 14)(6 7 17)(8 25 27) (9 1920)(11 15 13)(16 23 29)(22 33 26).There are 32 orbits on the set of all 7-subsets and 97 orbits on the set of all8-subsets. orbits on 7-subsets of VNr representative length1. 1 2 3 4 5 6 7 818402. 1 2 3 4 5 6 8 1636803. 1 2 3 4 5 6 9 1636804. 1 2 3 4 5 6 10 1636805. 1 2 3 4 5 6 11 1636806. 1 2 3 4 5 6 12 1636807. 1 2 3 4 5 6 13 1636808. 1 2 3 4 5 6 14 818409. 1 2 3 4 5 6 15 8184010. 1 2 3 4 5 6 16 16368011. 1 2 3 4 5 6 17 16368012. 1 2 3 4 5 6 19 8184013. 1 2 3 4 5 6 32 16368014. 1 2 3 4 5 7 9 16368015. 1 2 3 4 5 7 10 16368016. 1 2 3 4 5 7 12 16368017. 1 2 3 4 5 7 13 16368018. 1 2 3 4 5 7 15 8184019. 1 2 3 4 5 7 20 16368020. 1 2 3 4 5 7 24 8184021. 1 2 3 4 5 8 10 16368022. 1 2 3 4 5 8 11 16368023. 1 2 3 4 5 8 12 16368024. 1 2 3 4 5 8 13 16368025. 1 2 3 4 5 8 17 8184026. 1 2 3 4 5 8 24 16368027. 1 2 3 4 5 8 26 16368028. 1 2 3 4 5 9 11 16368029. 1 2 3 4 5 9 12 16368030. 1 2 3 4 5 9 17 3273631. 1 2 3 4 5 10 12 3273632. 1 2 3 4 5 11 16 32736orbits on 8-subsets of VNr representative length1. 1 2 3 4 5 6 7 8 818402. 1 2 3 4 5 6 7 9 1636803. 1 2 3 4 5 6 7 10 1636804. 1 2 3 4 5 6 7 11 1636805. 1 2 3 4 5 6 7 12 1636806. 1 2 3 4 5 6 7 13 1636807. 1 2 3 4 5 6 7 14 1636808. 1 2 3 4 5 6 7 15 1636809. 1 2 3 4 5 6 7 16 16368010. 1 2 3 4 5 6 7 17 16368011. 1 2 3 4 5 6 7 18 8184012. 1 2 3 4 5 6 7 19 16368013. 1 2 3 4 5 6 7 32 16368014. 1 2 3 4 5 6 8 9 16368015. 1 2 3 4 5 6 8 10 16368016. 1 2 3 4 5 6 8 12 16368017. 1 2 3 4 5 6 8 13 16368018. 1 2 3 4 5 6 8 14 16368019. 1 2 3 4 5 6 8 15 16368020. 1 2 3 4 5 6 8 16 16368021. 1 2 3 4 5 6 8 17 16368022. 1 2 3 4 5 6 8 19 16368023. 1 2 3 4 5 6 8 20 16368024. 1 2 3 4 5 6 8 21 16368025. 1 2 3 4 5 6 8 23 16368026. 1 2 3 4 5 6 8 24 16368027. 1 2 3 4 5 6 8 26 16368028. 1 2 3 4 5 6 8 27 16368029. 1 2 3 4 5 6 8 30 8184030. 1 2 3 4 5 6 8 32 16368031. 1 2 3 4 5 6 8 33 163680

orbits on 8-subsets of VNr representative length32. 1 2 3 4 5 6 9 10 16368033. 1 2 3 4 5 6 9 11 16368034. 1 2 3 4 5 6 9 12 16368035. 1 2 3 4 5 6 9 13 8184036. 1 2 3 4 5 6 9 14 16368037. 1 2 3 4 5 6 9 15 16368038. 1 2 3 4 5 6 9 17 16368039. 1 2 3 4 5 6 9 18 16368040. 1 2 3 4 5 6 9 19 16368041. 1 2 3 4 5 6 9 22 8184042. 1 2 3 4 5 6 9 23 8184043. 1 2 3 4 5 6 9 24 16368044. 1 2 3 4 5 6 9 26 16368045. 1 2 3 4 5 6 9 27 16368046. 1 2 3 4 5 6 9 29 8184047. 1 2 3 4 5 6 9 33 16368048. 1 2 3 4 5 6 10 11 16368049. 1 2 3 4 5 6 10 12 16368050. 1 2 3 4 5 6 10 13 16368051. 1 2 3 4 5 6 10 15 16368052. 1 2 3 4 5 6 10 18 16368053. 1 2 3 4 5 6 10 19 16368054. 1 2 3 4 5 6 10 20 16368055. 1 2 3 4 5 6 10 22 8184056. 1 2 3 4 5 6 10 24 16368057. 1 2 3 4 5 6 10 25 16368058. 1 2 3 4 5 6 10 26 16368059. 1 2 3 4 5 6 10 28 8184060. 1 2 3 4 5 6 10 32 8184061. 1 2 3 4 5 6 11 12 8184062. 1 2 3 4 5 6 11 14 16368063. 1 2 3 4 5 6 11 16 16368064. 1 2 3 4 5 6 11 20 8184065. 1 2 3 4 5 6 11 21 16368066. 1 2 3 4 5 6 11 22 16368067. 1 2 3 4 5 6 11 23 16368068. 1 2 3 4 5 6 11 25 16368069. 1 2 3 4 5 6 11 26 16368070. 1 2 3 4 5 6 11 27 8184071. 1 2 3 4 5 6 11 33 16368072. 1 2 3 4 5 6 12 13 16368073. 1 2 3 4 5 6 12 15 8184074. 1 2 3 4 5 6 12 17 16368075. 1 2 3 4 5 6 12 20 16368076. 1 2 3 4 5 6 12 24 16368077. 1 2 3 4 5 6 12 26 8184078. 1 2 3 4 5 6 12 32 16368079. 1 2 3 4 5 6 13 16 16368080. 1 2 3 4 5 6 14 24 8184081. 1 2 3 4 5 6 16 17 16368082. 1 2 3 4 5 6 16 22 2046083. 1 2 3 4 5 6 16 33 16368084. 1 2 3 4 5 6 17 19 16368085. 1 2 3 4 5 6 17 33 16368086. 1 2 3 4 5 7 9 12 16368087. 1 2 3 4 5 7 9 17 16368088. 1 2 3 4 5 7 9 32 16368089. 1 2 3 4 5 7 10 20 8184090. 1 2 3 4 5 7 10 32 8184091. 1 2 3 4 5 7 12 15 16368092. 1 2 3 4 5 7 12 17 8184093. 1 2 3 4 5 7 12 24 8184094. 1 2 3 4 5 7 13 26 16368095. 1 2 3 4 5 8 10 15 16368096. 1 2 3 4 5 8 13 19 8184097. 1 2 3 4 5 9 12 24 81840
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