Lower bounds on the minimum pseudoweight of codes with large automorphism group Jens Zumbrägel
 Claude Shannon Institute University College Dublin

joint work with
Nigel Boston, Mark F. Flanagan, and Vitaly Skachek

Outline

Introduction

Further definitions

Codes with 2-transitive automorphism group

Codes with t-transitive automorphism group, $t>2$

Outline

Introduction

Further definitions

Codes with 2-transitive automorphism group

Codes with t-transitive automorphism group, $t>2$

Introduction

- Low density parity-check (LDPC) codes achieve Shannon capacity of various channels and allow for efficient iterative decoding algorithms. [Gallager '62, Luby et al. '98, Richardson et al. '01]

Introduction

- Low density parity-check (LDPC) codes achieve Shannon capacity of various channels and allow for efficient iterative decoding algorithms. [Gallager '62, Luby et al. '98, Richardson et al. '01]
- Decoding of binary LDPC codes using linear programming. [Feldman '03]

Introduction

- Low density parity-check (LDPC) codes achieve Shannon capacity of various channels and allow for efficient iterative decoding algorithms. [Gallager '62, Luby et al. '98, Richardson et al. '01]
- Decoding of binary LDPC codes using linear programming. [Feldman '03]
- Loss of decoding capability for concrete finite-length codes explained by (graph-cover/linear-programming) pseudocodewords of low pseudoweight. [Koetter, Vontobel '03-'05]

Introduction

- Low density parity-check (LDPC) codes achieve Shannon capacity of various channels and allow for efficient iterative decoding algorithms. [Gallager '62, Luby et al. '98, Richardson et al. '01]
- Decoding of binary LDPC codes using linear programming. [Feldman '03]
- Loss of decoding capability for concrete finite-length codes explained by (graph-cover/linear-programming) pseudocodewords of low pseudoweight. [Koetter, Vontobel '03-'05]
\Rightarrow Interest in codes with large minimum pseudoweight.
Minimum pseudoweight depends on the parity-check matrix of the code; it may be increased by adding redundant rows.

Parity-check codes

Let $\mathbb{F}=\mathbb{F}_{2}$ be the binary field.

Parity-check codes

Let $\mathbb{F}=\mathbb{F}_{2}$ be the binary field.
A (linear) $\operatorname{code} \mathcal{C}$ is a subspace $\mathcal{C} \leq \mathbb{F}^{n}$. Let $k=\operatorname{dim} \mathcal{C}$ be its dimension and $d=\min \left\{\mathrm{w}_{\mathrm{H}}(\boldsymbol{c}) \mid \boldsymbol{c} \in \mathcal{C} \backslash\{0\}\right\}$ its minimum (Hamming) weight.

Parity-check codes

Let $\mathbb{F}=\mathbb{F}_{2}$ be the binary field.
A (linear) code \mathcal{C} is a subspace $\mathcal{C} \leq \mathbb{F}^{n}$. Let $k=\operatorname{dim} \mathcal{C}$ be its dimension and $d=\min \left\{\mathrm{w}_{\mathrm{H}}(\boldsymbol{c}) \mid \boldsymbol{c} \in \mathcal{C} \backslash\{0\}\right\}$ its minimum (Hamming) weight.

Definition

A parity-check code is a pair $(\mathcal{C}, \boldsymbol{H})$, where \mathcal{C} is a code and \boldsymbol{H} is an $m \times n$ matrix such that

$$
\mathcal{C}=\operatorname{ker} \boldsymbol{H}=\left\{\boldsymbol{c} \in \mathbb{F}_{2}^{n} \mid \boldsymbol{H} \boldsymbol{c}^{T}=\mathbf{0}^{T}\right\} .
$$

Minimum pseudoweight

For a parity-check code $(\mathcal{C}, \boldsymbol{H})$ we consider the (AWGNC) minimum pseudoweight

$$
\mathrm{w}_{\mathrm{p}}^{\min }=\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}),
$$

which indicates the error-correcting capability of linear programming or message passing decoding methods.

Minimum pseudoweight

For a parity-check code $(\mathcal{C}, \boldsymbol{H})$ we consider the (AWGNC) minimum pseudoweight

$$
\mathrm{w}_{\mathrm{p}}^{\min }=\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}),
$$

which indicates the error-correcting capability of linear programming or message passing decoding methods.

- $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \leq d(\mathcal{C})$

Pseudocodeword redundancy

Definition
The pseudocodeword redundancy of a code \mathcal{C} is defined as
$\rho(\mathcal{C}):=\inf \left\{m \mid \exists \boldsymbol{H} \in \operatorname{Mat}_{m \times n}(\mathbb{F}): \mathcal{C}=\operatorname{ker} \boldsymbol{H}, \mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=d(\mathcal{C})\right\}$,
where $\inf \varnothing:=\infty$.

Pseudocodeword redundancy

Definition
The pseudocodeword redundancy of a code \mathcal{C} is defined as
$\rho(\mathcal{C}):=\inf \left\{m \mid \exists \boldsymbol{H} \in \operatorname{Mat}_{m \times n}(\mathbb{F}): \mathcal{C}=\operatorname{ker} \boldsymbol{H}, \mathbf{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=d(\mathcal{C})\right\}$,
where $\inf \varnothing:=\infty$.
Proposition [Flanagan, Skachek, Z. '10]
For a random code \mathcal{C} of fixed rate $R=\frac{k}{n}$, with high probability

$$
\rho(\mathcal{C})=\infty .
$$

Pseudocodeword redundancy

Definition
The pseudocodeword redundancy of a code \mathcal{C} is defined as
$\rho(\mathcal{C}):=\inf \left\{m \mid \exists \boldsymbol{H} \in \operatorname{Mat}_{m \times n}(\mathbb{F}): \mathcal{C}=\operatorname{ker} \boldsymbol{H}, \mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=d(\mathcal{C})\right\}$,
where $\inf \varnothing:=\infty$.
Proposition [Flanagan, Skachek, Z. '10]
For a random code \mathcal{C} of fixed rate $R=\frac{k}{n}$, with high probability

$$
\rho(\mathcal{C})=\infty .
$$

Goal
Prove $\rho(\mathcal{C})<\infty$ for certain codes \mathcal{C} that have a large automorphism group.

Outline

Introduction

Further definitions

Codes with 2-transitive automorphism group

Codes with t-transitive automorphism group, $t>2$

Fundamental cone

Let $(\mathcal{C}, \boldsymbol{H})$ be a parity-check code, where $\boldsymbol{H} \in \operatorname{Mat}_{m \times n}(\mathbb{F})$. Let $\mathcal{I}:=\{1, \ldots, n\}$ and $\mathcal{J}:=\{1, \ldots, m\}$ be the set of column resp. row indices. For $j \in \mathcal{J}$ let $\mathcal{I}_{j}:=\left\{i \in \mathcal{I}: H_{j, i} \neq 0\right\}$.

Fundamental cone

Let $(\mathcal{C}, \boldsymbol{H})$ be a parity-check code, where $\boldsymbol{H} \in \operatorname{Mat}_{m \times n}(\mathbb{F})$. Let $\mathcal{I}:=\{1, \ldots, n\}$ and $\mathcal{J}:=\{1, \ldots, m\}$ be the set of column resp. row indices. For $j \in \mathcal{J}$ let $\mathcal{I}_{j}:=\left\{i \in \mathcal{I}: H_{j, i} \neq 0\right\}$.
Definition
The fundamental cone $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ is defined as the set of all vectors $\boldsymbol{x} \in \mathbb{R}^{n}$ that satisfy the inequalities:

$$
\begin{gathered}
\forall j \in \mathcal{J} \forall \ell \in \mathcal{I}_{j}: \quad x_{\ell} \leq \sum_{i \in \mathcal{I}_{j} \backslash\{\ell\}} x_{i}, \\
\forall i \in \mathcal{I}: 0 \leq x_{i}
\end{gathered}
$$

Fundamental cone (cont.)

Example

Let \mathcal{C} be the $[7,4,3]$ Hamming code with parity-check matrix

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Fundamental cone (cont.)

Example
Let \mathcal{C} be the $[7,4,3]$ Hamming code with parity-check matrix

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

The inequalities of the fundamental cone $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ are:

$$
\begin{array}{ccc}
x_{1} \leq x_{2}+x_{3}+x_{5} & x_{2} \leq x_{3}+x_{4}+x_{6} & x_{3} \leq x_{4}+x_{5}+x_{7} \\
x_{2} \leq x_{1}+x_{3}+x_{5} & x_{3} \leq x_{2}+x_{4}+x_{6} & x_{4} \leq x_{3}+x_{5}+x_{7} \\
x_{3} \leq x_{1}+x_{2}+x_{5} & x_{4} \leq x_{2}+x_{3}+x_{6} & x_{5} \leq x_{3}+x_{4}+x_{7} \\
x_{5} \leq x_{1}+x_{2}+x_{3} & x_{6} \leq x_{2}+x_{3}+x_{4} & x_{7} \leq x_{3}+x_{4}+x_{5} \\
0 \leq x_{1} \quad 0 \leq x_{2} \quad 0 \leq x_{3} \quad 0 \leq x_{4} \quad 0 \leq x_{5} & 0 \leq x_{6} \quad 0 \leq x_{7}
\end{array}
$$

Minimum pseudoweight

Definition

The minimum pseudoweight of the parity-check code $(\mathcal{C}, \boldsymbol{H})$ is

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}):=\min _{\boldsymbol{x} \in \mathcal{K}(\mathcal{C}, \boldsymbol{H}) \backslash\{0\}} \mathrm{w}_{\mathrm{p}}(\boldsymbol{x}),
$$

where $\mathrm{w}_{\mathrm{p}}(\boldsymbol{x}):=\frac{\left(\sum_{i \in \mathcal{I}} x_{i}\right)^{2}}{\sum_{i \in \mathcal{I}} x_{i}^{2}}$ is the (AWGNC) pseudoweight.

Minimum pseudoweight

Definition

The minimum pseudoweight of the parity-check code $(\mathcal{C}, \boldsymbol{H})$ is

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}):=\min _{\boldsymbol{x} \in \mathcal{K}(\mathcal{C}, \boldsymbol{H}) \backslash\{0\}} \mathrm{w}_{\mathrm{p}}(\boldsymbol{x}),
$$

where $\mathrm{w}_{\mathrm{p}}(\boldsymbol{x}):=\frac{\left(\sum_{i \in \mathcal{I}} x_{i}\right)^{2}}{\sum_{i \in \mathcal{I}} x_{i}^{2}}$ is the (AWGNC) pseudoweight.

- $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq d \quad \Leftrightarrow \quad \forall x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H}): d \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$

Minimum pseudoweight

Definition

The minimum pseudoweight of the parity-check code
$(\mathcal{C}, \boldsymbol{H})$ is

$$
w_{p}^{\min }(\mathcal{C}, \boldsymbol{H}):=\min _{\boldsymbol{x} \in \mathcal{K}(\mathcal{C}, \boldsymbol{H}) \backslash\{0\}} \mathrm{w}_{\mathrm{p}}(\boldsymbol{x}),
$$

where $\mathrm{w}_{\mathrm{p}}(\boldsymbol{x}):=\frac{\left(\sum_{i \in \mathcal{I}} x_{i}\right)^{2}}{\sum_{i \in \mathcal{I}} x_{i}^{2}}$ is the (AWGNC) pseudoweight.

- $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq d \quad \Leftrightarrow \quad \forall x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H}): d \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$

Remark

Consider \mathcal{C} as a subset of \mathbb{R}^{n}, where $0_{\mathbb{F}} \mapsto 0$ and $1_{\mathbb{F}} \mapsto 1$.
Then $\mathcal{C} \subseteq \mathcal{K}(\mathcal{C}, \boldsymbol{H})$ and $\mathrm{w}_{\mathrm{p}} \mid \mathcal{C}=\mathrm{w}_{\mathrm{H}}$.
It follows $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \leq d(\mathcal{C})$.

Automorphism group

Definition

The automorphism group $\operatorname{Aut}(\mathcal{C}) \leq S_{n}$ of a code \mathcal{C} consists of all permutation of coordinate places which send \mathcal{C} into itself (codewords go into codewords).

Automorphism group

Definition

The automorphism group $\operatorname{Aut}(\mathcal{C}) \leq S_{n}$ of a code \mathcal{C} consists of all permutation of coordinate places which send \mathcal{C} into itself (codewords go into codewords).

- $\operatorname{Aut}(\mathcal{C})=\operatorname{Aut}\left(\mathcal{C}^{\perp}\right)$

Automorphism group (cont.)

Definition

Let $(\mathcal{C}, \boldsymbol{H})$ be a parity-check code. The automorphism group
$\operatorname{Aut}(\mathcal{C}, \boldsymbol{H})=\operatorname{Aut}(\boldsymbol{H})$ consists of all permutation of columns of \boldsymbol{H} which send the set of rows of \boldsymbol{H} into itself.

Automorphism group (cont.)

Definition

Let $(\mathcal{C}, \boldsymbol{H})$ be a parity-check code. The automorphism group
$\operatorname{Aut}(\mathcal{C}, \boldsymbol{H})=\operatorname{Aut}(\boldsymbol{H})$ consists of all permutation of columns of \boldsymbol{H} which send the set of rows of \boldsymbol{H} into itself.

- $\operatorname{Aut}(\mathcal{C}, \boldsymbol{H}) \leq \operatorname{Aut}(\mathcal{C})$

Automorphism group (cont.)

Definition

Let $(\mathcal{C}, \boldsymbol{H})$ be a parity-check code. The automorphism group
$\operatorname{Aut}(\mathcal{C}, \boldsymbol{H})=\operatorname{Aut}(\boldsymbol{H})$ consists of all permutation of columns of \boldsymbol{H} which send the set of rows of \boldsymbol{H} into itself.

- $\operatorname{Aut}(\mathcal{C}, \boldsymbol{H}) \leq \operatorname{Aut}(\mathcal{C})$
- Any permutation in $\operatorname{Aut}(\mathcal{C}, \boldsymbol{H})$ sends $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ into itself.

Automorphism group (cont.)

Definition

Let $(\mathcal{C}, \boldsymbol{H})$ be a parity-check code. The automorphism group
$\operatorname{Aut}(\mathcal{C}, \boldsymbol{H})=\operatorname{Aut}(\boldsymbol{H})$ consists of all permutation of columns of \boldsymbol{H} which send the set of rows of \boldsymbol{H} into itself.

- $\operatorname{Aut}(\mathcal{C}, \boldsymbol{H}) \leq \operatorname{Aut}(\mathcal{C})$
- Any permutation in $\operatorname{Aut}(\mathcal{C}, \boldsymbol{H})$ sends $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ into itself.
- Let \mathcal{C} be a code and let \boldsymbol{H} consist of all rows in \mathcal{C}^{\perp} of some weight w. Then $\mathcal{C}^{\prime}:=\operatorname{ker} \boldsymbol{H} \supseteq \mathcal{C}$ and $\operatorname{Aut}(\mathcal{C}) \leq \operatorname{Aut}\left(\mathcal{C}^{\prime}, \boldsymbol{H}\right)$.

Automorphism group (cont.)

Definition

Let $(\mathcal{C}, \boldsymbol{H})$ be a parity-check code. The automorphism group $\operatorname{Aut}(\mathcal{C}, \boldsymbol{H})=\operatorname{Aut}(\boldsymbol{H})$ consists of all permutation of columns of \boldsymbol{H} which send the set of rows of \boldsymbol{H} into itself.

- $\operatorname{Aut}(\mathcal{C}, \boldsymbol{H}) \leq \operatorname{Aut}(\mathcal{C})$
- Any permutation in $\operatorname{Aut}(\mathcal{C}, \boldsymbol{H})$ sends $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ into itself.
- Let \mathcal{C} be a code and let \boldsymbol{H} consist of all rows in \mathcal{C}^{\perp} of some weight w. Then $\mathcal{C}^{\prime}:=\operatorname{ker} \boldsymbol{H} \supseteq \mathcal{C}$ and $\operatorname{Aut}(\mathcal{C}) \leq \operatorname{Aut}\left(\mathcal{C}^{\prime}, \boldsymbol{H}\right)$.

Goal
Obtain lower bounds on $w_{p}^{\min }(\mathcal{C}, \boldsymbol{H})$ for certain parity-check codes $(\mathcal{C}, \boldsymbol{H})$ that have a large automorphism group.

Outline

Introduction

Further definitions

Codes with 2-transitive automorphism group

Codes with t-transitive automorphism group, $t>2$

Codes based on designs

Let \boldsymbol{H} be an $m \times n$ matrix which is the point-block incidence matrix of a 2-($\left.n, w_{r}, \lambda\right)$ design, i.e.

- every row has constant weight w_{r},
- each 2 columns have λ common ones.

Codes based on designs

Let \boldsymbol{H} be an $m \times n$ matrix which is the point-block incidence matrix of a 2-($\left.n, w_{r}, \lambda\right)$ design, i.e.

- every row has constant weight w_{r},
- each 2 columns have λ common ones.

Then

- every column has constant weight w_{c},
- $n w_{c}=m w_{r}$ and $w_{c}\left(w_{r}-1\right)=\lambda(n-1)$.

Codes based on designs

Let \boldsymbol{H} be an $m \times n$ matrix which is the point-block incidence matrix of a 2-($\left.n, w_{r}, \lambda\right)$ design, i.e.

- every row has constant weight w_{r},
- each 2 columns have λ common ones.

Then

- every column has constant weight w_{c},
- $n w_{c}=m w_{r}$ and $w_{c}\left(w_{r}-1\right)=\lambda(n-1)$.

Proposition [Flanagan, Skachek, Z. '10]

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{n-1}{w_{r}-1}=1+\frac{w_{c}}{\lambda} .
$$

Codes based on designs

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{w_{c}}{\lambda}
$$

Codes based on designs

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{w_{c}}{\lambda}
$$

Proof.
Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

Codes based on designs

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{w_{c}}{\lambda}
$$

Proof.

Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $i \in \mathcal{I}$. Let $j \in \mathcal{J}$ such that $i \in \mathcal{I}_{j}$. Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.

Codes based on designs

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{w_{c}}{\lambda}
$$

Proof.

Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $i \in \mathcal{I}$. Let $j \in \mathcal{J}$ such that $i \in \mathcal{I}_{j}$.

Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.

- Sum over $j: w_{c} x_{i}^{2} \leq \lambda \sum_{\ell \neq i} x_{\ell} x_{i}$.

Codes based on designs

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{w_{c}}{\lambda}
$$

Proof.

Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $i \in \mathcal{I}$. Let $j \in \mathcal{J}$ such that $i \in \mathcal{I}_{j}$. Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.
- Sum over $j: w_{c} x_{i}^{2} \leq \lambda \sum_{\ell \neq i} x_{\ell} x_{i}$.
- Sum over $i: w_{c} \sum_{i} x_{i}^{2} \leq \lambda \sum_{\ell \neq i} x_{\ell} x_{i}$.

Codes based on designs

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{w_{c}}{\lambda}
$$

Proof.

Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $i \in \mathcal{I}$. Let $j \in \mathcal{J}$ such that $i \in \mathcal{I}_{j}$.

Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.

- Sum over $j: w_{c} x_{i}^{2} \leq \lambda \sum_{\ell \neq i} x_{\ell} x_{i}$.
- Sum over $i: w_{c} \sum_{i} x_{i}^{2} \leq \lambda \sum_{\ell \neq i} x_{\ell} x_{i}$.
- Rewrite this as: $\left(1+\frac{w_{c}}{\lambda}\right) \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$.

Codes based on designs

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{w_{c}}{\lambda}
$$

Proof.

Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $i \in \mathcal{I}$. Let $j \in \mathcal{J}$ such that $i \in \mathcal{I}_{j}$. Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.
- Sum over $j: w_{c} x_{i}^{2} \leq \lambda \sum_{\ell \neq i} x_{\ell} x_{i}$.
- Sum over $i: w_{c} \sum_{i} x_{i}^{2} \leq \lambda \sum_{\ell \neq i} x_{\ell} x_{i}$.
- Rewrite this as: $\left(1+\frac{w_{c}}{\lambda}\right) \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$.

Hence, $w_{p}(x) \geq 1+\frac{w_{c}}{\lambda}$.

Codes with 2-transitive automorphism group

Proposition

Let $(\mathcal{C}, \boldsymbol{H})$ be a parity-check code such that $\operatorname{Aut}(\boldsymbol{H})$ is
2-transitive. Let w_{r} be the weight of an arbitrary row of \boldsymbol{H}. Then

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{n-1}{w_{r}-1}
$$

Codes with 2-transitive automorphism group

Proposition

Let $(\mathcal{C}, \boldsymbol{H})$ be a parity-check code such that $\operatorname{Aut}(\boldsymbol{H})$ is
2-transitive. Let w_{r} be the weight of an arbitrary row of \boldsymbol{H}. Then

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, H) \geq 1+\frac{n-1}{w_{r}-1}
$$

First proof.
Observe that the rows of \boldsymbol{H} with weight w_{r} form the point-block incidence matrix of a 2-design. Apply the last proposition.

Codes with 2-transitive automorphism group

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, H) \geq 1+\frac{n-1}{w_{r}-1}
$$

Second proof.

Codes with 2-transitive automorphism group

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, H) \geq 1+\frac{n-1}{w_{r}-1}
$$

Second proof.
Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

Codes with 2-transitive automorphism group

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, H) \geq 1+\frac{n-1}{w_{r}-1}
$$

Second proof.
Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $j \in \mathcal{J}$ be the index of a row with weight w_{r}, let $i \in \mathcal{I}_{j}$. Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.

Codes with 2-transitive automorphism group

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{n-1}{\mathrm{w}_{r}-1}
$$

Second proof.
Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $j \in \mathcal{J}$ be the index of a row with weight w_{r}, let $i \in \mathcal{I}_{j}$. Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.
- Apply the automorphisms and sum up: $\sum_{\sigma \in \operatorname{Aut}(H)} x_{i \sigma}^{2} \leq \sum_{\sigma \in \operatorname{Aut}(H)} \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell \sigma} X_{i \sigma}$.

Codes with 2-transitive automorphism group

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{n-1}{\mathbf{w}_{r}-1}
$$

Second proof.
Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $j \in \mathcal{J}$ be the index of a row with weight w_{r}, let $i \in \mathcal{I}_{j}$. Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.
- Apply the automorphisms and sum up: $\sum_{\sigma \in \operatorname{Aut}(H)} x_{i \sigma}^{2} \leq \sum_{\sigma \in \operatorname{Aut}(H)} \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell \sigma} x_{i \sigma}$.
- With $N:=|\operatorname{Aut}(\boldsymbol{H})|,\left|\mathcal{I}_{j}\right|=w_{r}$, and by 2-transitivity this is:

$$
\frac{N}{n} \sum_{i} x_{i}^{2} \leq \frac{N\left(w_{r}-1\right)}{n(n-1)} \sum_{i \neq \ell} x_{\ell} x_{i}
$$

Codes with 2-transitive automorphism group

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 1+\frac{n-1}{\mathbf{w}_{r}-1}
$$

Second proof.
Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $j \in \mathcal{J}$ be the index of a row with weight w_{r}, let $i \in \mathcal{I}_{j}$. Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.
- Apply the automorphisms and sum up: $\sum_{\sigma \in \operatorname{Aut}(H)} x_{i \sigma}^{2} \leq \sum_{\sigma \in \operatorname{Aut}(H)} \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell \sigma} x_{i \sigma}$.
- With $N:=|\operatorname{Aut}(\boldsymbol{H})|,\left|\mathcal{I}_{j}\right|=w_{r}$, and by 2-transitivity this is:

$$
\frac{N}{n} \sum_{i} x_{i}^{2} \leq \frac{N\left(w_{r}-1\right)}{n(n-1)} \sum_{i \neq \ell} x_{\ell} x_{i}
$$

- Rewrite this as: $\left(1+\frac{n-1}{w_{r}-1}\right) \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$.

Codes with 2-transitive automorphism group

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, H) \geq 1+\frac{n-1}{w_{r}-1}
$$

Second proof.
Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- Let $j \in \mathcal{J}$ be the index of a row with weight w_{r}, let $i \in \mathcal{I}_{j}$. Then $x_{i} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell}$ and $x_{i}^{2} \leq \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell} x_{i}$.
- Apply the automorphisms and sum up: $\sum_{\sigma \in \operatorname{Aut}(H)} x_{i \sigma}^{2} \leq \sum_{\sigma \in \operatorname{Aut}(H)} \sum_{\ell \in \mathcal{I}_{j}, \ell \neq i} x_{\ell \sigma} x_{i \sigma}$.
- With $N:=|\operatorname{Aut}(\boldsymbol{H})|,\left|\mathcal{I}_{j}\right|=w_{r}$, and by 2-transitivity this is:

$$
\frac{N}{n} \sum_{i} x_{i}^{2} \leq \frac{N\left(w_{r}-1\right)}{n(n-1)} \sum_{i \neq \ell} x_{\ell} x_{i}
$$

- Rewrite this as: $\left(1+\frac{n-1}{w_{r}-1}\right) \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$.

Hence, $w_{p}(x) \geq 1+\frac{n-1}{w_{r}-1}$.

Examples

Let \mathcal{C} be the $\left[2^{m}-1,2^{m}-1-m, 3\right]$ Hamming code. Let \mathcal{C}^{\perp} be the $\left[2^{m}-1, m, 2^{m-1}\right]$ simplex code.

Examples

Let \mathcal{C} be the $\left[2^{m}-1,2^{m}-1-m, 3\right]$ Hamming code. Let \mathcal{C}^{\perp} be the $\left[2^{m}-1, m, 2^{m-1}\right]$ simplex code.

- $\operatorname{Aut}(\mathcal{C})=\operatorname{Aut}\left(\mathcal{C}^{\perp}\right)=\operatorname{GL}_{m}(2)$

Examples

Let \mathcal{C} be the $\left[2^{m}-1,2^{m}-1-m, 3\right]$ Hamming code.
Let \mathcal{C}^{\perp} be the $\left[2^{m}-1, m, 2^{m-1}\right]$ simplex code.

- $\operatorname{Aut}(\mathcal{C})=\operatorname{Aut}\left(\mathcal{C}^{\perp}\right)=\operatorname{GL}_{m}(2)$

1. Consider $(\mathcal{C}, \boldsymbol{H})$, where \boldsymbol{H} consists of all nonzero codewords of \mathcal{C}^{\perp}.

Examples

Let \mathcal{C} be the $\left[2^{m}-1,2^{m}-1-m, 3\right]$ Hamming code.
Let \mathcal{C}^{\perp} be the $\left[2^{m}-1, m, 2^{m-1}\right]$ simplex code.

- $\operatorname{Aut}(\mathcal{C})=\operatorname{Aut}\left(\mathcal{C}^{\perp}\right)=\operatorname{GL}_{m}(2)$

1. Consider $(\mathcal{C}, \boldsymbol{H})$, where \boldsymbol{H} consists of all nonzero codewords of \mathcal{C}^{\perp}.
$2-\left(2^{m}-1,2^{m-1}, 2^{m-2}\right)$ design $\Rightarrow w_{p}^{\min } \geq 1+\frac{2^{m}-2}{2^{m-1}-1}=3$.

Examples

Let \mathcal{C} be the $\left[2^{m}-1,2^{m}-1-m, 3\right]$ Hamming code.
Let \mathcal{C}^{\perp} be the $\left[2^{m}-1, m, 2^{m-1}\right]$ simplex code.

- $\operatorname{Aut}(\mathcal{C})=\operatorname{Aut}\left(\mathcal{C}^{\perp}\right)=\operatorname{GL}_{m}(2)$

1. Consider $(\mathcal{C}, \boldsymbol{H})$, where \boldsymbol{H} consists of all nonzero codewords of \mathcal{C}^{\perp}.
$2-\left(2^{m}-1,2^{m-1}, 2^{m-2}\right)$ design $\Rightarrow w_{p}^{\text {min }} \geq 1+\frac{2^{m}-2}{2^{m-1}-1}=3$.
2. Consider $\left(\mathcal{C}^{\perp}, \boldsymbol{H}^{\perp}\right)$, where \boldsymbol{H}^{\perp} consists of all codewords of \mathcal{C} of weight 3 .

Examples

Let \mathcal{C} be the $\left[2^{m}-1,2^{m}-1-m, 3\right]$ Hamming code.
Let \mathcal{C}^{\perp} be the $\left[2^{m}-1, m, 2^{m-1}\right]$ simplex code.

- $\operatorname{Aut}(\mathcal{C})=\operatorname{Aut}\left(\mathcal{C}^{\perp}\right)=\operatorname{GL}_{m}(2)$

1. Consider $(\mathcal{C}, \boldsymbol{H})$, where \boldsymbol{H} consists of all nonzero codewords of \mathcal{C}^{\perp}.
$2-\left(2^{m}-1,2^{m-1}, 2^{m-2}\right)$ design $\Rightarrow w_{p}^{\min } \geq 1+\frac{2^{m}-2}{2^{m-1}-1}=3$.
2. Consider $\left(\mathcal{C}^{\perp}, \boldsymbol{H}^{\perp}\right)$, where \boldsymbol{H}^{\perp} consists of all codewords of \mathcal{C} of weight 3 .

$$
2-\left(2^{m}-1,3,1\right) \text { design } \Rightarrow w_{p}^{\min } \geq 1+\frac{2^{m}-2}{2}=2^{m-1} .
$$

Examples (cont.)

Let \boldsymbol{H} be the incidence matrix of a projective plane of order $q=2^{m}$. Let $C=\operatorname{ker} \boldsymbol{H}$ be the projective geometry code.

Examples (cont.)

Let \boldsymbol{H} be the incidence matrix of a projective plane of order $q=2^{m}$. Let $C=\operatorname{ker} \boldsymbol{H}$ be the projective geometry code.

$$
2-\left(q^{2}+q+1, q+1,1\right) \text { design } \Rightarrow \mathrm{w}_{\mathrm{p}}^{\min } \geq 1+\frac{q^{2}+q}{q}=q+2 .
$$

Examples (cont.)

Let \boldsymbol{H} be the incidence matrix of a projective plane of order $q=2^{m}$. Let $C=\operatorname{ker} \boldsymbol{H}$ be the projective geometry code.

$$
2-\left(q^{2}+q+1, q+1,1\right) \text { design } \Rightarrow \mathrm{w}_{\mathrm{p}}^{\min } \geq 1+\frac{q^{2}+q}{q}=q+2 .
$$

Remark
The best bound for $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})$ achievable by taking convex combinations of products of two inequalities is

$$
1+\frac{n-1}{d^{\perp}-1}
$$

where d^{\perp} is the minimum distance of \mathcal{C}^{\perp}.

Outline

Introduction

Further definitions

Codes with 2-transitive automorphism group

Codes with t-transitive automorphism group, $t>2$

Cubic inequalities

Instead of the quadratic inequality $d \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$ one can prove the cubic inequality $d\left(\sum_{i} x_{i}^{2}\right)\left(\sum_{i} x_{i}\right) \leq\left(\sum_{i} x_{i}\right)^{3}$,

Cubic inequalities

Instead of the quadratic inequality $d \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$ one can prove the cubic inequality $d\left(\sum_{i} x_{i}^{2}\right)\left(\sum_{i} x_{i}\right) \leq\left(\sum_{i} x_{i}\right)^{3}$,which may be rewritten as

$$
(d-1) \sum_{i} x_{i}^{3}+(d-3) \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k} .
$$

Cubic inequalities

Instead of the quadratic inequality $d \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$ one can prove the cubic inequality $d\left(\sum_{i} x_{i}^{2}\right)\left(\sum_{i} x_{i}\right) \leq\left(\sum_{i} x_{i}\right)^{3}$, which may be rewritten as

$$
(d-1) \sum_{i} x_{i}^{3}+(d-3) \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k} .
$$

Proposition

Let \mathcal{C} be the $[8,4,4]$ extended Hamming code and let \boldsymbol{H} consist of all codewords of $\mathcal{C}^{\perp}=\mathcal{C}$ of weight 4 . Then $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=4$, and hence $\rho(\mathcal{C})<\infty$.

Cubic inequalities

Instead of the quadratic inequality $d \sum_{i} x_{i}^{2} \leq\left(\sum_{i} x_{i}\right)^{2}$ one can prove the cubic inequality $d\left(\sum_{i} x_{i}^{2}\right)\left(\sum_{i} x_{i}\right) \leq\left(\sum_{i} x_{i}\right)^{3}$, which may be rewritten as

$$
(d-1) \sum_{i} x_{i}^{3}+(d-3) \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}
$$

Proposition

Let \mathcal{C} be the $[8,4,4]$ extended Hamming code and let \boldsymbol{H} consist of all codewords of $\mathcal{C}^{\perp}=\mathcal{C}$ of weight 4 . Then $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=4$, and hence $\rho(\mathcal{C})<\infty$.

- $\operatorname{Aut}(\mathcal{C})=\mathrm{GA}_{2}(3)$, which is 3-transitive.

Proof

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 4
$$

Proof

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 4
$$

Proof.

We may assume that $\boldsymbol{c}_{1}=[1,1,1,1,0,0,0,0]$ and $c_{2}=[1,1,0,0,1,1,0,0]$ are in \mathcal{C}.

Proof

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 4
$$

Proof.

We may assume that $\boldsymbol{c}_{1}=[1,1,1,1,0,0,0,0]$ and $\boldsymbol{c}_{2}=[1,1,0,0,1,1,0,0]$ are in \mathcal{C}. Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

Proof

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 4
$$

Proof.

We may assume that $\boldsymbol{c}_{1}=[1,1,1,1,0,0,0,0]$ and
$\boldsymbol{c}_{2}=[1,1,0,0,1,1,0,0]$ are in \mathcal{C}. Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- $x_{1} \leq x_{2}+x_{3}+x_{4}$, hence $x_{1}^{2} x_{5} \leq\left(x_{2}+x_{3}+x_{4}\right) x_{1} x_{5}$.

Proof

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 4
$$

Proof.

We may assume that $\boldsymbol{c}_{1}=[1,1,1,1,0,0,0,0]$ and
$\boldsymbol{c}_{2}=[1,1,0,0,1,1,0,0]$ are in \mathcal{C}. Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- $x_{1} \leq x_{2}+x_{3}+x_{4}$,
hence $x_{1}^{2} x_{5} \leq\left(x_{2}+x_{3}+x_{4}\right) x_{1} x_{5}$.
- Apply the automorphisms and sum up:

$$
\frac{N}{n(n-1)} \sum_{i \neq j} x_{i}^{2} x_{j} \leq \frac{3 N}{n(n-1)(n-2)} \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k} .
$$

Proof

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 4
$$

Proof.

We may assume that $\boldsymbol{c}_{1}=[1,1,1,1,0,0,0,0]$ and
$\boldsymbol{c}_{2}=[1,1,0,0,1,1,0,0]$ are in \mathcal{C}. Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- $x_{1} \leq x_{2}+x_{3}+x_{4}$,
hence $x_{1}^{2} x_{5} \leq\left(x_{2}+x_{3}+x_{4}\right) x_{1} x_{5}$.
- Apply the automorphisms and sum up:
$\frac{N}{n(n-1)} \sum_{i \neq j} x_{i}^{2} x_{j} \leq \frac{3 N}{n(n-1)(n-2)} \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$.
Hence, $2 \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$.

Proof

$$
\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H}) \geq 4
$$

Proof.

We may assume that $\boldsymbol{c}_{1}=[1,1,1,1,0,0,0,0]$ and
$\boldsymbol{c}_{2}=[1,1,0,0,1,1,0,0]$ are in \mathcal{C}. Let $x \in \mathcal{K}(\mathcal{C}, \boldsymbol{H})$.

- $x_{1} \leq x_{2}+x_{3}+x_{4}$,
hence $x_{1}^{2} x_{5} \leq\left(x_{2}+x_{3}+x_{4}\right) x_{1} x_{5}$.
- Apply the automorphisms and sum up:
$\frac{N}{n(n-1)} \sum_{i \neq j} x_{i}^{2} x_{j} \leq \frac{3 N}{n(n-1)(n-2)} \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$.
Hence, $2 \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$.
- $x_{1} \leq x_{2}+x_{3}+x_{4}$ and $x_{2} \leq x_{1}+x_{5}+x_{6}$,
hence $0 \leq\left(-x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}-x_{2}+x_{5}+x_{6}\right) x_{1}$.

Proof (cont.)

- $2 \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$
- $0 \leq\left(-x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}-x_{2}+x_{5}+x_{6}\right) x_{1}$

Proof (cont.)

- $2 \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$
- $0 \leq\left(-x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}-x_{2}+x_{5}+x_{6}\right) x_{1}$
- Apply the automorphisms and sum up:

$$
\frac{N}{n} \sum_{i} x_{i}^{3}-\frac{N}{n(n-1)} \sum_{i \neq j} x_{i}^{2} x_{j} \leq \frac{4 N}{n(n-1)(n-2)} \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k} .
$$

Proof (cont.)

- $2 \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$
- $0 \leq\left(-x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}-x_{2}+x_{5}+x_{6}\right) x_{1}$
- Apply the automorphisms and sum up: $\frac{N}{n} \sum_{i} x_{i}^{3}-\frac{N}{n(n-1)} \sum_{i \neq j} x_{i}^{2} x_{j} \leq \frac{4 N}{n(n-1)(n-2)} \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$. Hence, $21 \sum_{i} x_{i}^{3}-3 \sum_{i \neq j} x_{i}^{2} x_{j} \leq 2 \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$.

Proof (cont.)

- $2 \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$
- $0 \leq\left(-x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}-x_{2}+x_{5}+x_{6}\right) x_{1}$
- Apply the automorphisms and sum up: $\frac{N}{n} \sum_{i} x_{i}^{3}-\frac{N}{n(n-1)} \sum_{i \neq j} x_{i}^{2} x_{j} \leq \frac{4 N}{n(n-1)(n-2)} \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$. Hence, $21 \sum_{i} x_{i}^{3}-3 \sum_{i \neq j} x_{i}^{2} x_{j} \leq 2 \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$.
- Adding 5 times the first inequality above yields
$21 \sum_{i} x_{i}^{3}+7 \sum_{i \neq j} x_{i}^{2} x_{j} \leq 7 \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$.

Proof (cont.)

- $2 \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$
- $0 \leq\left(-x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}-x_{2}+x_{5}+x_{6}\right) x_{1}$
- Apply the automorphisms and sum up: $\frac{N}{n} \sum_{i} x_{i}^{3}-\frac{N}{n(n-1)} \sum_{i \neq j} x_{i}^{2} x_{j} \leq \frac{4 N}{n(n-1)(n-2)} \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$. Hence, $21 \sum_{i} x_{i}^{3}-3 \sum_{i \neq j} x_{i}^{2} x_{j} \leq 2 \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$.
- Adding 5 times the first inequality above yields $21 \sum_{i} x_{i}^{3}+7 \sum_{i \neq j} x_{i}^{2} x_{j} \leq 7 \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$.
- That is, $(d-1) \sum_{i} x_{i}^{3}+(d-3) \sum_{i \neq j} x_{i}^{2} x_{j} \leq \sum_{i \neq j \neq k \neq i} x_{i} x_{j} x_{k}$ with $d=4$.

Hence $w_{p}(x) \geq 4$.

Extended Golay code

Conjecture
 Let \mathcal{C} be the $[24,12,8]$ extended Golay code and let \boldsymbol{H} consist of all codewords of weight 8 (the octads). Then $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=8$.

Extended Golay code

Conjecture
Let \mathcal{C} be the $[24,12,8]$ extended Golay code and let \boldsymbol{H} consist of all codewords of weight 8 (the octads). Then $w_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=8$.

- $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ is defined by $8 \cdot 759+24=6096$ inequalities.

Extended Golay code

Conjecture
Let \mathcal{C} be the $[24,12,8]$ extended Golay code and let \boldsymbol{H} consist of all codewords of weight 8 (the octads). Then $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=8$.

- $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ is defined by $8 \cdot 759+24=6096$ inequalities.
- $\operatorname{Aut}(\boldsymbol{H})=M_{24}$ is 5-transitive of order 244823040.

Extended Golay code

Conjecture

Let \mathcal{C} be the $[24,12,8]$ extended Golay code and let \boldsymbol{H} consist of all codewords of weight 8 (the octads). Then $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=8$.

- $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ is defined by $8 \cdot 759+24=6096$ inequalities.
- $\operatorname{Aut}(\boldsymbol{H})=M_{24}$ is 5-transitive of order 244823040.

$$
\text { quadrics } \quad \frac{30}{7}=4.285 \ldots \quad 10 \text { products }
$$

Extended Golay code

Conjecture

Let \mathcal{C} be the $[24,12,8]$ extended Golay code and let \boldsymbol{H} consist of all codewords of weight 8 (the octads). Then $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=8$.

- $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ is defined by $8 \cdot 759+24=6096$ inequalities.
- $\operatorname{Aut}(\boldsymbol{H})=M_{24}$ is 5 -transitive of order 244823040.
quadrics

$$
\frac{30}{7}=4.285 \ldots
$$

10 products
cubics
$\frac{86}{17}=5.058 \ldots$
74 products

Extended Golay code

Conjecture

Let \mathcal{C} be the $[24,12,8]$ extended Golay code and let \boldsymbol{H} consist of all codewords of weight 8 (the octads). Then $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=8$.

- $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ is defined by $8 \cdot 759+24=6096$ inequalities.
- $\operatorname{Aut}(\boldsymbol{H})=M_{24}$ is 5 -transitive of order 244823040.

quadrics	$\frac{30}{7}=4.285 \ldots$	10 products
cubics	$\frac{86}{17}=5.058 \ldots$	74 products
quartics	$\frac{79545}{13259}=5.999 \ldots$	2215 products

Extended Golay code

Conjecture

Let \mathcal{C} be the $[24,12,8]$ extended Golay code and let \boldsymbol{H} consist of all codewords of weight 8 (the octads). Then $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=8$.

- $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ is defined by $8 \cdot 759+24=6096$ inequalities.
- $\operatorname{Aut}(\boldsymbol{H})=M_{24}$ is 5-transitive of order 244823040.
quadrics $\quad \frac{30}{7}=4.285 \ldots \quad 10$ products
cubics $\quad \frac{86}{17}=5.058 \ldots$
74 products
quartics $\quad \frac{79545}{13259}=5.999 \ldots \quad 2215$ products
qunitics $\quad \geq \frac{2795677}{419041}=6.671 \ldots \geq 42421$ products

Extended Golay code

Conjecture

Let \mathcal{C} be the $[24,12,8]$ extended Golay code and let \boldsymbol{H} consist of all codewords of weight 8 (the octads). Then $\mathrm{w}_{\mathrm{p}}^{\min }(\mathcal{C}, \boldsymbol{H})=8$.

- $\mathcal{K}(\mathcal{C}, \boldsymbol{H})$ is defined by $8 \cdot 759+24=6096$ inequalities.
- $\operatorname{Aut}(\boldsymbol{H})=M_{24}$ is 5-transitive of order 244823040.
quadrics $\quad \frac{30}{7}=4.285 \ldots \quad 10$ products
cubics $\quad \frac{86}{17}=5.058 \ldots \quad 74$ products
quartics $\quad \frac{79545}{13259}=5.999 \ldots \quad 2215$ products
qunitics $\quad \geq \frac{2795677}{419041}=6.671 \ldots \geq 42421$ products
To be continued...

Thank you for your attention!

