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Introduction

Introduction

I Low density parity-check (LDPC) codes achieve Shannon
capacity of various channels and allow for efficient iterative
decoding algorithms. [Gallager ’62, Luby et al. ’98,
Richardson et al. ’01]

I Decoding of binary LDPC codes using linear programming.
[Feldman ’03]

I Loss of decoding capability for concrete finite-length codes
explained by (graph-cover/linear-programming) pseudo-
codewords of low pseudoweight. [Koetter, Vontobel ’03-’05]

⇒ Interest in codes with large minimum pseudoweight.
Minimum pseudoweight depends on the parity-check matrix of
the code; it may be increased by adding redundant rows.
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Introduction

Parity-check codes

Let F = F2 be the binary field.

A (linear) code C is a subspace C ≤ Fn. Let k = dim C be its
dimension and d = min{wH(ccc) | ccc ∈ C \ {0}} its minimum
(Hamming) weight.

Definition
A parity-check code is a pair (C,HHH), where C is a code and HHH is
an m × n matrix such that

C = kerHHH = {ccc ∈ Fn
2 | HHH cccT = 000T} .
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Introduction

Minimum pseudoweight

For a parity-check code (C,HHH) we consider the (AWGNC)
minimum pseudoweight

wmin
p = wmin

p (C,HHH) ,

which indicates the error-correcting capability of linear
programming or message passing decoding methods.

I wmin
p (C,HHH) ≤ d(C)
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Introduction

Pseudocodeword redundancy

Definition
The pseudocodeword redundancy of a code C is defined as

ρ(C) := inf{m | ∃HHH ∈ Matm×n(F) : C = kerHHH, wmin
p (C,HHH) = d(C)},

where inf ∅ :=∞.

Proposition [Flanagan, Skachek, Z. ’10]
For a random code C of fixed rate R = k

n , with high probability

ρ(C) =∞ .

Goal
Prove ρ(C) <∞ for certain codes C that have a large
automorphism group.
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Further definitions

Fundamental cone

Let (C,HHH) be a parity-check code, where HHH ∈ Matm×n(F).
Let I := {1, . . . ,n} and J := {1, . . . ,m} be the set of column
resp. row indices. For j ∈ J let Ij := {i ∈ I : Hj,i 6= 0}.

Definition
The fundamental cone K(C,HHH) is defined as the set of all
vectors xxx ∈ Rn that satisfy the inequalities:

∀j ∈ J ∀` ∈ Ij : x` ≤
∑

i∈Ij\{`}

xi ,

∀i ∈ I : 0 ≤ xi .
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Further definitions

Fundamental cone (cont.)

Example
Let C be the [7,4,3] Hamming code with parity-check matrix

HHH =

 111 111 111 0 111 0 0
0 111 111 111 0 111 0
0 0 111 111 111 0 111

 .

The inequalities of the fundamental cone K(C,HHH) are:

x1 ≤ x2 + x3 + x5 x2 ≤ x3 + x4 + x6 x3 ≤ x4 + x5 + x7

x2 ≤ x1 + x3 + x5 x3 ≤ x2 + x4 + x6 x4 ≤ x3 + x5 + x7

x3 ≤ x1 + x2 + x5 x4 ≤ x2 + x3 + x6 x5 ≤ x3 + x4 + x7

x5 ≤ x1 + x2 + x3 x6 ≤ x2 + x3 + x4 x7 ≤ x3 + x4 + x5

0 ≤ x1 0 ≤ x2 0 ≤ x3 0 ≤ x4 0 ≤ x5 0 ≤ x6 0 ≤ x7
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Further definitions

Minimum pseudoweight

Definition
The minimum pseudoweight of the parity-check code
(C,HHH) is

wmin
p (C,HHH) := min

xxx∈K(C,HHH)\{0}
wp(xxx) ,

where wp(xxx) :=
(

P
i∈I xi)

2P
i∈I x2

i
is the (AWGNC) pseudoweight.

I wmin
p (C,HHH) ≥ d ⇔ ∀x ∈ K(C,HHH) : d

∑
i x2

i ≤ (
∑

i xi)
2

Remark
Consider C as a subset of Rn, where 0F 7→ 0 and 1F 7→ 1.
Then C ⊆ K(C,HHH) and wp|C = wH.
It follows wmin

p (C,HHH) ≤ d(C).
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Further definitions

Automorphism group

Definition
The automorphism group Aut(C) ≤ Sn of a code C consists of
all permutation of coordinate places which send C into itself
(codewords go into codewords).

I Aut(C) = Aut(C⊥)
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Further definitions

Automorphism group (cont.)

Definition
Let (C,HHH) be a parity-check code. The automorphism group
Aut(C,HHH) = Aut(HHH) consists of all permutation of columns of HHH
which send the set of rows of HHH into itself.

I Aut(C,HHH) ≤ Aut(C)
I Any permutation in Aut(C,HHH) sends K(C,HHH) into itself.
I Let C be a code and let HHH consist of all rows in C⊥ of some

weight w . Then C′ := kerHHH ⊇ C and Aut(C) ≤ Aut(C′,HHH).

Goal
Obtain lower bounds on wmin

p (C,HHH) for certain parity-check
codes (C,HHH) that have a large automorphism group.
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Codes with 2-transitive automorphism group

Codes based on designs

Let HHH be an m × n matrix which is the point-block incidence
matrix of a 2-(n,wr , λ) design, i.e.

I every row has constant weight wr ,
I each 2 columns have λ common ones.

Then
I every column has constant weight wc ,
I nwc = mwr and wc(wr − 1) = λ(n − 1).

Proposition [Flanagan, Skachek, Z. ’10]

wmin
p (C,HHH) ≥ 1 +

n − 1
wr − 1

= 1 +
wc

λ
.
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Codes with 2-transitive automorphism group

Codes based on designs

wmin
p (C,HHH) ≥ 1 +

wc

λ

Proof.
Let x ∈ K(C,HHH).

I Let i ∈ I. Let j ∈ J such that i ∈ Ij .
Then xi ≤

∑
`∈Ij ,` 6=i x` and x2

i ≤
∑

`∈Ij ,` 6=i x`xi .

I Sum over j : wcx2
i ≤ λ

∑
6̀=i x`xi .

I Sum over i : wc
∑

i x2
i ≤ λ

∑
`6=i x`xi .

I Rewrite this as: (1 + wc
λ )

∑
i x2

i ≤ (
∑

i xi)
2.

Hence, wp(x) ≥ 1 + wc
λ .
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Codes with 2-transitive automorphism group

Codes with 2-transitive automorphism group

Proposition
Let (C,HHH) be a parity-check code such that Aut(HHH) is
2-transitive. Let wr be the weight of an arbitrary row of HHH. Then

wmin
p (C,HHH) ≥ 1 +

n − 1
wr − 1

.

First proof.
Observe that the rows of HHH with weight wr form the point-block
incidence matrix of a 2-design. Apply the last proposition.
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Codes with 2-transitive automorphism group

Codes with 2-transitive automorphism group

wmin
p (C,HHH) ≥ 1 +

n − 1
wr − 1

Second proof.

Let x ∈ K(C,HHH).
I Let j ∈ J be the index of a row with weight wr , let i ∈ Ij .

Then xi ≤
∑

`∈Ij ,` 6=i x` and x2
i ≤

∑
`∈Ij ,` 6=i x`xi .

I Apply the automorphisms and sum up:∑
σ∈Aut(HHH) x2

iσ ≤
∑

σ∈Aut(HHH)

∑
`∈Ij ,`6=i x`σxiσ .

I With N := |Aut(HHH)|, |Ij | = wr , and by 2-transitivity this is:
N
n

∑
i x2

i ≤
N(wr−1)
n(n−1)

∑
i 6=` x`xi .

I Rewrite this as: (1 + n−1
wr−1)

∑
i x2

i ≤ (
∑
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Codes with 2-transitive automorphism group

Examples

Let C be the [2m − 1,2m − 1−m,3] Hamming code.
Let C⊥ be the [2m − 1,m,2m−1] simplex code.

I Aut(C) = Aut(C⊥) = GLm(2)

1. Consider (C,HHH), where HHH consists of all nonzero
codewords of C⊥.

2-(2m − 1,2m−1,2m−2) design ⇒ wmin
p ≥ 1 + 2m−2

2m−1−1 = 3 .

2. Consider (C⊥,HHH⊥), where HHH⊥ consists of all codewords of
C of weight 3.

2-(2m − 1,3,1) design ⇒ wmin
p ≥ 1 + 2m−2

2 = 2m−1 .
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Codes with 2-transitive automorphism group

Examples (cont.)

Let HHH be the incidence matrix of a projective plane of order
q = 2m. Let C = kerHHH be the projective geometry code.

2-(q2 + q + 1,q + 1,1) design ⇒ wmin
p ≥ 1 + q2+q

q = q + 2 .

Remark
The best bound for wmin

p (C,HHH) achievable by taking convex
combinations of products of two inequalities is

1 +
n − 1

d⊥ − 1
,

where d⊥ is the minimum distance of C⊥.
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Codes with t-transitive automorphism group, t > 2

Cubic inequalities

Instead of the quadratic inequality d
∑

i x2
i ≤ (

∑
i xi)

2 one can
prove the cubic inequality d(

∑
i x2

i )(
∑

i xi) ≤ (
∑

i xi)
3,

which
may be rewritten as

(d − 1)
∑

i

x3
i + (d − 3)

∑
i 6=j

x2
i xj ≤

∑
i 6=j 6=k 6=i

xixjxk .

Proposition
Let C be the [8,4,4] extended Hamming code and let HHH consist
of all codewords of C⊥ = C of weight 4. Then wmin

p (C,HHH) = 4,
and hence ρ(C) <∞.

I Aut(C) = GA2(3), which is 3-transitive.
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Codes with t-transitive automorphism group, t > 2

Proof

wmin
p (C,HHH) ≥ 4

Proof.
We may assume that ccc1 = [1,1,1,1,0,0,0,0] and
ccc2 = [1,1,0,0,1,1,0,0] are in C. Let x ∈ K(C,HHH).

I x1 ≤ x2 + x3 + x4,
hence x2

1 x5 ≤ (x2 + x3 + x4)x1x5.
I Apply the automorphisms and sum up:

N
n(n−1)

∑
i 6=j x2

i xj ≤ 3N
n(n−1)(n−2)

∑
i 6=j 6=k 6=i xixjxk .

Hence, 2
∑

i 6=j x2
i xj ≤

∑
i 6=j 6=k 6=i xixjxk .

I x1 ≤ x2 + x3 + x4 and x2 ≤ x1 + x5 + x6,
hence 0 ≤ (−x1 + x2 + x3 + x4)(x1 − x2 + x5 + x6)x1.

23/26 ALCOMA 10 17/04/2010



Codes with t-transitive automorphism group, t > 2

Proof

wmin
p (C,HHH) ≥ 4

Proof.
We may assume that ccc1 = [1,1,1,1,0,0,0,0] and
ccc2 = [1,1,0,0,1,1,0,0] are in C.

Let x ∈ K(C,HHH).
I x1 ≤ x2 + x3 + x4,

hence x2
1 x5 ≤ (x2 + x3 + x4)x1x5.

I Apply the automorphisms and sum up:
N

n(n−1)

∑
i 6=j x2

i xj ≤ 3N
n(n−1)(n−2)

∑
i 6=j 6=k 6=i xixjxk .

Hence, 2
∑

i 6=j x2
i xj ≤

∑
i 6=j 6=k 6=i xixjxk .

I x1 ≤ x2 + x3 + x4 and x2 ≤ x1 + x5 + x6,
hence 0 ≤ (−x1 + x2 + x3 + x4)(x1 − x2 + x5 + x6)x1.

23/26 ALCOMA 10 17/04/2010



Codes with t-transitive automorphism group, t > 2

Proof

wmin
p (C,HHH) ≥ 4

Proof.
We may assume that ccc1 = [1,1,1,1,0,0,0,0] and
ccc2 = [1,1,0,0,1,1,0,0] are in C. Let x ∈ K(C,HHH).

I x1 ≤ x2 + x3 + x4,
hence x2

1 x5 ≤ (x2 + x3 + x4)x1x5.
I Apply the automorphisms and sum up:

N
n(n−1)

∑
i 6=j x2

i xj ≤ 3N
n(n−1)(n−2)

∑
i 6=j 6=k 6=i xixjxk .

Hence, 2
∑

i 6=j x2
i xj ≤

∑
i 6=j 6=k 6=i xixjxk .

I x1 ≤ x2 + x3 + x4 and x2 ≤ x1 + x5 + x6,
hence 0 ≤ (−x1 + x2 + x3 + x4)(x1 − x2 + x5 + x6)x1.

23/26 ALCOMA 10 17/04/2010



Codes with t-transitive automorphism group, t > 2

Proof

wmin
p (C,HHH) ≥ 4

Proof.
We may assume that ccc1 = [1,1,1,1,0,0,0,0] and
ccc2 = [1,1,0,0,1,1,0,0] are in C. Let x ∈ K(C,HHH).

I x1 ≤ x2 + x3 + x4,
hence x2

1 x5 ≤ (x2 + x3 + x4)x1x5.

I Apply the automorphisms and sum up:
N

n(n−1)

∑
i 6=j x2

i xj ≤ 3N
n(n−1)(n−2)

∑
i 6=j 6=k 6=i xixjxk .

Hence, 2
∑

i 6=j x2
i xj ≤

∑
i 6=j 6=k 6=i xixjxk .

I x1 ≤ x2 + x3 + x4 and x2 ≤ x1 + x5 + x6,
hence 0 ≤ (−x1 + x2 + x3 + x4)(x1 − x2 + x5 + x6)x1.

23/26 ALCOMA 10 17/04/2010



Codes with t-transitive automorphism group, t > 2

Proof

wmin
p (C,HHH) ≥ 4

Proof.
We may assume that ccc1 = [1,1,1,1,0,0,0,0] and
ccc2 = [1,1,0,0,1,1,0,0] are in C. Let x ∈ K(C,HHH).

I x1 ≤ x2 + x3 + x4,
hence x2

1 x5 ≤ (x2 + x3 + x4)x1x5.
I Apply the automorphisms and sum up:

N
n(n−1)

∑
i 6=j x2

i xj ≤ 3N
n(n−1)(n−2)

∑
i 6=j 6=k 6=i xixjxk .

Hence, 2
∑

i 6=j x2
i xj ≤

∑
i 6=j 6=k 6=i xixjxk .

I x1 ≤ x2 + x3 + x4 and x2 ≤ x1 + x5 + x6,
hence 0 ≤ (−x1 + x2 + x3 + x4)(x1 − x2 + x5 + x6)x1.

23/26 ALCOMA 10 17/04/2010



Codes with t-transitive automorphism group, t > 2

Proof

wmin
p (C,HHH) ≥ 4

Proof.
We may assume that ccc1 = [1,1,1,1,0,0,0,0] and
ccc2 = [1,1,0,0,1,1,0,0] are in C. Let x ∈ K(C,HHH).

I x1 ≤ x2 + x3 + x4,
hence x2

1 x5 ≤ (x2 + x3 + x4)x1x5.
I Apply the automorphisms and sum up:

N
n(n−1)

∑
i 6=j x2

i xj ≤ 3N
n(n−1)(n−2)

∑
i 6=j 6=k 6=i xixjxk .

Hence, 2
∑

i 6=j x2
i xj ≤

∑
i 6=j 6=k 6=i xixjxk .

I x1 ≤ x2 + x3 + x4 and x2 ≤ x1 + x5 + x6,
hence 0 ≤ (−x1 + x2 + x3 + x4)(x1 − x2 + x5 + x6)x1.

23/26 ALCOMA 10 17/04/2010



Codes with t-transitive automorphism group, t > 2

Proof

wmin
p (C,HHH) ≥ 4

Proof.
We may assume that ccc1 = [1,1,1,1,0,0,0,0] and
ccc2 = [1,1,0,0,1,1,0,0] are in C. Let x ∈ K(C,HHH).

I x1 ≤ x2 + x3 + x4,
hence x2

1 x5 ≤ (x2 + x3 + x4)x1x5.
I Apply the automorphisms and sum up:

N
n(n−1)

∑
i 6=j x2

i xj ≤ 3N
n(n−1)(n−2)

∑
i 6=j 6=k 6=i xixjxk .

Hence, 2
∑

i 6=j x2
i xj ≤

∑
i 6=j 6=k 6=i xixjxk .

I x1 ≤ x2 + x3 + x4 and x2 ≤ x1 + x5 + x6,
hence 0 ≤ (−x1 + x2 + x3 + x4)(x1 − x2 + x5 + x6)x1.

23/26 ALCOMA 10 17/04/2010



Codes with t-transitive automorphism group, t > 2

Proof (cont.)

I 2
∑

i 6=j x2
i xj ≤

∑
i 6=j 6=k 6=i xixjxk

I 0 ≤ (−x1 + x2 + x3 + x4)(x1 − x2 + x5 + x6)x1

.
I Apply the automorphisms and sum up:

N
n

∑
i x3

i −
N

n(n−1)

∑
i 6=j x2

i xj ≤ 4N
n(n−1)(n−2)

∑
i 6=j 6=k 6=i xixjxk .

Hence, 21
∑

i x3
i − 3

∑
i 6=j x2

i xj ≤ 2
∑

i 6=j 6=k 6=i xixjxk .
I Adding 5 times the first inequality above yields

21
∑

i x3
i + 7

∑
i 6=j x2

i xj ≤ 7
∑

i 6=j 6=k 6=i xixjxk .

I That is, (d − 1)
∑

i x3
i + (d − 3)

∑
i 6=j x2

i xj ≤
∑

i 6=j 6=k 6=i xixjxk
with d = 4.

Hence wp(x) ≥ 4.
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Codes with t-transitive automorphism group, t > 2

Extended Golay code

Conjecture
Let C be the [24,12,8] extended Golay code and let HHH consist
of all codewords of weight 8 (the octads). Then wmin

p (C,HHH) = 8.

I K(C,HHH) is defined by 8 · 759 + 24 = 6096 inequalities.
I Aut(HHH) = M24 is 5-transitive of order 244 823 040.

quadrics 30
7 = 4.285... 10 products

cubics 86
17 = 5.058... 74 products

quartics 79545
13259 = 5.999... 2215 products

qunitics ≥ 2795677
419041 = 6.671... ≥ 42 421 products

To be continued...
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Thank you for your attention!
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