Binary extremal self-dual codes of type II and their automorphisms

Wolfgang Willems Otto-von-Guericke-Universität Magdeburg

ALCOMA 2010, Schloss Thurnau, 11.4.-18.4.2010

joint work with S. Bouyuklieva and A. Malevich

set up / notations

•
$$K = \mathbb{F}_2$$
, $V = K^n$

•
$$\langle v, w \rangle = \sum_{i=1}^{n} v_i w_i$$
 for $v, w \in V$

•
$$C = C^{\perp} \le V$$
 (self-dual code)

- wt $(v) = |\{i \mid v_i = 1\}|$ (weight of v)
- C is called of type II if $4 \mid wt(c)$ for all $c \in C$

- $d(v,w) = |\{i \mid v_i \neq w_i\}|$ (distance)
- $d(C) = \min_{c \neq c' \in C} d(c, c')$ (minimum distance of C)
- $[n, \frac{n}{2}, d]$ (parameters of C)

[length of C, dimension of C, minimum distance of C]

What do we know about self-dual codes of type II ?

Gleason (1970): 8 | n

Mallows, Sloane (1973): $d \le 4\lfloor \frac{n}{24} \rfloor + 4$

C is called extremal if $d = 4\lfloor \frac{n}{24} \rfloor + 4$

Zhang (1999), Duursma (2003): $n \leq 3672, 3800, 3928$

What extremal codes of type II are known?

n	no of codes	$p \mid Aut(C) $		Aut(C) = 1
8	1	2, 3, 7	ext. QR, QDC	
16	2	2, 3, 5, 7		
24	1	2, 3, 5, 7, 11, 23	ext. QR, QDC	
32	5	2, 3, 5, 7, <mark>31</mark>	ext. QR	
40	\geq 1000	2, 3, 5, 7, 19	QDC	yes
48	\geq 1	2, 3, 23, 47	ext. QR	
56	\geq 166	,13		yes
64	\geq 3270	, 31		
80	\geq 15	2, 5, 19, <mark>79</mark>	ext. QR	
88	\geq 470	2, 3, 7, 11, 43	QDC	
104	\geq 1	2, 3, 13, 17, 103	ext. QR	
112	\geq 1	2,7,	Harada, 2008	
136	\geq 1	2,3,11,67	QDC	

Definition quadratic double circulant code (QDC)

n = 2q + 2 where $q \equiv 3 \mod 8$ is prime.

$$G = \begin{pmatrix} 1 & & 0 & 1 & \dots & 1 \\ & 1 & & 1 & & & \\ & & \ddots & & \vdots & & Q \\ & & & 1 & 1 & & & \end{pmatrix}$$

where Q is the generator matrix of a QR code of length q.

Observations

- Open (up to 136) are n = 72, 96, 120 and 128.
- 2. There is a big gap between the bound n=3928and what we can construct.
- 3. G = Aut(C) (in known examples)
 - In some cases G = 1.
 - If p is a large prime with $p \mid |G|$ then p = n 1or $p = \frac{n-2}{2}$.

stick to the case: $n = 24m \le 3672$

What is known?

codeG = Aut(C)primes in |G|[24,12,8]GolayM242,3,5,7,11,23[48,24,12]ext. QRPSL(2,47)2,3,23,47[72,36,16]? $|G| \le 36$ 2,3,5,7[96,48,20]??2,3,5[120,60,24]??2,3,5,7,19,29de la Cruz

Why is G = Aut(C) of interest?

- If G is nontrivial, it may help to construct the code.
- If G is trivial, C has no structure, it's only a combinatorial object; hard to find if it is large and exists.

Definition

Let p be a prime.

We say that $\sigma \in Aut(C)$ is of type p-(c, f) if σ has c p-cycles and f fixed points.

In particular: n = cp + f

Theorem

Let *C* be an extremal self-dual code (not necessarily of type II) of length $n \ge 48$. If σ is an automorphism of *C* of type p-(c, f), where $p \ge 5$ is a prime, then $c \ge f$.

Proof If f > c then $f > \sum_{i=0}^{\frac{f-c}{2}-1} \lfloor \frac{d}{2^i} \rfloor$, by Yorgov.

Remark

• need $n \ge 48$:

n=44: 5-(4,24) automorphism

• need $p \ge 5$:

n=60: 3-(14,18) is open

Corollary

If $p > \frac{n}{2} \ge 24$ and $p \mid |\operatorname{Aut}(C)|$ for $C = C^{\perp}$ then p = n - 1.

Proof

 $\frac{n}{2} implies <math>c = 1$.

 σ is of type p-(1,1) implies n = p + 1.

• We are not able to classify all extremal self-dual codes of type II which have an automorphism of prime order $p \ge \frac{n}{2}$, i.e. p = n - 1.

• An automorphism of order p = n - 1 exists for extended QR codes.

Definition Let p be an odd prime. The s(p) is the smallest number $n \in \mathbb{N}$ such that $p \mid 2^n - 1$.

Lemma

Suppose that σ has odd prime order. If s(p) is odd then

$$V \not\cong V^* = \operatorname{Hom}_K(V, K)$$

for $1 \neq V$ a simple $K[\sigma]$ -module.

Proof

Suppose $1 \neq V \cong V^*$ simple.

 $\dim_K V$ is even, by Fong's Lemma.

 $\dim_K V = s(p) \text{ is odd.}$

Proposition Let $C = C^{\perp}$. If $\sigma \in Aut(C)$ is of prime order p = n - 1 and $s(p) = \frac{p-1}{2}$ is odd then C is an extended QR code.

Proof: $C = C^{\perp} \subseteq K[\sigma] \oplus K$

Maschke $K[\sigma] = K \oplus V \oplus W = K \oplus Q \oplus N$

V and W are irreducible since $s(p) = \frac{p-1}{2}$

 $V \not\cong V^* = W$, by the above lemma.

Theorem

If C is an extremal self-dual extended QR-code of type II and of length n then n = 8, 24, 32, 48, 80 and 104.

Proof $n = p+1 \le 3928$ where $n \ne 8, 24, 32, 48, 80, 104$

- $G = \mathsf{PSL}(2, p)$
- Choose H ≤ G carefully; cyclic of order 4 or 6;
 Sylow-2-subgroup
- Find in $C^H = \{c \in C \mid ch = c \text{ for all } h \in H\}$ a codeword c with $wt(c) < 4\lfloor \frac{n}{24} \rfloor + 4$.

Observation

If there is an automorphism of prime order p = n - 1we needed $s(p) = \frac{p-1}{2}$ to get that *C* is an extended QR code.

of cases in which $s(p) \neq \frac{p-1}{2}$:

• 6 if 24 | n

- 27 if $n \equiv 8 \mod 24$
- $n \equiv 16 \mod 24$ does not occur since $3 \mid 24m + 16 - 1 = p$

Problem If
$$s(p) \neq \frac{p-1}{2}$$
 then, with $k = \frac{p-1}{s(p)}$, we have

- $C = C^{\perp} \le K^n = K[\sigma] \oplus K = K \oplus V_1 \oplus \ldots \oplus V_k \oplus K$
- $V_i \not\cong V_i^*$

•
$$K^n/C = K^n/C^{\perp} \cong C^* = \operatorname{Hom}_K(C, K)$$

- # of possible C: $2^{k/2}$
- C is invariant under $\alpha : x \to x^2$ of order s(p).
- Try to find a codeword of small order in the fixed point space C^H where $H \leq \langle \alpha \rangle$.

Examples

p	s(p)	k	Num of Codes	d	
1103	29	38	$2^{19} = 524288$	188	not extremal
2687	79	34	$2^{17} = 131072$	452	open
3191	$55 = 5 \cdot 11$	58	$2^{29} = 536870912$	536	open
3823	$637 = 7^2 \cdot 13$	6	2	640	not extremal

List of open cases

p	s(p)	$k = \frac{p-1}{s(p)}$	Num of Codes	d
1399	233	6	2	236
2351	47	50	2 ²⁵	396
2383	397	6	2	400
2687	79	34	2 ¹⁷	452
2767	461	6	2	464
3191	$55 = 5 \cdot 11$	58	2 ²⁹	536
3343	557	6	2	560
3391	113	30	2 ¹⁵	568
3463	577	6	2	580
3601	601	6	2	604

Conjecture

Extremal self-dual codes of type II which have an automorphism of prime order $p \ge \frac{n}{2}$ are extended QR codes except the [32, 16, 8] Reed-Muller code.

Aut([32, 16, 8] Reed-Muller) = AGL(5, 2)

Remark

Let n = 2q + 2 with q an odd prime.

For n = 16, 40, 64, 88 there are extremal self-dual codes of type II with an automorphism of order q which are not equivalent to QDC codes.

Theorem

If C is an extremal self-dual QDC code of type II and of length n then n = 8, 24, 40, 88 and 136.

Proof
$$n = 2q + 2 = 2(q + 1)$$

•
$$\operatorname{Aut}(C) = \operatorname{diag}(\operatorname{PSL}(2,q) \times \operatorname{PSL}(2,q)) \times C_2$$

• Argument similar to the QR case

Methods for smaller primes

Proposition

Suppose that $C = C^{\perp}$ and $\sigma \in Aut(C)$ of prime order $p \neq 2$. If s(p) is even, then c is even.

Proof:
$$K^n = \underbrace{K[\sigma] \oplus \ldots \oplus K[\sigma]}_{c} \oplus \underbrace{k \oplus \ldots \oplus K}_{f}$$

- There is an irreducible $K[\sigma]$ -module $V \cong V^* \neq 1$.
- The multiplicity of V in $K[\sigma]$ is equal to c.
- $K^n/C \cong C^*$

Example (Javier de la Cruz)

Possible primes p in the automorphism group of a putative self-dual [120, 60, 24] code are:

2, 3, 5, 7, 19, 29

13 and 17 are excluded by the proposition above:

s(13) = 12 even, c = 8 (9 not allowed, 10 too big), thus f = n - cp = 16 > 8, a contradiction.