Binary extremal self-dual codes of type II and their automorphisms

Wolfgang Willems
Otto-von-Guericke-Universität Magdeburg

joint work with S. Bouyuklieva and A. Malevich

set up / notations

- $K=\mathbb{F}_{2}, V=K^{n}$
- $\langle v, w\rangle=\sum_{i=1}^{n} v_{i} w_{i}$ for $v, w \in V$
- $C=C^{\perp} \leq V$
(self-dual code)
- $\mathrm{wt}(v)=\left|\left\{i \mid v_{i}=1\right\}\right| \quad$ (weight of v)
- C is called of type II if $4 \mid \operatorname{wt}(c)$ for all $c \in C$
- $\mathrm{d}(v, w)=\left|\left\{i \mid v_{i} \neq w_{i}\right\}\right| \quad$ (distance)
- $\mathrm{d}(C)=\min _{c \neq c^{\prime} \in C} \mathrm{~d}\left(c, c^{\prime}\right)$ (minimum distance of C)
- $\left[n, \frac{n}{2}, d\right]$
(parameters of C)
[length of C, dimension of C, minimum distance of C]

What do we know about self-dual codes of type II ?

Gleason (1970):

$$
8 \mid n
$$

Mallows, Sloane (1973):

$$
d \leq 4\left\lfloor\frac{n}{24}\right\rfloor+4
$$

C is called extremal if

$$
d=4\left\lfloor\frac{n}{24}\right\rfloor+4
$$

Zhang (1999), Duursma (2003): $n \leq 3672,3800,3928$

What extremal codes of type II are known?

n	no of codes	$p\|\|\operatorname{Aut}(C)\|$		Aut $(C)=1$
8	1	$2,3,7$	ext. QR, QDC	
16	2	$2,3,5,7$		
24	1	$2,3,5,7,11,23$	ext. QR, QDC	
32	5	$2,3,5,7,31$	ext. QR	
40	≥ 1000	$2,3,5,7,19$	QDC	yes
48	≥ 1	$2,3,23,47$	ext. QR	
56	≥ 166	$\ldots, 13$		yes
64	≥ 3270	$\ldots, 31$		
80	≥ 15	$2,5,19,79$	ext.QR	
88	≥ 470	$2,3,7,11,43$	QDC	
104	≥ 1	$2,3,13,17,103$	ext. QR	
112	≥ 1	2,7,	Harada, 2008	
136	≥ 1	$2,3,11,67$	QDC	

Definition quadratic double circulant code (QDC) $n=2 q+2$ where $q \equiv 3 \bmod 8$ is prime.

$$
G=\left(\begin{array}{cccccccc}
1 & & & & 0 & 1 & \ldots & 1 \\
& 1 & & & 1 & & & \\
& & \ddots & & \vdots & & Q & \\
& & & 1 & 1 & & &
\end{array}\right)
$$

where Q is the generator matrix of a $Q R$ code of length q.

Observations

1. Open (up to 136) are $\mathrm{n}=72,96,120$ and 128.
2. There is a big gap between the bound $n=3928$ and what we can construct.
3. $G=\operatorname{Aut}(C)$ (in known examples)

- In some cases $G=1$.
- If p is a large prime with $p||G|$ then $p=n-1$ or $p=\frac{n-2}{2}$.
stick to the case:

$$
n=24 m \leq 3672
$$

What is known?

code		$G=\operatorname{Aut}(C)$	primes in $\|G\|$
$[24,12,8]$	Golay	M_{24}	$2,3,5,7,11, \underline{23}$
$[48,24,12]$	ext. QR	$\operatorname{PSL}(2,47)$	$2,3,23, \underline{47}$
$[72,36,16]$	$?$	$\|G\| \leq 36$	$2,3,5,7$
$[96,48,20]$	$?$	$?$	$2,3,5$
$[120,60,24]$	$?$	$?$	$2,3,5,7,19,29 \quad$ de la Cruz

Why is $G=\operatorname{Aut}(C)$ of interest?

- If G is nontrivial, it may help to construct the code.
- If G is trivial, C has no structure, it's only a combinatorial object; hard to find if it is large and exists.

Definition

Let p be a prime.

We say that $\sigma \in \operatorname{Aut}(C)$ is of type $p-(c, f)$ if σ has c p-cycles and f fixed points.

In particular: $\quad n=c p+f$

Theorem

Let C be an extremal self-dual code (not necessarily of type II) of length $n \geq 48$. If σ is an automorphism of C of type $p-(c, f)$, where $p \geq 5$ is a prime, then $c \geq f$.

Proof If $f>c$ then $f>\sum_{i=0}^{\frac{f-c}{2}-1}\left\lceil\frac{d}{2^{i}}\right\rceil$, by Yorgov.

Remark

- need $n \geq 48$:

$$
\mathrm{n}=44: \quad 5-(4,24) \text { automorphism }
$$

- need $p \geq 5$:

$$
\mathrm{n}=60: \quad 3-(14,18) \text { is open }
$$

Corollary

$$
\begin{aligned}
& \text { If } p>\frac{n}{2} \geq 24 \text { and } p\left||\operatorname{Aut}(C)| \text { for } C=C^{\perp}\right. \text { then } \\
& p=n-1 \text {. }
\end{aligned}
$$

Proof

$\frac{n}{2}<p<n$ implies $c=1$.
σ is of type p - $(1,1)$ implies $n=p+1$.

- We are not able to classify all extremal self-dual codes of type II which have an automorphism of prime order $p \geq \frac{n}{2}$, i.e. $p=n-1$.
- An automorphism of order $p=n-1$ exists for extended QR codes.

Definition Let p be an odd prime. The $s(p)$ is the smallest number $n \in \mathbb{N}$ such that $p \mid 2^{n}-1$.

Lemma

Suppose that σ has odd prime order. If $s(p)$ is odd then

$$
V \nsubseteq V^{*}=\operatorname{Hom}_{K}(V, K)
$$

for $1 \neq V$ a simple $K[\sigma]$-module.

Proof

Suppose $1 \neq V \cong V^{*}$ simple.
$\operatorname{dim}_{K} V$ is even, by Fong's Lemma.
$\operatorname{dim}_{K} V=s(p)$ is odd.

Proposition Let $C=C^{\perp}$. If $\sigma \in \operatorname{Aut}(C)$ is of prime order $p=n-1$ and $s(p)=\frac{p-1}{2}$ is odd then C is an extended QR code.

Proof:

$$
C=C^{\perp} \subseteq K[\sigma] \oplus K
$$

Maschke

$$
K[\sigma]=K \oplus V \oplus W=K \oplus Q \oplus N
$$

V and W are irreducible since $s(p)=\frac{p-1}{2}$
$V \not \approx V^{*}=W$, by the above lemma.

Theorem

If C is an extremal self-dual extended $Q R$-code of type II and of length n then $n=8,24,32,48,80$ and 104 .

Proof $\quad n=p+1 \leq 3928$ where $n \neq 8,24,32,48,80,104$

- $G=\operatorname{PSL}(2, p)$
- Choose $H \leq G$ carefully; cyclic of order 4 or 6;

Sylow-2-subgroup

- Find in $C^{H}=\{c \in C \mid c h=c$ for all $h \in H\}$ a codeword c with $\operatorname{wt}(c)<4\left\lfloor\frac{n}{24}\right\rfloor+4$.

Observation

If there is an automorphism of prime order $p=n-1$ we needed $s(p)=\frac{p-1}{2}$ to get that C is an extended QR code.
\# of cases in which $s(p) \neq \frac{p-1}{2}$:

- 6 if $24 \mid n$
- 27 if $n \equiv 8 \bmod 24$
- $n \equiv 16 \bmod 24$ does not occur since $3 \mid 24 m+16-1=p$

Problem If $s(p) \neq \frac{p-1}{2}$ then, with $k=\frac{p-1}{s(p)}$, we have

- $C=C^{\perp} \leq K^{n}=K[\sigma] \oplus K=K \oplus V_{1} \oplus \ldots \oplus V_{k} \oplus K$
- $\quad V_{i} \neq V_{i}^{*}$
- $\quad K^{n} / C=K^{n} / C^{\perp} \cong C^{*}=\operatorname{Hom}_{K}(C, K)$
- \# of possible C: $2^{k / 2}$
- $\quad C$ is invariant under $\alpha: x \rightarrow x^{2}$ of order $s(p)$.
- Try to find a codeword of small order in the fixed point space C^{H} where $H \leq\langle\alpha\rangle$.

Examples

p	$s(p)$	k	Num of Codes	d	
1103	29	38	$2^{19}=524288$	188	not extremal
2687	79	34	$2^{17}=131072$	452	open
3191	$55=5 \cdot 11$	58	$2^{29}=536870912$	536	open
3823	$637=7^{2} \cdot 13$	6	2	640	not extremal

List of open cases

p	$s(p)$	$k=\frac{p-1}{s(p)}$	Num of Codes	d
1399	233	6	2	236
2351	47	50	2^{25}	396
2383	397	6	2	400
2687	79	34	2^{17}	452
2767	461	6	2	464
3191	$55=5 \cdot 11$	58	2^{29}	536
3343	557	6	2	560
3391	113	30	2^{15}	568
3463	577	6	2	580
3601	601	6	2	604

Conjecture

Extremal self-dual codes of type II which have an automorphism of prime order $p \geq \frac{n}{2}$ are extended QR codes except the $[32,16,8]$ Reed-Muller code.

Aut $([32,16,8]$ Reed-Muller $)=\operatorname{AGL}(5,2)$

Remark

Let $n=2 q+2$ with q an odd prime.

For $n=16,40,64,88$ there are extremal self-dual codes of type II with an automorphism of order q which are not equivalent to QDC codes.

Theorem

If C is an extremal self-dual QDC code of type II and of length n then $n=8,24,40,88$ and 136 .

Proof $\quad n=2 q+2=2(q+1)$

- $\operatorname{Aut}(C)=\operatorname{diag}(\operatorname{PSL}(2, q) \times \operatorname{PSL}(2, q)) \times C_{2}$
- Argument similar to the QR case

Methods for smaller primes

Proposition

Suppose that $C=C^{\perp}$ and $\sigma \in \operatorname{Aut}(C)$ of prime order $p \neq 2$. If $s(p)$ is even, then c is even.

$$
\text { Proof: } K^{n}=\underbrace{K[\sigma] \oplus \ldots \oplus K[\sigma]}_{c} \oplus \underbrace{k \oplus \ldots \oplus K}_{f}
$$

- There is an irreducible $K[\sigma]$-module $V \cong V^{*} \neq 1$.
- The multiplicity of V in $K[\sigma]$ is equal to c.
- $K^{n} / C \cong C^{*}$

Example (Javier de la Cruz)

Possible primes p in the automorphism group of a putative self-dual [120, 60, 24] code are:
$2,3,5,7,19,29$

13 and 17 are excluded by the proposition above:
$s(13)=12$ even, $c=8$ (9 not allowed, 10 too big),
thus $f=n-c p=16>8$, a contradiction.

