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Abstract: A Metis design is one for which v = r + k + 1. This paper deals with Metis
designs that are quasi-residual. The parameters of such designs and the corresponding
symmetric designs can be expressed by Fibonacci numbers. Although the question of
existence seems intractable because of the size of the designs, the nonexistence of corre-
sponding di¤erence sets can be dealt with in a substantive way.

We also recall some inequalities for the number of �xed points of an automporphism
of a symmetric design and suggest possible connections to the designs that would be the
symmetric extensions of Metis designs.
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1. QUASI-RESIDUAL METIS DESIGNS

In the paper [16] by McDonough, Mavron, and the author, a method of amalga-
mating nets and designs was presented that led to quasi-symmetric designs similar
to those discovered by Bracken, McGuire, and the author [3]. At various stages
of the construction, restrictions on the designs involved needed to be imposed in
order to make the �nal amalgamation have desired regularity properties. One par-
ticular type of design was a generalization of Hadamard designs, and we named
them Metis designs, in honor of Hadamard�s ancestral home, Metz. They are block
designs whose standard parameter set (v; b; r; k; �) satis�es the additional relation
v = r+ k+ 1. Symmetric Metis designs are indeed Hadamard designs. The family
of Metis designs M has the following property: regard the parameter set for any
design as a point in R5 on the variety D de�ned by the two standard design rela-
tions vr = bk and r(k � 1) = �(v � 1). Then if a design belongs to M, there is
a line in D through the corresponding point such that all the points on that line
satisfy the relation de�ning M. There are other common families of designs with
such a linear property. The nature of lines in D has been explored in the somewhat
speculative preprint [22]. For example, the parameter set of a design that is not
degenerate in a certain sense lies on four lines in D.
It seems a natural question to ask for Metis designs that are also quasi-residual.

The parameters would satisfy the two equations

v = r + k + 1

r = k + �;
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along with the two standard equations. Solving the four equations in terms of r,
we get k = (

p
(5r + 4)r � r)=2. Let d = gcd(5r + 4; r). Then dj4, and (5r + 4)=d

and r=d must separately be squares. Reading modulo 4, we �nd that d = 2 will
not work, and so d = 1 or 4. Then 5r + 4 and r themselves must be squares.
Put 5r + 4 = x2 and r = y2, with x; y > 0. Let Ft and Lt be the t-th Fibonacci
and Lucas numbers, respectively, starting with F0 = 0 and L0 = 2 (see the books
by Koshy [13] or Vajda [20], for example, which were sources for several of the
citations). One has

Lemma 1. [15, Lemma 2] For some t � 1, x = L2t and y = F2t.

We substitute these values for x and y in the design parameters, make use of the
relation L2t = F2t+1 + F2t�1 [20, Formula (6)], and invoke the basic recurrence
Ft+2 = Ft+1 + Ft, to obtain

v = FmFm�1 + 1; b = Fm+1Fm�1; r = F
2
m�1; k = Fm�1Fm�2; � = Fm�1Fm�3;

where m is odd. The parameters (v0; k0; �0) for a symmetric design having the Metis
design as its block residual are v0 = b0 = b + 1, r0 = k0 = r, and �0 = �. By the
relation Fm+1Fm�1 + 1 = F 2m [20, Formula (29)],

v0 = F 2m; k
0 = F 2m�1; �

0 = Fm�1Fm�3:

The order of this design is n0 = k0 � �0 = F 2m�1 � Fm�1Fm�3 = Fm�1Fm�2.
Prompted by the appearance of the Fibonacci numbers, we call a symmetric design
Fm with parameters (v0; k0; �0) = (F 2m; F

2
m�1; Fm�1Fm�3), m odd, a Fibonacci de-

sign. As we shall concentrate on these symmetric designs, we drop the dashes for
clarity.

2. EXISTENCE OF FIBONACCI DESIGNS

The design F3 is the trivial (4; 1; 0) design whose blocks are the singleton sets, so
we may assume that m > 3 (m always odd) from now on. There are 78 inequivalent
(25; 9; 3) designs F5, a classi�cation due to Denniston [7]. The �rst such design was
presented by Bhattacharya [1], and an F5 appears as one of the sequence of designs
constructed by Mitchell [17].
The initial step is to check whether the parameter set passes the Bruck-Ryser-

Chowla criterion (see, for example, [9, Theorem 10.3.1]). The variety parameter
v = F 2m is even just when m is also divisible by 3, that is, when m � 3 (mod 6).
This is a consequence of the periodicity of the Ft modulo any given integer; see [21]
for generalities. In this case, the demand is that the order Fm�1Fm�2 be a square.
As consecutive Fibonacci numbers are relatively prime [20, p. 73], both Fm�1 and
Fm�2 would have to be squares. But for t > 0, Ft is a square just at t = 1; 2; 12
[6]. Thus the only existing design with v even is F3.
Now suppose that v is odd, so that m � �1 (mod 6). Then v = F 2m � 1 (mod

4), and the Diophantine equation of the Bruck-Ryser-Chowla theorem is

Z2 = nX2 + �Y 2 = Fm�1Fm�2X
2 + Fm�1Fm�3Y

2:

Here there is an easy solution: X = Y = 1 and then Z = Fm�1!
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2.1. Di¤erence set development

With that obstacle to existence removed for m � �1 (mod 6), how might one
construct Fm? A natural thing to try is to produce Fm as the development of a
di¤erence set (�development�for short). In what follows, z� is the square-free part
of the integer z.

Theorem 1. Suppose that Fm is the development of a di¤erence set in a group
(Abelian or not), with m � �1 (mod 6). Let p be a prime dividing Fm. Then
any prime dividing either F �m�1 or F

�
m�2 has odd order modulo p. Moreover, p �

1 (mod 8).

Proof. The theorem is a consequence of [14, Theorem 4.4], which can be para-
phrased in the present situation to say that for no prime p dividing v is there a
prime dividing n� that has even order modulo p. As v = F 2m, such p are the prime
divisors of Fm. Because Fm�1 and Fm�2 are relatively prime, n� = F �m�1F

�
m�2,

and the primes dividing n� are those dividing either F �m�1 or F
�
m�2. Thus such

primes must have odd order modulo p. Now F 2m�1+1 = FmFm�2, by [20, Formula
(29)] again. Put Fm�1 = a2F �m�1. Then a

4(F �m�1)
2 � �1 (mod p). Since all the

primes dividing F �m�1 must have odd order modulo p, F
�
m�1 itself has odd order

modulo p. Thus if u is the odd factor of p � 1, then (au)4 � �1 (mod p). Hence
the multiplicative group of Zp has order divisible by 8, making p � 1 (mod 8).

Corollary 1. If Fm is a development for some m with m � �1 (mod 6),
then in fact m � �1 (mod 12).

Proof. By the observation on square Fibonacci numbers, n� 6= 1. From the
theorem, all prime divisors p of Fm have p � 1 (mod 8), so that Fm � 1 (mod 8).
The period of congruences modulo 8 of the Ft is 12, and the residue sequence is

0; 1; 1; 2; 3; 5; 0; 5; 5; 2; 7; 1; 0; 1; 1; : : : :

Thus m � �1 (mod 12).

For instance, suppose, indeed, that m � �1 (mod 12). When 5 divides m, 5 also
divides Fm. So if m � �25 (mod 60), then m � �1 (mod 12) all right; but Fm
has the prime divisor 5 6� 1 (mod 8), and no Fm can be a development.
Even if all primes p dividing Fm do have p � 1 (mod 8), every prime dividing

F �m�1 or F
�
m�2 must have odd order modulo such p if Fm is a development. Here

is a consequence:

Theorem 2. Let m � 1� 36 (mod 216). Then no Fm is a development.

Proof. Here m�1 = 36(6h�1) for some h. By Lucas�law of repetition, as given
more sharply in [5, Theorem X] (referenced in [19, p. 13]), the exact power of 3
dividing Fm�1 is 33, the exact power dividing F36. Thus 3jF �m�1. In addition, m �
5 (mod 8) gives Fm � 2 (mod 3), from the sequence 0; 1; 1; 2; 0; 2; 2; 1; 0; : : : of
remainders of Ft modulo 3. Thus for some prime p dividing Fm, p � 2 (mod 3), so
that

�
p
3

�
= �1. If an Fm is a development, Theorem 1 implies that p � 1 (mod 8).

Then
�
3
p

�
= �1, from quadratic reciprocity. But that means 3 cannot have odd

order modulo p.

There is a similar approach for the m � �1 (mod 12), for which 2 is a divisor
of F �m�2. If 2 has even order modulo Fm, then for some prime p dividing Fm, 2
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will also have even order modulo p, and a development model for Fm will be ruled
out. The computation of the order is rather formidable, and the m for which this
works do not seem to follow an obvious pattern. The �rst few are m = 35, 47, 59,
71, 95, 107, 119, 143, 155, 167, 191, and 203. (In point of fact, m = 35, 95, 119,
143, 155, and 203 are also ruled out for Fm developments by prime factors of Fm
not congruent to 1 modulo 8.)
We have F 2m�1 � �1 (mod Fm), and in addition, F 2m�2 � �1 (mod Fm), since

Fm�2 � �Fm�1 (mod Fm). Thus if an Fm is a development and either of Fm�1
or Fm�2 is square-free, one of these congruences is contradicted by the fact that
F �m�1 and F

�
m�2 must have odd order modulo any prime divisor of Fm. Such a

contradiction is in fact what happens for all m � �1 (mod 12) with m < 1000,
except for m = 277, 457, 577, and 877. (The web page by B. Kelly [11] contains
factorizations of the �rst thousand Fibonacci numbers, along with tables that can
be used for the �rst ten thousand.) For the �rst three of these m, the possibility
that Fm exists as a development is ruled out by a factor of Fm not congruent to 1
modulo 8. Form = 877, the prime 1753 divides F877, and F875 is exactly divisible by
53. Thus 5 is in the square-free part of F875. As the order of 5 modulo 1753 is 584,
the odd-order requirement does not hold. In short, no Fm for m � �1 (mod 12)
with m < 1000 can be a development. That F5 is not one is recorded in [14, Table
4-1]; and that a (169; 64; 24) design F7 cannot be a development is presented in
[12]. Whether such a design exists at all seems to be unknown.
All of these results suggest the conjecture that apart from the trivial design F3,

no Fibonacci design is a development of a di¤erence set�and this seems to depend
on mysterious properties of Fibonacci numbers.

3. BOUNDS

A standard approach to constructing symmetric designs is to prescribe a group
of automorphisms, thereby limiting the choices needed to be explored in the con-
struction. The investigation of the possible orbit structure of an automorphism of
speci�ed order is an important starting point. The fact that the cycle structures
of the permutations induced on the points and blocks by an automorphism are the
same [18] is a key ingredient.
There are various bounds on the number of �xed points of an automorphism

of a symmetric design; some are summarized and proved in [14, Section 3.1]. We
shall present one due to Bowler [2, Lemma 2.5 (i)] with essentially his proof. This
bound was later generalized by Feit [8].

Theorem 3. The three-block bound: Let � be an automorphism of a symmetric
(v; k; �) design D of order n = k � �, and let � have f �xed points. Then if the
order of � is at least 3, f � v � 3n.

Proof. Take l to be the length of a longest cycle in the action of � on the blocks
of D, and let B1, B2, and B3 be three distinct blocks in that cycle. With jXj
denoting the size of a set X, we have jB1 [B2 [B3j = 3k � 3� + jB1 \B2 \B3j.
Since any �xed point of � in one of the Bi is in all three, there are no �xed points
in B1 [B2 [B3 �B1 \B2 \B3. Thus

f � v � jB1 [B2 [B3 �B1 \B2 \B3j = v � 3(k � �) = v � 3n:
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Suppose that equality holds in the three-block bound: f = v � 3n. Continue
with the notation in the proof, and let B be a representative block in the chosen
longest cycle of �. Then the complement of B1 [B2 [B3 �B1 \B2 \B3 is the set
F of �xed points of �; and B1 \ B2 \ B3 must be the set F0 of �xed points in B,
which is the set of �xed points in each Bi. The setW = B1[B2[B3�B1\B2\B3
is the union of all the orbits of � other than the �xed points. Each such orbit must
accordingly have a point in B. Moreover, B cannot contain a complete such orbit,
for then it would be in all the Bi and so in B1\B2\B3 and yet not consist of �xed
points. In particular, � cannot have a cycle with length t > 1 and relatively prime
to l. Because W = B1 [B2 [B3�B1 \B2 \B3, B3 � F0 [ (W � (B1 [B2)). With
jF0j = f0, then since jW j = 3n and F0 is disjoint fromW , jF0 [ (W � (B1 [B2))j =
2f0 + k � 2�. If l � 4, the same holds for a fourth block B4 in the orbit, in place
of B3. Then B3 \ B4 � F0 [ (W � (B1 [ B2)), so that � � 2f0 + k � 2�, and
f0 � k � 3n=2.
Assume now that l � 5. If B contains a point x in a 2-cycle of �, then x 2

B \ B�2 \ B�4 but x =2 F0. Similarly, if x and y are together in a 3- or 4- cycle of
� and in B, then with proper choice of the Bi, one would �nd x 2 B1 \ B2 \ B3.
So 2-cycles of � on points do not meet B at all, and 3- or 4- cycles meet B at most
once. Likewise, if x; y; z 2 B are in a common t-cycle of � with t � 5, then as t � l,
x 2 B1 \ B2 \ B3 for certain Bi. Thus a t-cycle of � with t � 5 meets B at most
twice.
Now let ct be the number of t-cycles of � for t > 1. Then the preceding

considerations give
k � f0 + c3 + c4 + 2

X
t�5

ct: (1)

Since v = f +
P

t�2 tct, we have

3n = v � f =
X
t�2

tct � 5=2(c3 + c4 + 2
X
t�5

ct): (2)

Therefore f0 � k � 6n=5. But f0 � k � 3n=2, and that is a contradiction. Thus:

Corollary 2. If equality holds in the three-block inequality, then the length l
of the longest cycle in � is at most 4. Moreover, the order of � is l.

The order statement follows from the comment that cycle lengths greater than 1
must be relatively prime to l.
It is not hard to �nd designs with automorphisms of order 3 or 4 meeting the

three-block bound. For example, let Q be a normalized Hadamard matrix of order 4
(see any of [9, 10, 14], for instance). It has an automorphism of order 3 �xing the �rst
row and �rst column. If H is an Hadamard matrix of order h, then the Kronecker
product Q 
 H inherits an automorphism of order 3 �xing the �rst h rows and
columns. The corresponding Hadamard design is a (4h�1; 2h�1; h�1) symmetric
design of order h with an automorphism of order 3 having h�1 = (4h�1)�3h �xed
points. Similarly, a normalized Hadamard matrix E of order 8 has an automorphism
of order 4 �xing the �rst two rows and columns, switching the third and fourth, and
cycling the last four (on proper ordering; this may be seen from the construction of
E as a Sylvester matrix). Then E
H leads to an (8h�1; 4h�1; 2h�1) Hadamard
design of order 2h having an automorphism of order 4 with both 2-cycles and 4-
cycles and 2h� 1 = (8h� 1)� 3� (2h) �xed points.
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Our interest here is that appropriate Fibonacci designs may be candidates for
designs with automorphisms meeting the three-block bound. Unfortunately, there is
not much evidence! The design F3 has an automorphism of order 3 with 1 = 4�3�1
�xed points. More interestingly, several F5 designs can be constructed to have an
automorphism of order 3 with 7 = 25� 3� 6 �xed points. Thus in the notation of
[1], Bhattacharya�s design has the automorphism

(X1Y1Z1)(X2Y2Z2)(X3Y3Z3)(X4Y4Z4)(V1V2V3)(W1W3W2)

on points.
So can such an F7, that is, a (169; 64; 24) design, be created? It is tantalizing to

observe that the parameters of the (41; 16; 6) design constructed by Bridges, Hall,
and Hayden [4] (which, in fact, has an automorphism of order 3 with 11 = 41�3�10
�xed points) and (169; 64; 24) are given by t = 2 and t = 3 in the sequence

v =
2q(qt � 1)
q � 1 + 1; k = qt; � =

1

2
qt�1(q � 1)

for q = 4. This same parameter sequence, but with q a power of an odd prime,
corresponds to a family of designs discovered by A. E. Brower that is presented
in [10, Section 11.8]. Incidentally, this parameter set does not always pass the
Bruck-Ryser-Chowla test. One has n = qt�1(q + 1)=2 and v � 1 (mod 4), so the
Diophantine equation is

2Z2 = qt�1((q + 1)X2 + (q � 1)Y 2):

If q is an even power of 2 or t is even, this has the solution X = 1; Y = 1; Z =
p
qt.

If neither condition holds, qt�1 is a square that can be absorbed into X2 and Y 2.
The solvability criterion of Legendre here comes down to the requirement that �1
be a square modulo each prime divisor p of (q + 1)� (see [14, pp. 45�46], among
others); that is, that p � 1 (mod 4). For odd powers q of 2, it is a pleasant exercise
to show that only q = 8 passes: 2� 122 = 9� 52 + 7� 32.
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