SOME CONNECTIONS BETWEEN SELF-DUAL CODES, COMBINATORIAL DESIGNS AND SECRET-SHARING SCHEMES

Stefka Bouyuklieva, Zlatko Varbanov
Department of Mathematics and Informatics
Veliko Tarnovo University, Bulgaria

Algebraic Combinatorics and Applications 2010
Thurnau, April 11-18, 2010

INTRODUCTION

Secret sharing is an important topic in cryptography and has applications in information security.

The age-old way to share a secret, such as the 3 -digit combination 17-14-92 (combination with 100 positions) is to give part of the secret to each user: 17 to Andrew, 14 to Bryan, and 92 to Chris.

Shamir (1979) and Blakely (1979) - (S,T) threshold schemes for secret sharing
A secret is transformed into a list of S shares in such manner that:
(P1) knowledge of any T shares reveals the secret, but
(P2) knowledge of $T-1$ or fewer shares gives no information whatsoever about the secret.

McEliece and Sarwate (1981) - a formulation of (S, T) threshold schemes in terms of q-ary MDS codes of block length $n=S+1$ with q^{k} codewords.

SECRET-SHARING

Secret sharing scheme - sharing a secret among a finite set of people or entities such that only some distinguished subsets of these have access to the secret.

Example:

$$
\begin{gathered}
S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}, \quad U=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}, \quad p>n \\
U^{*}=\left\{u_{s_{1}}, u_{s_{2}}, \ldots, u_{s_{n}}\right\}
\end{gathered}
$$

Access structure - the collection of all such distinguished subsets that have access to the secret.

ACCESS STRUCTURE

If \mathcal{P} is the set of parties involved in the secret-sharing, then

$$
\Gamma=\{A \subset \mathcal{P}: A \text { can uncover the secret }\}
$$

$A \in \Gamma$ - minimum access group if

$$
\begin{gathered}
B \in \Gamma \text { and } B \subseteq A \text { implies } B=A \\
\bar{\Gamma}=\{A \mid A \text { is a minimum access group }\}
\end{gathered}
$$

$\bar{\Gamma}$ - the minimum access structure.
In general, determining the minimum access structure is a difficult problem.

BINARY LINEAR CODES

$G F(2)$ - a field with 2 elements.
Binary linear $[n, k]$ code C of length \mathbf{n} - k-dimensional linear subspace of $G F(2)^{n}$.

Weight of a codeword $c \in C(w t(c))$ - the number of nonzero components of c.
Minimum weight (distance):
$d=d(C)=\min \{\omega t(c) \mid c \in C, c \neq 0\} \rightarrow[n, k, d]$ code .
Generator matrix of $C-k \times n$ matrix with entries in $G F(2)$ whose rows are a basis of C.

Weight enumerator of $C: C(y)=\sum_{i=0}^{n} A_{i} y^{i}$

SELF-DUAL CODES

- Inner product $-x . y=\sum_{i=1}^{n} x_{i} y_{i}, \quad x, y \in G F(2)^{n}$
- Dual code $-C^{\perp}=\left\{x \in G F(2)^{n} \mid x . c=0, \forall c \in C\right\}$
- C - self-orthogonal code if $C \subseteq C^{\perp}$
- C - self-dual code if $C=C^{\perp}(k=n / 2)$
- All codewords in a binary self-orthogonal code have even weights
- Doubly-even code - all its weights are divisible by 4
- Singly-even self-dual code - contains a codeword of weight $w \equiv 2 \quad(\bmod 4)$

EXTREMAL SELF-DUAL CODES

If C is a binary self-dual $[n, n / 2, d]$ code then

$$
d \leq 4[n / 24]+4
$$

except when $n \equiv 22(\bmod 24)$ when

$$
d \leq 4[n / 24]+6
$$

When n is a multiple of 24 , any code meeting the bound must be doubly-even.

THE SHADOW OF A SINGLY EVEN CODE

C - singly even self-dual $[n, k=n / 2, d]$ code
C_{0} - its doubly even subcode:

$$
\begin{gathered}
C_{0}=\{v \in C \mid w t(v) \equiv 0 \quad(\bmod 4)\} \\
\operatorname{dim} C_{0}=k-1 \\
C_{2}=\{v \in C \mid w t(v) \equiv 2 \quad(\bmod 4)\} \\
C=C_{0} \cup C_{2} \\
\Rightarrow C_{0}^{\perp}=C_{0} \cup C_{1} \cup C_{2} \cup C_{3}
\end{gathered}
$$

$S=C_{0}^{\perp} \backslash C=C_{1} \cup C_{3}$ - the shadow of C

$\underline{t-(v, k, \lambda) \text { DESIGNS }}$

A $t-(v, k, \lambda)$ design is:

- a set of v points \mathcal{P};
- a family of blocks $\mathcal{B}=\{B \subset \mathcal{P},|B|=k\} ;$
- an incidence relation between them such that $v=|\mathcal{P}|$, every block is incident with precisely k points, and every t distinct points are incident with λ blocks.

Any t-design is also a $s-\left(v, k, \lambda_{s}\right)$ design for $s \leq t$:

$$
\lambda_{s}=\frac{(v-s)}{(k-s)} \lambda_{s+1}(s=1, \ldots, t-1), \lambda_{t}=\lambda
$$

Assmus-Mattson Theorem

Binary case:

- $C-[n, k, d]$ binary linear code;
- C^{\perp} - its orthogonal $\left[n, n-k, d^{\perp}\right]$ code;
- t - an integer, $0<t<d$, such that C^{\perp} has not more than $d-t$ nonzero weights $w \leq n-t$.

Then:

- the supports of all codewords in C of weight u form a t-design;
- the supports of all codewords in C^{\perp} of weight w, $d^{\perp} \leq w \leq n-t$, form a t-design.

SECRET-SHARING ($n-1$ PARTIES)

- $s \in G F(q)$ - the secret;
- $G=\left(G_{0} G_{1} \ldots G_{n-1}\right)$ - a generator matrix of a code C of length n;
- $z \in G F(q)^{k}$ - the information vector, $z G_{0}=s$;
- $u=z G$;
- to each party we assign $u_{i}, i=1, \ldots, n-1$;

A scheme is said to be perfect if a group of shares either determines the secret or gives no information about the secret.

COMPUTING THE SECRET

s is determined by the set of shares $\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{m}}\right\}$

$$
\begin{gathered}
\Longleftrightarrow G_{0}=\sum_{j=1}^{m} x_{j} G_{i_{j}}, 1 \leq i_{1}<\cdots<i_{m} \leq n-1 \\
\Longleftrightarrow \exists\left(1,0, \ldots, 0, c_{i_{1}}, 0, \ldots, 0, c_{i_{m}}, 0 . ., 0\right) \in C^{\perp},\left(c_{i_{1}}, \ldots, c_{i_{m}}\right) \neq 0
\end{gathered}
$$

So by solving this linear equation, we find x_{j} and from then on the secret by

$$
s=z G_{0}=\sum_{j=1}^{m} x_{j} z G_{i_{j}}=\sum_{j=1}^{m} x_{j} u_{i_{j}}
$$

Secret-sharing based on an SD code

Dougherty, Mesnager, Sole, 2008
D_{i} - the 1-design formed from the vectors of weight i

$$
\Gamma=\left\{A \mid A \text { is the support of a vector } v \in C \text { with } v_{0}=1\right\} .
$$

- Any group of size less than $d-1$ cannot recover the secret.
- There are $\lambda_{1}\left(D_{i}\right)$ groups of size $i-1$ that can recover the secret.
- It is perfect, which means that a group of shares either determines the secret or gives no information about the secret.
- When the parties come together $\left\lfloor\frac{d-1}{2}\right\rfloor$ cheaters can be found.

Secret-sharing based on an SD code

Bouyuklieva, Varbanov, 2009
C - a singly-even $\mathrm{SD}[n, n / 2, d]$ code with $w t(S)=1$. Then, the vectors in C_{2} (up to equivalence) are in the form ($1, c_{1}, c_{2}, \ldots, c_{n-1}$).

- Any group of size less than $d-1$ cannot recover the secret.
- There are A_{i} groups of size $i-1$ that can recover the secret $(i \equiv 2(\bmod 4))$.
- It is perfect, which means that a group of shares either determines the secret or gives no information about the secret.
- When the parties come together $\left\lfloor\frac{d-1}{2}\right\rfloor$ cheaters can be found.

TWO-PART SECRET SHARING

Bouyuklieva, Varbanov, 2009

- $s^{\prime} \in G F(q)$ - the second part of the secret;
- $z \in G F(q)^{k}, s^{\prime}=s+z G_{1}+z G_{2}=z\left(G_{0}+G_{1}+G_{2}\right)$;
- $u=z G$, to each party we assign $u_{i}, i=1, \ldots, n-1$;
s^{\prime} is determined by the set of shares $\left\{u_{i_{3}}, u_{i_{4}}, \ldots, u_{i_{m}}\right\}$

$$
\begin{gathered}
\Longleftrightarrow G_{2}=G_{0}+G_{1}+\sum_{j=3}^{m} x_{j} G_{i_{j}}, 1 \leq i_{1}<\cdots<i_{m} \leq n-1 \\
\Longleftrightarrow \exists\left(1,1,1,0, \ldots, 0, c_{i_{3}}, 0, \ldots, 0, c_{i_{m}}, 0 . ., 0\right) \in C^{\perp},\left(c_{i_{3}}, \ldots, c_{i_{m}}\right) \neq 0
\end{gathered}
$$

TWO-PART SECRET SHARING

Bouyuklieva, Varbanov, 2009
Let C be a binary singly-even $\mathrm{SD}[n, n / 2, d]$ code with the properties:

- $w t(S)=1$;
- the set of codewords of weight i in C_{0} without the common zero coordinate holds a 2 -design.

Then the access structure of the two parts are:

$$
\begin{gathered}
\Gamma_{1}=\left\{A \mid A \text { is the support of a vector } v \in C_{2}\left(v_{0}=1\right)\right\} . \\
\Gamma_{2}=\left\{A \mid A \text { is the support of a vector } v \in C_{2}\right. \\
\text { with } \left.v_{0}=v_{1}=v_{2}=1\right\} .
\end{gathered}
$$

TWO-PART SECRET SHARING

Let C be a binary doubly-even $\mathrm{SD}[n, n / 2, d]$ code with the property that the set of codewords of weight i in C holds a $3-(v, k, \lambda)$ design where $v=n$ and $k=i$.

Then the access structure of the two parts are:

$$
\Gamma_{1}=\left\{A \mid A \text { is the support of a vector } v \in C \text { with } v_{0}=1\right\}
$$

$$
\Gamma_{2}=\{A \mid A \text { is the support of a vector } v \in C
$$

$$
\text { with } \left.v_{0}=v_{1}=v_{2}=1\right\}
$$

Lets mention, that if a group of participants can recover the second part, to recover then the first part they need the participants 1 and 2, in general. But there are groups which can recover only the first part but not the second.

RESULTS (ONE-PART)

Let C be singly-even SD code with parameters:

- $[24 m+18,12 m+9,4 m+4]$ or
- $[24 m+10,12 m+5,4 m+2]$ or
- $[24 m+2,12 m+1,4 m+2]$

In these cases there exist codes with $w t(S)=1$.

$$
\Gamma=\left\{A \mid A \text { is the support of a vector } v \in C_{2}\right\}
$$

Example: C is $[42,21,8]$ code with $w t(S)=1$ and weight enumerator $1+164 y^{8}+697 y^{10}+\ldots+164 y^{34}+y^{42}$.

The access structure contains 164 groups of size 7,697 groups of size 9 , etc.

RESULTS (TWO-PART)

Let C be singly-even $\mathrm{SD}[24 m+2,12 m+1,4 m+2]$ code with $w t(S)=1$. In this case the set of codewords of weight i in C_{2} (without the common all-one coordinate) holds a 2 -design.

Example: C - singly-even SD $[50,25,10]$ code with $w t(S)=1$ and weight enumerator $1+196 y^{10}+11368 y^{12}+\ldots+y^{50}$.

- For the first part of the secret, the access structure contains 196 groups of size 9 .
- For the second part we take these 36 blocks of D that have 1 in the first position. Without the first point, the blocks of D hold $1-(48,8,6)$ design D_{1}.
- We take these 6 blocks of D_{1} that have 1 in the first position. Then, for the second part of the secret, the access structure consists of 6 groups of size 7 .

RESULTS (TWO-PART)

- To recover the two-part secret should first be used the groups of size 7. They recover the second part of the secret.
- After that to recover the other part of the secret we use these groups (they are of size 8 already) and the other 30 groups of size 8 . We add a new participant that has ones in these 36 groups (the other entries are 0).
- At last, we use the obtained 36 groups of size 9 , and the other 160 groups of size 9 to recover the first part of the secret.

RESULTS (TWO-PART)

Let C be doubly-even extremal SD $[24 m+8,12 m+4,4 m+4]$ code. In this case the set of codewords of weight i in C holds a 3-design.

Example: C - doubly-even extremal SD $[32,16,8]$ code with weight enumerator $1+620 y^{8}+13888 y^{12}+\ldots+y^{32}$. The set of the codewords of weight 8 holds $3-(32,8,7)$ design D.

- There are 155 blocks with 1 in the first position. Then, for the first part of the secret, the access structure contains 155 groups of size 7 . These blocks without first point hold $2-(31,7,7)$ design D^{\prime}.
- For the second part we take these 35 blocks of D^{\prime} that have 1 in the first position. Without the first point, these blocks hold $1-(30,6,7)$ design $D^{\prime \prime}$.
- We take these 7 blocks of $D^{\prime \prime}$ that have 1 in the first position. Then, for the second part of the secret, the access structure consists of 7 groups of size 5 .

RESULTS (TWO-PART)

- To recover the two-part secret should first be used the groups of size 5. They recover the second part of the secret.
- After that to recover the other part of the secret we use these groups (they are of size 6 already) and the other 28 groups of size 6 . We add a new participant that has ones in these 35 groups (the other entries are 0).
- At last, we use the obtained 35 groups of size 7 , and the other 120 groups of size 7 to recover the first part of the secret.

References

[1] R. J. McEliece, D. V. Sarwate, "On sharing secrets and Reed-Solomon codes", Comm. ACM 24 (1981), no.9, pp.583-584.
[2] J. L. Massey, "Some applications of coding theory in cryptography", Codes and Ciphers, Cryptography and Coding IV (1995), Formara Lt, Esses, England, pp.33-47.
[3] S. T. Dougherty, S. Mesnager, P. Sole, "Secret sharing schemes based on selfdual codes", Proc. IEEE Inf. Theory Workshop, ITW 2008, Porto, Portugal.

THANKS FOR YOUR ATTENTION!

