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INTRODUCTION

Secret sharing is an important topic in cryptography and has applications in
information security.

The age-old way to share a secret, such as the 3-digit combination 17-14-92
(combination with 100 positions) is to give part of the secret to each user: 17 to
Andrew, 14 to Bryan, and 92 to Chris.

Shamir (1979) and Blakely (1979) – (S, T ) threshold schemes for secret sharing

A secret is transformed into a list of S shares in such manner that:

(P1) knowledge of any T shares reveals the secret, but

(P2) knowledge of T -1 or fewer shares gives no information whatsoever about the
secret.

McEliece and Sarwate (1981) – a formulation of (S, T ) threshold schemes in
terms of q-ary MDS codes of block length n = S + 1 with qk codewords.
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SECRET-SHARING

Secret sharing scheme – sharing a secret among a finite set of people or
entities such that only some distinguished subsets of these have access to the secret.

Example:

S = {s1, s2, . . . , sn}, U = {u1, u2, . . . , up}, p > n

U∗ = {us1 , us2 , . . . , usn}

Access structure – the collection of all such distinguished subsets that have
access to the secret.
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ACCESS STRUCTURE

If P is the set of parties involved in the secret-sharing, then

Γ = {A ⊂ P : A can uncover the secret}

A ∈ Γ - minimum access group if

B ∈ Γ and B ⊆ A implies B = A

Γ = {A | A is a minimum access group}

Γ - the minimum access structure.

In general, determining the minimum access structure is a difficult problem.
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BINARY LINEAR CODES

GF (2) – a field with 2 elements.

Binary linear [n, k] code C of length n – k-dimensional linear subspace of
GF (2)n.

Weight of a codeword c ∈ C (wt(c)) – the number of nonzero components of c.

Minimum weight (distance):
d = d(C) = min{wt(c)|c ∈ C, c 6= 0} → [n, k, d] code.

Generator matrix of C – k × n matrix with entries in GF (2) whose rows
are a basis of C.

Weight enumerator of C: C(y) =
∑n

i=0 Aiy
i

5



SELF-DUAL CODES

• Inner product – x.y =
∑n

i=1 xiyi, x, y ∈ GF (2)n

• Dual code – C⊥ = {x ∈ GF (2)n | x.c = 0, ∀c ∈ C}
• C – self-orthogonal code if C ⊆ C⊥

• C – self-dual code if C = C⊥ (k = n/2)

• All codewords in a binary self-orthogonal code have even weights

• Doubly-even code – all its weights are divisible by 4

• Singly-even self-dual code – contains a codeword of weight w ≡ 2 (mod 4)
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EXTREMAL SELF-DUAL CODES

If C is a binary self-dual [n, n/2, d] code then

d ≤ 4[n/24] + 4

except when n ≡ 22 (mod 24) when

d ≤ 4[n/24] + 6

When n is a multiple of 24, any code meeting the bound must be doubly-even.
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THE SHADOW OF A SINGLY EVEN CODE

C - singly even self-dual [n, k = n/2, d] code

C0 - its doubly even subcode:

C0 = {v ∈ C | wt(v) ≡ 0 (mod 4)}
dimC0 = k − 1

C2 = {v ∈ C | wt(v) ≡ 2 (mod 4)}
C = C0 ∪ C2

⇒ C⊥0 = C0 ∪ C1 ∪ C2 ∪ C3

S = C⊥0 \ C = C1 ∪ C3 - the shadow of C
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t− (v, k, λ) DESIGNS

A t− (v, k, λ) design is:

• a set of v points P;

• a family of blocks B = {B ⊂ P, |B| = k};
• an incidence relation between them such that v = |P|, every block is incident

with precisely k points, and every t distinct points are incident with λ blocks.

Any t-design is also a s− (v, k, λs) design for s ≤ t:

λs =
(v − s)
(k − s)

λs+1(s = 1, . . . , t− 1), λt = λ
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Assmus-Mattson Theorem

Binary case:

- C – [n, k, d] binary linear code;

- C⊥ – its orthogonal [n, n− k, d⊥] code;

- t – an integer, 0 < t < d, such that C⊥ has not more than d − t nonzero
weights w ≤ n− t.

Then:

• the supports of all codewords in C of weight u form a t-design;

• the supports of all codewords in C⊥ of weight w,
d⊥ ≤ w ≤ n− t, form a t-design.
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SECRET-SHARING (n− 1 PARTIES)

• s ∈ GF (q) - the secret;

• G = (G0G1 . . . Gn−1) - a generator matrix of a code C of length n;

• z ∈ GF (q)k - the information vector, zG0 = s;

• u = zG;

• to each party we assign ui, i = 1, . . . , n− 1;

A scheme is said to be perfect if a group of shares either determines the secret
or gives no information about the secret.
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COMPUTING THE SECRET

s is determined by the set of shares {ui1 , ui2 , . . . , uim}

⇐⇒ G0 =
m∑

j=1

xjGij , 1 ≤ i1 < · · · < im ≤ n− 1

⇐⇒ ∃(1, 0, ..., 0, ci1 , 0, ..., 0, cim , 0.., 0) ∈ C⊥, (ci1 , . . . , cim) 6= 0

So by solving this linear equation, we find xj and from then on the secret by

s = zG0 =
m∑

j=1

xjzGij =
m∑

j=1

xjuij

.
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Secret-sharing based on an SD code

Dougherty, Mesnager, Sole, 2008

Di - the 1-design formed from the vectors of weight i

Γ = {A | A is the support of a vector v ∈ C with v0 = 1}.

• Any group of size less than d− 1 cannot recover the secret.

• There are λ1(Di) groups of size i− 1 that can recover the secret.

• It is perfect, which means that a group of shares either determines the secret
or gives no information about the secret.

• When the parties come together bd−1
2 c cheaters can be found.
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Secret-sharing based on an SD code

Bouyuklieva, Varbanov, 2009

C - a singly-even SD [n, n/2, d] code with wt(S) = 1. Then, the vectors in C2

(up to equivalence) are in the form (1, c1, c2, . . . , cn−1).

• Any group of size less than d− 1 cannot recover the secret.

• There are Ai groups of size i− 1 that can recover the secret (i ≡ 2 (mod 4)).

• It is perfect, which means that a group of shares either determines the secret
or gives no information about the secret.

• When the parties come together bd−1
2 c cheaters can be found.
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TWO-PART SECRET SHARING

Bouyuklieva, Varbanov, 2009

• s′ ∈ GF (q) - the second part of the secret;

• z ∈ GF (q)k, s′ = s + zG1 + zG2 = z(G0 + G1 + G2);

• u = zG, to each party we assign ui, i = 1, . . . , n− 1;

s′ is determined by the set of shares {ui3 , ui4 , . . . , uim}

⇐⇒ G2 = G0 + G1 +
m∑

j=3

xjGij , 1 ≤ i1 < · · · < im ≤ n− 1

⇐⇒ ∃(1, 1, 1, 0, ..., 0, ci3 , 0, ..., 0, cim
, 0.., 0) ∈ C⊥, (ci3 , . . . , cim

) 6= 0
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TWO-PART SECRET SHARING

Bouyuklieva, Varbanov, 2009

Let C be a binary singly-even SD [n, n/2, d] code with the properties:

• wt(S) = 1;

• the set of codewords of weight i in C0 without the common zero coordinate
holds a 2-design.

Then the access structure of the two parts are:

Γ1 = {A | A is the support of a vector v ∈ C2 (v0 = 1)}.

Γ2 = {A | A is the support of a vector v ∈ C2

with v0 = v1 = v2 = 1}.
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TWO-PART SECRET SHARING

Let C be a binary doubly-even SD [n, n/2, d] code with the property that the
set of codewords of weight i in C holds a 3−(v, k, λ) design where v = n and k = i.

Then the access structure of the two parts are:

Γ1 = {A | A is the support of a vector v ∈ C with v0 = 1}.

Γ2 = {A | A is the support of a vector v ∈ C

with v0 = v1 = v2 = 1}.
Lets mention, that if a group of participants can recover the second part, to

recover then the first part they need the participants 1 and 2, in general. But there
are groups which can recover only the first part but not the second.
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RESULTS (ONE-PART)

Let C be singly-even SD code with parameters:

• [24m + 18, 12m + 9, 4m + 4] or

• [24m + 10, 12m + 5, 4m + 2] or

• [24m + 2, 12m + 1, 4m + 2]

In these cases there exist codes with wt(S) = 1.

Γ = {A | A is the support of a vector v ∈ C2}.
Example: C is [42, 21, 8] code with wt(S) = 1 and weight enumerator

1 + 164y8 + 697y10 + . . . + 164y34 + y42.

The access structure contains 164 groups of size 7, 697 groups of size 9, etc.
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RESULTS (TWO-PART)

Let C be singly-even SD [24m + 2, 12m + 1, 4m + 2] code with wt(S) = 1.
In this case the set of codewords of weight i in C2 (without the common all-one
coordinate) holds a 2-design.

Example: C – singly-even SD [50, 25, 10] code with wt(S) = 1 and weight
enumerator 1 + 196y10 + 11368y12 + . . . + y50.

• For the first part of the secret, the access structure contains 196 groups of
size 9.

• For the second part we take these 36 blocks of D that have 1 in the first
position. Without the first point, the blocks of D hold 1 − (48, 8, 6) design
D1.

• We take these 6 blocks of D1 that have 1 in the first position. Then, for the
second part of the secret, the access structure consists of 6 groups of size 7.
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RESULTS (TWO-PART)

• To recover the two-part secret should first be used the groups of size 7. They
recover the second part of the secret.

• After that to recover the other part of the secret we use these groups (they
are of size 8 already) and the other 30 groups of size 8. We add a new
participant that has ones in these 36 groups (the other entries are 0).

• At last, we use the obtained 36 groups of size 9, and the other 160 groups of
size 9 to recover the first part of the secret.
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RESULTS (TWO-PART)

Let C be doubly-even extremal SD [24m + 8, 12m + 4, 4m + 4] code. In this
case the set of codewords of weight i in C holds a 3-design.

Example: C – doubly-even extremal SD [32, 16, 8] code with weight enumer-
ator 1 + 620y8 + 13888y12 + . . . + y32. The set of the codewords of weight 8 holds
3− (32, 8, 7) design D.

• There are 155 blocks with 1 in the first position. Then, for the first part of
the secret, the access structure contains 155 groups of size 7. These blocks
without first point hold 2− (31, 7, 7) design D′.

• For the second part we take these 35 blocks of D′ that have 1 in the first
position. Without the first point, these blocks hold 1− (30, 6, 7) design D′′.

• We take these 7 blocks of D′′ that have 1 in the first position. Then, for the
second part of the secret, the access structure consists of 7 groups of size 5.
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RESULTS (TWO-PART)

• To recover the two-part secret should first be used the groups of size 5. They
recover the second part of the secret.

• After that to recover the other part of the secret we use these groups (they
are of size 6 already) and the other 28 groups of size 6. We add a new
participant that has ones in these 35 groups (the other entries are 0).

• At last, we use the obtained 35 groups of size 7, and the other 120 groups of
size 7 to recover the first part of the secret.
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