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INTRODUCTION

Secret sharing is an important topic in cryptography and has applications in
information security.

The age-old way to share a secret, such as the 3-digit combination 17-14-92
(combination with 100 positions) is to give part of the secret to each user: 17 to
Andrew, 14 to Bryan, and 92 to Chris.

Shamir (1979) and Blakely (1979) — (S,T') threshold schemes for secret sharing

A secret is transformed into a list of S shares in such manner that:
(P1) knowledge of any T shares reveals the secret, but

(P2) knowledge of T-1 or fewer shares gives no information whatsoever about the
secret.

McEliece and Sarwate (1981) — a formulation of (5,T") threshold schemes in
terms of g-ary MDS codes of block length n = S + 1 with ¢* codewords.



SECRET-SHARING

Secret sharing scheme — sharing a secret among a finite set of people or
entities such that only some distinguished subsets of these have access to the secret.

Example:

S ={s1,s2,...,8n}, U=A{ui,ua,...,up}, p>n

U = {Ug,,Ugy,---,Us, }

Access structure — the collection of all such distinguished subsets that have
access to the secret.



ACCESS STRUCTURE

If P is the set of parties involved in the secret-sharing, then
I'={A CP: A can uncover the secret}

A €T - minimum access group if

Bel and BC A implies B=A

I'={A | Ais a minimum access group}

I' - the minimum access structure.

In general, determining the minimum access structure is a difficult problem.



BINARY LINEAR CODES

GF(2) — a field with 2 elements.

Binary linear [n, k| code C of length n — k-dimensional linear subspace of

GF(2)".
Weight of a codeword ¢ € C (wt(c)) — the number of nonzero components of c.

Minimum weight (distance):
d =d(C) = min{wt(c)|c € C,c # 0} — |n,k,d] code.

Generator matrix of C — k x n matrix with entries in GF'(2) whose rows
are a basis of C.

Weight enumerator of C: C(y) = Z?:o Ayt



SELF-DUAL CODES

Inner product —z.y = > ., x;y;, z,y € GF(2)"

Dual code - C+ = {z € GF(2)" | x.c =0, Vc € C}

C' — self-orthogonal code if C C C+

C - self-dual code if C = C+ (k =n/2)

All codewords in a binary self-orthogonal code have even weights
Doubly-even code — all its weights are divisible by 4

Singly-even self-dual code — contains a codeword of weight w = 2

(mod 4)



EXTREMAL SELF-DUAL CODES

If C is a binary self-dual [n,n/2,d]| code then
d<4n/24]+4

except when n =22 (mod 24) when
d<4n/24] +6

When n is a multiple of 24, any code meeting the bound must be doubly-even.



THE SHADOW OF A SINGLY EVEN CODE

C' - singly even self-dual [n,k =n/2,d] code
Co - its doubly even subcode:
Co={velC|wtiv) =0 (mod4)}
dimC’o =k—1
Co={vel |wtlv)=2 (mod4)}
C =CoUCCs

= Cy =CoUC; UCyUCy
S =Cy \ C = C;UCj3 - the shadow of C



t — (v,k, \) DESIGNS

At— (v,k,\) design is:
e a set of v points P;
e a family of blocks B ={B C P, |B| = k};

e an incidence relation between them such that v = |P|, every block is incident
with precisely k points, and every ¢ distinct points are incident with A blocks.

Any t-design is also a s — (v, k, \s) design for s < t:

NERCET

Mosr(s=1,. . t—1), A\ =
(]43—8) —|-1(S ) >\t A



Assmus-Mattson Theorem

Binary case:
- C' - |[n, k,d] binary linear code;
- Ct — its orthogonal [n,n — k,d"] code;

- t — an integer, 0 < t < d, such that C*+ has not more than d — t nonzero
weights w < n —t.

Then:
e the supports of all codewords in C' of weight u form a t-design;

e the supports of all codewords in C* of weight w,
d+ < w <n—t, form a t-design.
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SECRET-SHARING (n — 1 PARTIES)

e s € GF(q) - the secret;

o G=(GyGy...G,_1) - a generator matrix of a code C' of length n;
e 2z € GF(q)* - the information vector, zGy = s;

o u=2z2G;

e to each party we assign u;,t =1,...,n — 1;

A scheme is said to be perfect if a group of shares either determines the secret
or gives no information about the secret.
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COMPUTING THE SECRET

s is determined by the set of shares {u;,,u;,,...,u;, }

m
<:>G022$jGij, 1<y << <n-—1
Jj=1

~— 3(1,0,...,0,¢;,,0,...,0,¢; ,0..,0) € C*, (¢5,,...,¢i. ) #0

So by solving this linear equation, we find x; and from then on the secret by

m m
S — ZGO = E ZL‘jZGij = E CE‘juZ‘j
J=1 J=1
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Secret-sharing based on an SD code

Dougherty, Mesnager, Sole, 2008

D; - the 1-design formed from the vectors of weight ¢
I'={A | A is the support of a vector v € C' with vy = 1}.

e Any group of size less than d — 1 cannot recover the secret.
e There are A\1(D;) groups of size ¢ — 1 that can recover the secret.

e [t is perfect, which means that a group of shares either determines the secret
or gives no information about the secret.

d—1

5| cheaters can be found.

e When the parties come together |



Secret-sharing based on an SD code

Bouyuklieva, Varbanov, 2009

C' - a singly-even SD [n,n/2,d] code with wt(S) = 1. Then, the vectors in Cy
(up to equivalence) are in the form (1,c¢1,¢2,...,¢h_1).

e Any group of size less than d — 1 cannot recover the secret.
e There are A; groups of size i — 1 that can recover the secret (i =2 (mod 4)).
e [t is perfect, which means that a group of shares either determines the secret

or gives no information about the secret.

d—1

5| cheaters can be found.

e When the parties come together |



TWO-PART SECRET SHARING

Bouyuklieva, Varbanov, 2009

e s’ € GF(q) - the second part of the secret;
o 2 GF(q)¥, s’ =5+ 2G| + 2G5 = 2(Gy + Gy + G3);
e u = z(, to each party we assign u;,1=1,...,n — 1;

s’ is determined by the set of shares {u;,, u;,,...,u; }

= Gr=Go+ G+ )Y 2;Gi, 1<iy < <ip<n-—1

j=3

«—3(1,1,1,0,...,0,¢,,0, ...,0,¢;,,0..,0) € C+, (ci,, ..
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TWO-PART SECRET SHARING

Bouyuklieva, Varbanov, 2009
Let C' be a binary singly-even SD [n,n/2,d] code with the properties:
o wit(S)=1;

e the set of codewords of weight 7 in Cy without the common zero coordinate
holds a 2-design.

Then the access structure of the two parts are:

'y = {A | A is the support of a vector v € Cy (vg = 1)}.

['s = {A | A is the support of a vector v € Cy

with vg = v1 = vy = 1}.
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TWO-PART SECRET SHARING

Let C' be a binary doubly-even SD [n,n/2,d] code with the property that the
set of codewords of weight ¢ in C holds a 3— (v, k, \) design where v = n and k = 1.

Then the access structure of the two parts are:

I'y = {A | A is the support of a vector v € C' with vy = 1}.

I's = {A | A is the support of a vector v € C
with Vg — V1 — Vg =— 1}

Lets mention, that if a group of participants can recover the second part, to
recover then the first part they need the participants 1 and 2, in general. But there
are groups which can recover only the first part but not the second.
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RESULTS (ONE-PART)

Let C be singly-even SD code with parameters:
e [24m + 18,12m + 9,4m + 4] or

e 24m + 10,12m + 5,4m + 2] or

o [24m + 2,12m + 1,4m + 2]

In these cases there exist codes with wt(S) = 1.

['={A | A is the support of a vector v € Cs}.

Example: C is [42,21,8] code with wt(S) = 1 and weight enumerator
1+ 164y® +697y'0 + ... 4+ 164y3* + y*2.

The access structure contains 164 groups of size 7, 697 groups of size 9, etc.
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RESULTS (TWO-PART)

Let C' be singly-even SD [24m + 2,12m + 1,4m + 2| code with wt(S) = 1.
In this case the set of codewords of weight ¢ in C (without the common all-one
coordinate) holds a 2-design.

Example: C — singly-even SD [50,25,10] code with wt(S) = 1 and weight
enumerator 1 4 196y'° + 11368y*% 4 ... + y°Y.

e For the first part of the secret, the access structure contains 196 groups of
size 9.

e For the second part we take these 36 blocks of D that have 1 in the first
position. Without the first point, the blocks of D hold 1 — (48,8,6) design
D.

e We take these 6 blocks of D¢ that have 1 in the first position. Then, for the
second part of the secret, the access structure consists of 6 groups of size 7.
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RESULTS (TWO-PART)

e To recover the two-part secret should first be used the groups of size 7. They
recover the second part of the secret.

e After that to recover the other part of the secret we use these groups (they
are of size 8 already) and the other 30 groups of size 8. We add a new
participant that has ones in these 36 groups (the other entries are 0).

e At last, we use the obtained 36 groups of size 9, and the other 160 groups of
size 9 to recover the first part of the secret.
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RESULTS (TWO-PART)

Let C be doubly-even extremal SD [24m + 8,12m + 4,4m + 4] code. In this
case the set of codewords of weight ¢ in C' holds a 3-design.

Example: C' — doubly-even extremal SD [32, 16, 8] code with weight enumer-
ator 1 4 620y® + 13888y'2 + ... 4+ y32. The set of the codewords of weight 8 holds
3 —(32,8,7) design D.

e There are 155 blocks with 1 in the first position. Then, for the first part of
the secret, the access structure contains 155 groups of size 7. These blocks
without first point hold 2 — (31,7,7) design D’.

e For the second part we take these 35 blocks of D’ that have 1 in the first
position. Without the first point, these blocks hold 1 — (30,6, 7) design D”.

e We take these 7 blocks of D" that have 1 in the first position. Then, for the
second part of the secret, the access structure consists of 7 groups of size 5.
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RESULTS (TWO-PART)

e To recover the two-part secret should first be used the groups of size 5. They
recover the second part of the secret.

e After that to recover the other part of the secret we use these groups (they
are of size 6 already) and the other 28 groups of size 6. We add a new
participant that has ones in these 35 groups (the other entries are 0).

e At last, we use the obtained 35 groups of size 7, and the other 120 groups of
size 7 to recover the first part of the secret.
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