An algebraic approach to subsets in association schemes from finite buildings

Frédéric Vanhove
Department of Pure Mathematics and Computer Algebra
Ghent University
fvanhove@cage.ugent.be
http://cage.ugent.be/ fvanhove

ALCOMA10
April 12, 2010

Outline

■ Algebraic background: which techniques do we need? (Philippe Delsarte)

- Buildings: what are these structures? (Jacques Tits)
- Buildings of type F_{4} : some results!

Definition of association scheme
A d-class association scheme is a pair $\left(\Omega,\left\{R_{0}, \ldots, R_{d}\right\}\right)$ with Ω a set and R_{0}, \ldots, R_{d} symmetric relations on Ω s.t.:
(i) $R_{0}=$ identity relation,
(ii) $\left\{R_{0}, \ldots, R_{d}\right\}$ is a partition of $\Omega \times \Omega$,
(iii) there are intersection numbers $p_{i j}^{k}$:
if $(x, y) \in R_{k}$, the number of elements z in Ω for which $(x, z) \in R_{i}$ and $(z, y) \in R_{j}$ is $p_{i j}^{k}$.

Every relation R_{i} is thus regular, with valency $k_{i}=p_{i i}^{0}$.

Example: the Paley scheme $P_{5}=\left(\Omega,\left\{R_{0}, R_{1}, R_{2}\right\}\right)$

■ $\Omega=\mathbb{F}_{5}=\{0,1,2,3,4\}$.
■ We define 3 relations R_{0}, R_{1}, R_{2} :
$\square R_{0}$ is the identity relation: e.g. $(2,2) \in R_{0}$,
$\square(a, b) \in R_{1}$ if $a-b$ is 1 or 4 (and hence square): e.g. $(2,3) \in R_{1}$,
$\square(a, b) \in R_{2}$ if $a-b$ is 2 or 3 (and hence non-square): e.g. $(1,4) \in R_{2}$.

Intersection number p_{12}^{1} is 1 :

z can only be 0

z can only be 3

Definition of matrices A_{i}

Consider an association scheme $\left(\Omega,\left\{R_{0}, \ldots, R_{d}\right\}\right)$ and order the elements of $\Omega: \omega_{1}, \ldots, \omega_{|\Omega|}$. For each relation R_{i}, define the $(|\Omega| \times|\Omega|)$-matrix A_{i} over \mathbb{R} :

$$
\left\{\begin{array}{l}
\left(\boldsymbol{A}_{i}\right)_{r s}=1 \text { if }\left(\omega_{r}, \omega_{s}\right) \in R_{i}, \\
\left(\boldsymbol{A}_{i}\right)_{r s}=0 \text { if }\left(\omega_{r}, \omega_{s}\right) \notin \boldsymbol{R}_{i} .
\end{array}\right.
$$

Properties

- A_{0} is the identity matrix.

■ $A_{0}+\ldots+A_{d}$ is all-one matrix.

- A_{i} is symmetric.

■ $A_{i} A_{j}=\sum_{k} p_{i j}^{k} A_{k}$.

Example: Paley scheme $P_{5}=\left(\{0,1,2,3,4\},\left\{R_{0}, R_{1}, R_{2}\right\}\right)$

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0
\end{array}\right) 2 \\
& A_{1}=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \frac{0}{2} 2, A_{2}=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right) \begin{array}{l}
0 \\
1 \\
2 \\
3 \\
4
\end{array}
\end{aligned}
$$

Note that A_{0}, A_{1} and A_{2} are symmetric and add up to the all-one matrix!

Decomposition into strata for scheme $\left(\Omega,\left\{R_{0}, \ldots, R_{d}\right\}\right)$
$\mathbb{R} \Omega$ is the vector space with basis indexed by elements of Ω. $\mathbb{R} \Omega$ uniquely decomposes as:

$$
\mathbb{R} \Omega=V_{0} \perp V_{1} \perp \ldots \perp V_{d}
$$

with every $v \in V_{i}$ an eigenvector of every relation $R_{j}: A_{j} v=\lambda_{i j} v$. These V_{i} are the strata, and by convention $V_{0}=\left\langle\chi_{\Omega}\right\rangle$.

Matrix of eigenvalues P

$$
P=\begin{array}{c|cccc}
& R_{0} & R_{1} & \ldots & R_{d} \\
\hline V_{0} & 1 & \lambda_{01} & \ldots & \lambda_{0 d} \\
V_{1} & 1 & \ddots & \ddots & \lambda_{1 d} \\
\vdots & 1 & \ddots & \ddots & \vdots \\
V_{d} & 1 & \lambda_{d 1} & \ldots & \lambda_{d d}
\end{array}
$$

Counting algebraically

The characteristic vector χ_{S} of $S \subseteq \Omega$ has :
$\left(\chi_{S}\right)_{i}=1$ if $\omega_{i} \in S$ and $\left(\chi_{S}\right)_{i}=0$ if $\omega_{i} \notin S$. So $\chi_{S}=(0,1,0,1,1, \ldots)$. For any $S, S^{\prime} \subseteq \Omega:\left\langle\chi_{S}, \chi_{S^{\prime}}\right\rangle=(1,1, \ldots, 1)(0,1, \ldots, 0)=\left|S \cap S^{\prime}\right|$.
Design-orthogonality of subsets S and S^{\prime}
If $\mathbb{R} \Omega=V_{0} \perp V_{1} \perp \ldots \perp V_{d}$ and:

$$
\begin{aligned}
\chi_{S} & =\frac{|S|}{|\Omega|} \chi_{\Omega}+v_{1}+y_{2}+\ldots+v_{d}, v_{i} \in v_{i} \\
\chi_{S^{\prime}} & =\frac{\left|S^{\prime}\right|}{|\Omega|} \chi_{\Omega}+y_{1}^{\prime}+v_{2}^{\prime}+\ldots+y_{d}^{\prime}, v_{i}^{\prime} \in v_{i}
\end{aligned}
$$

with $\forall i \in\{1, \ldots, d\}: v_{i}=0$ or $v_{i}^{\prime}=0$ then

$$
\left|S \cap S^{\prime}\right|=\left\langle\chi_{S}, \chi_{S^{\prime}}\right\rangle=\frac{|S|\left|S^{\prime}\right|}{|\Omega||\Omega|}\left\langle\chi_{\Omega}, \chi_{\Omega}\right\rangle=\frac{|S|\left|S^{\prime}\right|}{|\Omega|} .
$$

Which components v_{i} of χ_{s} are zero?
The inner distribution a of $S \subseteq \Omega$: $\mathbf{a}_{i}=\frac{1}{|S|}\left|(S \times S) \cap R_{i}\right|$.
So \mathbf{a}_{i} is average valency of R_{i} in S, and $\mathbf{a}_{0}=1, \mathbf{a}_{0}+\ldots+\mathbf{a}_{d}=|S|$. Example: Paley scheme $\left(\Omega,\left\{R_{0}, R_{1}, R_{2}\right\}\right)$, and $S=\{0,1,3\}$.

$\mathbf{a}=\frac{1}{3}\left((1,1,1)_{0}+(1,1,1)_{1}+(1,0,2)_{3}\right)=\left(1, \frac{2}{3}, \frac{4}{3}\right)$.

Which components v_{i} of χ_{s} are zero?

$$
\mathbb{R} \Omega=V_{0} \perp V_{1} \perp \ldots \perp V_{d}
$$

$\chi_{S}=\frac{|S|}{|\Omega|} \chi_{\Omega}+v_{1}+\ldots+v_{d}$, with $v_{i} \in V_{i}$.
For any (non-empty) subset $S \subseteq \Omega$, inner distribution a satisfies:

$$
\left(\mathbf{a} P^{-1}\right)_{i} \geq 0
$$

with equality if and only if $v_{i}=0$ (or hence $\chi_{s} \in\left(V_{i}\right)^{\perp}$).

The Johnson scheme $J(n, k)$ in a set X of size n
$\square \Omega$: the $\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k(k-1) \ldots 1} k$-subsets in X,
■ $\left(\omega_{1}, \omega_{2}\right) \in R_{i} \Longleftrightarrow\left|\omega_{1} \cap \omega_{2}\right|=k-i$.

The Grassmann scheme $J_{q}(n, k)$ in $V(n, q)$
$\square \Omega$: the $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \ldots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)} k$-subspaces in $V(n, q)$,
$\square\left(\omega_{1}, \omega_{2}\right) \in R_{i} \Longleftrightarrow \operatorname{dim}\left(\omega_{1} \cap \omega_{2}\right)=k-i$.

Delsarte's characterization in $J(n, k)$ and $J_{q}(n, k)$
■ In both schemes: $\mathbb{R} \Omega=V_{0} \perp V_{1} \perp \ldots \perp V_{d}$ with $d=\min (k, n-k)$ (with "natural ordering").
■ In $J(n, k): S \subseteq \Omega$ is $t-(n, k, \lambda)$-design (i.e. every t-subset in X is in λ elements of S)
$\Longleftrightarrow \chi_{s} \in V_{0} \perp V_{1} \perp \ldots \perp V_{t} \perp V_{t+1} \perp \ldots \perp V_{d}$.
\square In $J_{q}(n, k): S \subseteq \Omega$ is $t-(n, k, \lambda ; q)$-design
(i.e. every t-space in $V(n, q)$ is in λ elements of S)
$\Longleftrightarrow \chi_{s} \in V_{0} \perp V_{1} \perp \ldots \perp V_{t} \perp V_{t+1} \perp \ldots \perp V_{d}$.
Where else do we have these characterizations in schemes and their q-analogues?

Buildings of rank n are certain incidence structures with n types (Tits). Each finite building has a Coxeter-Dynkin diagram, for instance:

■ Each node corresponds with a type (points, lines,planes,...).
■ If $x_{1}, \ldots, x_{i-1}, x_{i+1} \ldots, x_{n}$ of types $1, \ldots, i-1, i+1, \ldots, n$ are incident, they are incident with $q_{i}+1$ common objects of type i.
\square The thin building with $\left(q_{1}, \ldots, q_{n}\right)=(1, \ldots, 1)$ is constructed from "Coxeter group" itself, thick building is more complicated but similar.

Coxeter group W and its thin building

■ W is generated by involutions w_{i}, with $\left(w_{i} w_{j}\right)^{m_{i j}}=e$ (we draw no line if $m_{i j}=2 \Longleftrightarrow w_{i} w_{j}=w_{j} w_{i}$),
■ maximal parabolic subgroup $P_{i}:=\left\langle\left\{w_{1}, \ldots, w_{n}\right\} \backslash\left\{w_{i}\right\}\right\rangle$,
■ objects of type i : cosets $w P_{i}$,
■ $a P_{i}$ and $b P_{j}$ are incident iff $a P_{i} \cap b P_{j} \neq \emptyset$,
$\square\left(a P_{i}, b P_{j}\right)$ and $\left(a^{\prime} P_{i}, b^{\prime} P_{j}\right)$ in same relation iff $P_{i} a^{-1} b P_{j}=P_{i} a^{-1} b^{\prime} P_{j}$
(if $i=j$, this is an association scheme in SOME cases!)

$A_{n} \cong$ symmetric group of size $(n+1)$! on $n+1$ elements.
Thin buildings of type A_{n}, with $q_{1}=\ldots=q_{n}=1 \rightarrow$ Johnson scheme!
■ objects of type i : the $\binom{n+1}{i}$ subsets of size i,
$\square 2$ objects of type i are k-related iff size intersection is $i-k$.
Thick buildings of type A_{n}, with $q_{1}=\ldots=q_{n}=q \rightarrow$ Grassmann scheme!

■ objects of type i : the $\left[\begin{array}{c}n+1 \\ i\end{array}\right]_{q} i$-spaces of $V(n+1, q)$,
■ two objects of type i are k-related iff dim intersection is $i-k$.

$\mathrm{B}_{n} \cong$ hyperoctahedral group of size $2^{n} n$!
Thin building, with $q_{1}=\ldots=q_{n}=1$->coding theory!

- type n : 2^{n} binary codewords of length n,
- 2 objects of type n are k-related iff they are equal in $n-k$ positions.

Thick building, with $q_{1}=\ldots=q_{n-1}=q, q_{n}=q^{e}->$ polar spaces!

- type n : $\left(q^{e}+1\right) \ldots\left(q^{n-1+e}+1\right)$ maximals of rank n polar space,
- 2 maximals are k-related iff dim intersection is $n-k$.

Algebraic background
Buildings
Buildings of type F_{4}

What about other finite Coxeter groups?

(3)
points

Thick building of type F_{4}
$\square(s, t)=(q, 1),(1, q),(q, q),\left(q, q^{2}\right)$ or $\left(q^{2}, q\right)$,
■ number of points: $|\Omega|=\left(s^{2}+s+1\right)\left(s^{2} t+1\right)\left(s^{2} t^{2}+1\right)\left(s^{3} t^{3}+1\right)$,
■ association scheme on points:
R_{0} : identity,
R_{1} : on unique common line (collinear),
R_{2} : in unique common symplecton (cohyperlinear),
R_{3} : unique common neighbour wrt collinearity (almost opposite),
R_{4} : no common neighbour (opposite).

Matrix of eigenvalues P of association scheme on points (Gomi): $\mathbb{R} \Omega$ decomposes into strata: $V_{0} \perp V_{1} \perp V_{2} \perp V_{3} \perp V_{4}$.

	R_{0}	R_{1}	R_{2}	R_{3}
V_{0}	1	$s(s+1)(s t+1)\left(s t^{2}+1\right)$	$s^{4} t\left(t^{2}+t+1\right)\left(s t^{2}+1\right)$	$s^{5} t^{3}(s+1)(s t+1)\left(s t^{2}+1\right)$
V_{1}	1	$(s+1)(s t+1)(s t+s-1)$	$s^{2}\left(t^{2}+t+1\right)\left(s^{2} t-1\right)$	$s^{3} t^{6} t(s+1)(s t+1)(s t-t-1)$
V_{2}	1	$\left(-1+s^{2}\right)(s t+1)$	$\left(s^{3} t-s^{2} t^{2}-s^{2} t-s t-s+t\right) s$	$-(s-1)(s+1)(s t+1) s^{2} t$
V_{3}	1	$-1-s t-s t^{2}+s^{2}$	$s^{5} t^{2}$	
V_{4}	1	$-(s t+1)\left(s t^{2}+1\right)$	$s t\left(t^{2}+t+1\right)\left(s t^{2}+1\right)$	$s t\left(s^{2} t^{2}-t^{2}+s t+s\right)$
			$-s^{3} t^{3}$	

The set of points S inside an object

- points in plane interact as in projective plane (so all collinear): inner distribution of $S: \mathbf{a}=\left(1, s^{2}+s, 0,0,0\right)$,
$\mathbf{a} P^{-1}=(?, ?, ?, ?, 0) \Longrightarrow \chi_{s} \in V_{0} \perp V_{1} \perp V_{2} \perp V_{3} \perp V_{4}$.
■ points in symplecton interact as in rank 3 polar space (collinear or cohyperlinear): inner distribution of S : $\mathbf{a}=\left(1, s(s+1)(s t+1), s^{4} t, 0,0\right)$. $\mathbf{a} P^{-1}=(?, ?, ?, 0,0) \Longrightarrow \chi_{s} \in V_{0} \perp V_{1} \perp V_{2} \perp 1 / 3 \perp 1 / 4$.

Notion of design T in F_{4}-building
■ Set of points S in any plane : $\chi_{s} \in V_{0} \perp V_{1} \perp V_{2} \perp V_{3} \perp V_{4}$, So if $\chi_{T} \in V_{0} \perp V_{1} \perp V_{2} \perp V_{3} \perp V_{4}$
$\Longrightarrow|S \cap T|=\frac{|S||T|}{|\Omega|}=|S| /\left(\left(s^{2} t+1\right)\left(s^{2} t^{2}+1\right)\left(s^{3} t^{3}+1\right)\right)$.
\square Set of points S in any symplecton: $\chi_{S} \in V_{0} \perp V_{1} \perp V_{2} \perp 1 / 3 \perp V_{4}$, So if $\chi_{T} \in V_{0} \perp V_{1} \perp V_{2} \perp V_{3} \perp V_{4}$
$\Longrightarrow|S \cap T|=\frac{|S||T|}{|\Omega|}=|S| /\left(\left(s^{2} t^{2}+1\right)\left(s^{3} t^{3}+1\right)\right)$.

Cliques of the oppositeness-relation R_{4}
If S is a set of mutually opposite points (hence not collinear with a common point):

$$
\mathbf{a}=(1,0,0,0,|S|-1)
$$

$\mathbb{R} \Omega=V_{0} \perp V_{1} \perp V_{2} \perp V_{3} \perp V_{4}$, matrix of eigenvalues P :

	R_{0}	R_{1}	R_{2}	R_{3}	
v_{0}	1	$s(s+1)(s t+1)\left(s t^{2}+1\right)$	$s^{4} t\left(t^{2}+t+1\right)\left(s t^{2}+1\right)$	$t^{3}(s+1)(s t+1)\left(s t^{2}+1\right)$	$s^{9} t^{6}$
v_{1}	1	$(s+1)(s t+1)(s t+s-1)$	$s^{2}\left(t^{2}+t+1\right)\left(s^{2} t-1\right)$	$s^{3} t(s+1)(s t+1)(s t-t-1)$	$-s^{6} t$
v_{2}	1	$\left(-1+s^{2}\right)(s t+1)$	($\left.{ }^{3}-s^{2} t^{2}-s^{2} t-s t-s+t\right) s$	$-(s-1)(s+1)(s t+1) s^{2} t$	$s^{5} t^{2}$
v_{3}	1	$-1-s t-s t^{2}+s^{2}$	$s(t-s)\left(t^{2}+t+1\right)$	$s t\left(s^{2} t^{2}-t^{2}+s t+s\right)$	$-s^{3}$
v_{4}	1	$-(s t+1)\left(s t^{2}+\right.$	$s t\left(t^{2}+t+1\right)\left(s t^{2}+1\right)$	$-(s t+1)\left(s t^{2}+1\right) s$	

■ $\left(\mathbf{a} P^{-1}\right)_{i} \geq 0$ with equality iff $\chi_{s} \in\left(V_{i}\right)^{\perp}$.
$\square i=1$ yields best bound: $|S| \leq s^{3} t^{3}+1$, with equality iff $\chi_{s} \in V_{0} \perp V_{1} \perp V_{2} \perp V_{3} \perp V_{4}$.

Embedding of one F_{4}-building in another

Embed points T of F_{4}-building with parameters $\left(s^{\prime}, t^{\prime}\right)$ in this building: (inner distribution a of T consists just of valencies in smallest building)

■ if $\left(s^{\prime}, t^{\prime}\right)=(q, 1),(s, t)=(q, q)$, then
$\chi_{T} \in V_{0} \perp V_{1} \perp V_{2} \perp 1 / 3 \perp V_{4}$,
\square if $\left(s^{\prime}, t^{\prime}\right)=(q, q),(s, t)=\left(q, q^{2}\right)$, then
$\chi_{T} \in V_{0} \perp V_{1} \perp V_{2} \perp 1 / 3 \perp V_{4}$,
■ if $\left(s^{\prime}, t^{\prime}\right)=(q, q),(s, t)=\left(q^{2}, q\right)$, then
$\chi_{T} \in V_{0} \perp V_{1} \perp V_{2} \perp V_{3} \perp V_{4}$,

An immediate consequence of the previous for $(s, t)=\left(q, q^{2}\right)$!

■ S: set of $1+s^{3} t^{3}=1+q^{9}$ mutually opposite points $\Longrightarrow \chi_{s} \in V_{0} \perp V_{1} \perp V_{2} \perp V_{3} \perp V_{4}$,
$\square T$: point set of embedded F_{4}-building with $\left(s^{\prime}, t^{\prime}\right)=(q, q)$: $\Longrightarrow \chi_{T} \in V_{0} \perp V_{1} \perp V_{2} \perp 1 / 3 \perp V_{4}$.
Design-orthogonality yields: $|S \cap T|=\left\langle\chi_{S}, \chi_{T}\right\rangle=\frac{|S||T|}{|\Omega|}=q^{3}+1$.

Thank you for your attention!

