An algebraic approach to subsets in association schemes from finite buildings

Frédéric Vanhove Department of Pure Mathematics and Computer Algebra Ghent University fvanhove@cage.ugent.be http://cage.ugent.be/ fvanhove

> ALCOMA10 April 12, 2010

Outline

- Algebraic background: which techniques do we need? (Philippe Delsarte)
- Buildings: what are these structures? (Jacques Tits)
- Buildings of type F₄: some results!

Association schemes Two fundamental association schemes

Definition of association scheme

A *d*-class association scheme is a pair $(\Omega, \{R_0, \ldots, R_d\})$ with Ω a set and R_0, \ldots, R_d symmetric relations on Ω s.t.:

- (i) R_0 = identity relation,
- (ii) $\{R_0, \ldots, R_d\}$ is a partition of $\Omega \times \Omega$,
- (iii) there are *intersection numbers* p^k_{ij}:
 if (x, y) ∈ R_k, the number of elements z in Ω for which (x, z) ∈ R_i and (z, y) ∈ R_j is p^k_{ij}.

Every relation R_i is thus regular, with valency $k_i = p_{ii}^0$.

Example: the Paley scheme $P_5 = (\Omega, \{R_0, R_1, R_2\})$

$$\ \ \, \Omega=\mathbb{F}_5=\{0,1,2,3,4\}.$$

• We define 3 relations R_0, R_1, R_2 :

• R_0 is the identity relation: e.g. $(2,2) \in R_0$,

- (*a*, *b*) \in R_1 if a b is 1 or 4 (and hence square): e.g. (2,3) \in R_1 ,
- (*a*, *b*) \in *R*₂ if *a b* is 2 or 3 (and hence non-square): e.g. (1, 4) \in *R*₂.

Intersection number p_{12}^1 is 1:

Definition of matrices A_i

Consider an association scheme $(\Omega, \{R_0, \ldots, R_d\})$ and order the elements of $\Omega: \omega_1, \ldots, \omega_{|\Omega|}$. For each relation R_i , define the $(|\Omega| \times |\Omega|)$ -matrix A_i over \mathbb{R} :

$$\begin{cases} (A_i)_{rs} = 1 \text{ if } (\omega_r, \omega_s) \in R_i, \\ (A_i)_{rs} = 0 \text{ if } (\omega_r, \omega_s) \notin R_i. \end{cases}$$

Properties

- A_0 is the identity matrix.
- $A_0 + \ldots + A_d$ is all-one matrix.
- A_i is symmetric.
- $\bullet A_i A_j = \sum_k p_{ij}^k A_k.$

Association schemes Two fundamental association schemes

Example: Paley scheme $P_5 = (\{0, 1, 2, 3, 4\}, \{R_0, R_1, R_2\})$

$$A_{0} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 2 & 3 & 4 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ \end{pmatrix} A$$

Note that A_0 , A_1 and A_2 are symmetric and add up to the all-one matrix!

Decomposition into strata for scheme $(\Omega, \{R_0, \ldots, R_d\})$ $\mathbb{R}\Omega$ is the vector space with basis indexed by elements of Ω . $\mathbb{R}\Omega$ uniquely decomposes as:

$$\mathbb{R}\Omega = V_0 \perp V_1 \perp \ldots \perp V_d,$$

with every $v \in V_i$ an eigenvector of every relation R_j : $A_j v = \lambda_{ij} v$. These V_i are the strata, and by convention $V_0 = \langle \chi_\Omega \rangle$.

Matrix of eigenvalues P

Association schemes Two fundamental association schemes

Counting algebraically

The characteristic vector χ_S of $S \subseteq \Omega$ has : $(\chi_S)_i = 1$ if $\omega_i \in S$ and $(\chi_S)_i = 0$ if $\omega_i \notin S$. So $\chi_S = (0, 1, 0, 1, 1, ...)$. For any $S, S' \subseteq \Omega : \langle \chi_S, \chi_{S'} \rangle = (1, 1, ..., 1)(0, 1, ..., 0) = |S \cap S'|$.

Design-orthogonality of subsets *S* and *S'* If $\mathbb{R}\Omega = V_0 \perp V_1 \perp \ldots \perp V_d$ and:

$$\chi_{\mathcal{S}} = \frac{|\mathcal{S}|}{|\Omega|} \chi_{\Omega} + \mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_d, \mathbf{v}_i \in \mathbf{V}_i$$
$$\chi_{\mathcal{S}'} = \frac{|\mathcal{S}'|}{|\Omega|} \chi_{\Omega} + \mathbf{v}_1' + \mathbf{v}_2' + \dots + \mathbf{v}_d', \mathbf{v}_i' \in \mathbf{V}_i$$

with $\forall i \in \{1, \ldots, d\}$: $v_i = 0$ or $v'_i = 0$ then

$$|\boldsymbol{S} \cap \boldsymbol{S'}| = \langle \chi_{\boldsymbol{S}}, \chi_{\boldsymbol{S'}} \rangle = \frac{|\boldsymbol{S}||\boldsymbol{S'}|}{|\boldsymbol{\Omega}||\boldsymbol{\Omega}|} \langle \chi_{\boldsymbol{\Omega}}, \chi_{\boldsymbol{\Omega}} \rangle = \frac{|\boldsymbol{S}||\boldsymbol{S'}|}{|\boldsymbol{\Omega}|}.$$

Association schemes Two fundamental association schemes

Which components v_i of χ_S are zero?

The inner distribution **a** of $S \subseteq \Omega$: $\mathbf{a}_i = \frac{1}{|S|} | (S \times S) \cap R_i |$.

So \mathbf{a}_i is average valency of R_i in S, and $\mathbf{a}_0 = 1, \mathbf{a}_0 + \ldots + \mathbf{a}_d = |S|$. Example: Paley scheme $(\Omega, \{R_0, R_1, R_2\})$, and $S = \{0, 1, 3\}$.

$$\mathbf{a} = \frac{1}{3} \left((1, 1, 1)_0 + (1, 1, 1)_1 + (1, 0, 2)_3 \right) = (1, \frac{2}{3}, \frac{4}{3}).$$

Frédéric Vanhove

Association schemes from finite buildings

Which components v_i of χ_S are zero?

$$\mathbb{R}\Omega = V_0 \perp V_1 \perp \ldots \perp V_d$$

$$\chi_{S} = \frac{|S|}{|\Omega|}\chi_{\Omega} + v_{1} + \ldots + v_{d}$$
, with $v_{i} \in V_{i}$.
For any (non-empty) subset $S \subseteq \Omega$, inner distribution **a** satisfies:

$$(\mathbf{a}P^{-1})_i \geq 0,$$

with equality if and only if $v_i = 0$ (or hence $\chi_S \in (V_i)^{\perp}$).

The Johnson scheme J(n, k) in a set X of size n

•
$$\Omega$$
: the $\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k(k-1)\dots 1}$ *k*-subsets in *X*,
• $(\omega_1, \omega_2) \in R_i \iff |\omega_1 \cap \omega_2| = k - i$.

The Grassmann scheme $J_q(n, k)$ in V(n, q)

•
$$\Omega$$
: the $\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q^n-1)(q^{n-1}-1)\dots(q^{n-k+1}-1)}{(q^k-1)(q^{k-1}-1)\dots(q-1)}$ k-subspaces in $V(n,q)$,
• $(\omega_1,\omega_2) \in R_i \iff \dim(\omega_1 \cap \omega_2) = k - i$.

Delsarte's characterization in J(n, k) and $J_q(n, k)$

In both schemes: $\mathbb{R}\Omega = V_0 \perp V_1 \perp \ldots \perp V_d$ with $d = \min(k, n-k)$ (with "natural ordering").

In
$$J(n, k)$$
: $S \subseteq \Omega$ is $t - (n, k, \lambda)$ -design
(i.e. every *t*-subset in X is in λ elements of S)
 $\iff \chi_S \in V_0 \perp V_1 \perp \ldots \perp V_t \perp V_{t+1} \perp \ldots \perp V_d$.

■ In $J_q(n,k)$: $S \subseteq \Omega$ is $t - (n, k, \lambda; q)$ -design (i.e. every *t*-space in V(n,q) is in λ elements of S) $\iff \chi_S \in V_0 \perp \mathcal{V}_1 \perp \ldots \perp \mathcal{V}_t \perp V_{t+1} \perp \ldots \perp V_d$.

Where else do we have these characterizations in schemes and their *q*-analogues?

 Algebraic background
 Buildings of any type

 Buildings
 The well known A_n buildings

 Buildings of type F₄
 The well known B_n buildings

Buildings of rank *n* are certain incidence structures with *n* types (Tits). Each finite building has a Coxeter-Dynkin diagram, for instance:

Each node corresponds with a type (points, lines, planes,...).

■ If $x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$ of types 1, ..., i - 1, i + 1, ..., n are incident,

they are incident with $q_i + 1$ common objects of type *i*.

The thin building with (q₁,...,q_n) = (1,...,1) is constructed from "Coxeter group" itself, thick building is more complicated but similar.

 Algebraic background Buildings
 Buildings of any type The well known A_n buildings

 Buildings of type F₄
 The well known B_n buildings

Coxeter group W and its thin building

- *W* is generated by involutions w_i , with $(w_i w_j)^{m_{ij}} = e$ (we draw no line if $m_{ij} = 2 \iff w_i w_j = w_j w_i$),
- maximal parabolic subgroup $P_i := \langle \{w_1, \ldots, w_n\} \setminus \{w_i\} \rangle$,
- objects of type i: cosets wP_i,
- aP_i and bP_j are incident iff $aP_i \cap bP_j \neq \emptyset$,
- (*aP_i*, *bP_j*) and (*a'P_i*, *b'P_j*) in same relation iff
 P_ia⁻¹bP_j = *P_ia'⁻¹b'P_j* (if *i* = *j*, this is an association scheme in SOME cases!)

 Algebraic background
 Buildings of any type

 Buildings
 The well known An buildings

 Buildings of type F4
 The well known Bn buildings

 $A_n \cong$ symmetric group of size (n + 1)! on n + 1 elements.

Thin buildings of type A_n, with $q_1 = \ldots = q_n = 1 \rightarrow$ Johnson scheme!

- objects of type *i*: the $\binom{n+1}{i}$ subsets of size *i*,
- **2** objects of type *i* are *k*-related iff size intersection is i k.

Thick buildings of type A_n , with $q_1 = \ldots = q_n = q \rightarrow Grassmann$ scheme!

- objects of type *i*: the $\binom{n+1}{i}_q$ *i*-spaces of V(n+1,q),
- two objects of type *i* are *k*-related iff dim intersection is i k.

 $B_n \cong$ hyperoctahedral group of size $2^n n!$

Thin building, with $q_1 = \ldots = q_n = 1$ ->coding theory!

- **u** type *n*: 2^n binary codewords of length *n*,
- 2 objects of type n are k-related iff they are equal in n k positions.

Thick building, with $q_1 = \ldots = q_{n-1} = q$, $q_n = q^e$ ->polar spaces!

- type $n: (q^e + 1) \dots (q^{n-1+e} + 1)$ maximals of rank n polar space,
- 2 maximals are k-related iff dim intersection is n k.

 Algebraic background Buildings
 Buildings of any type The well known A_n buildings

 Buildings of type F₄
 The well known B_n buildings

What about other finite Coxeter groups?

Thin building of type F₄

- $|\mathsf{F}_4| = 1152 = 2^7.3^2,$
- 24 points, 96 lines and planes, 24 symplecta.
- Points: all 24 vectors in ℝ⁴ of form (±1,±1,0,0) up to permutation.
- Relations between points: R₀, R₁, R₂, R₃, R₄ correspond with inner products 2, 1, 0, -1, -2 (24-cell).

Thick building of type F₄

- $(s,t) = (q,1), (1,q), (q,q), (q,q^2)$ or $(q^2,q),$
- number of points: $|\Omega| = (s^2 + s + 1)(s^2t + 1)(s^2t^2 + 1)(s^3t^3 + 1)$,
- association scheme on points:
 - R₀: identity,
 - R_1 : on unique common line (collinear),
 - R₂: in unique common symplecton (cohyperlinear),
 - R₃: unique common neighbour wrt collinearity (almost opposite),
 - R_4 : no common neighbour (opposite).

Matrix of eigenvalues *P* of association scheme on points (Gomi): $\mathbb{R}\Omega$ decomposes into strata: $V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$.

	R_0	R ₁	R ₂	R ₃	R_4
V ₀	1	$s(s+1)(st+1)(st^2+1)$	$s^{4}t(t^{2}+t+1)(st^{2}+1)$	$s^{5}t^{3}(s+1)(st+1)(st^{2}+1)$	s ⁹ t ⁶
V_1	1	(s+1)(st+1)(st+s-1)	$s^2(t^2+t+1)(s^2t-1)$	$s^{3}t(s+1)(st+1)(st-t-1)$	$-s^{6}t^{3}$
V_2	1	$(-1+s^2)(st+1)$	$(s^{3}t - s^{2}t^{2} - s^{2}t - st - s + t)s$	$-(s-1)(s+1)(st+1)s^{2}t$	$s^{5}t^{2}$
V_3	1	$-1 - st - st^2 + s^2$	$s(t-s)(t^2+t+1)$	$st\left(s^{2}t^{2}-t^{2}+st+s ight)$	$-s^{3}t^{3}$
V_4	1	$-(st + 1)(st^2 + 1)$	$st\left(t^{2}+t+1\right)\left(st^{2}+1\right)$	$-(st+1)(st^2+1)st^3$	$t^{6}s^{3}$

The set of points *S* inside an object

■ points in plane interact as in projective plane (so all collinear): inner distribution of *S*: $\mathbf{a} = (1, s^2 + s, 0, 0, 0),$ $\mathbf{a}P^{-1} - (2, 2, 2, 2, 0) \longrightarrow x_0 \in V_0 + V_0 + V_0 + V_0 + V_0$

a
$$(1, 2, 2, 3, 3, 5) \longrightarrow \chi_{S} \in V_{0} \pm V_{1} \pm V_{2} \pm V_{3} \pm V_{4}$$

points in symplecton interact as in rank 3 polar space

■ points in symplecton interact as in rank 3 polar space (collinear or cohyperlinear): inner distribution of *S*: $\mathbf{a} = (1, s(s+1)(st+1), s^4t, 0, 0)$. $\mathbf{a}P^{-1} = (?, ?, ?, 0, 0) \Longrightarrow \chi_S \in V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$.

Notion of design T in F₄-building

- Set of points *S* in any plane : $\chi_S \in V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$, So if $\chi_T \in V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$ $\implies |S \cap T| = \frac{|S||T|}{|\Omega|} = |S|/((s^2t+1)(s^2t^2+1)(s^3t^3+1)).$
- Set of points *S* in any symplecton: $\chi_S \in V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$, So if $\chi_T \in V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$ $\implies |S \cap T| = \frac{|S||T|}{|\Omega|} = |S|/((s^2t^2 + 1)(s^3t^3 + 1)).$

 Algebraic background
 Description

 Buildings
 Interesting subsets of points

 Buildings of type F4
 An immediate consequence

Cliques of the oppositeness-relation R₄

If S is a set of mutually opposite points (hence not collinear with a common point):

 $\bm{a} = (1,0,0,0,|\bm{\mathcal{S}}|-1).$

 $\mathbb{R}\Omega = V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$, matrix of eigenvalues *P*:

	R ₀	R ₁	R ₂	R ₃	R_4
V ₀	1	$s(s+1)(st+1)(st^2+1)$	$s^{4}t(t^{2}+t+1)(st^{2}+1)$	$s^{5}t^{3}(s+1)(st+1)(st^{2}+1)$	s ⁹ t ⁶
V_1	1	(s+1)(st+1)(st+s-1)	$s^{2}(t^{2}+t+1)(s^{2}t-1)$	$s^{3}t(s+1)(st+1)(st-t-1)$	$-s^{6}t^{3}$
V_2	1	$(-1+s^2)(st+1)$	$(s^{3}t - s^{2}t^{2} - s^{2}t - st - s + t)s$	$-(s-1)(s+1)(st+1)s^{2}t$	$s^{5}t^{2}$
V_3	1	$-1 - st - st^2 + s^2$	$s(t-s)(t^2+t+1)$	$st\left(s^{2}t^{2}-t^{2}+st+s ight)$	$-s^{3}t^{3}$
V_4	1	$-(st + 1)(st^2 + 1)$	$st\left(t^{2}+t+1 ight)\left(st^{2}+1 ight)$	$-(st+1)(st^2+1)st^3$	$t^{6}s^{3}$

(aP⁻¹)_i ≥ 0 with equality iff χ_S ∈ (V_i)[⊥].
i = 1 yields best bound: |S| ≤ s³t³ + 1, with equality iff χ_S ∈ V₀ ⊥ V₁ ⊥ V₂ ⊥ V₃ ⊥ V₄.

 Algebraic background
 Description

 Buildings
 Interesting subsets of points

 Buildings of type F4
 An immediate consequence

Embedding of one F₄-building in another

Embed points T of F₄-building with parameters (s', t') in this building: (inner distribution **a** of T consists just of valencies in smallest building)

■ if
$$(s', t') = (q, 1), (s, t) = (q, q)$$
, then
 $\chi_T \in V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$,
■ if $(s', t') = (q, q), (s, t) = (q, q^2)$, then
 $\chi_T \in V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$,
■ if $(s', t') = (q, q), (s, t) = (q^2, q)$, then
 $\chi_T \in V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$,

An immediate consequence of the previous for $(s, t) = (q, q^2)!$

■ S: set of $1 + s^3 t^3 = 1 + q^9$ mutually opposite points $\implies \chi_S \in V_0 \perp \mathcal{V}_1 \perp V_2 \perp V_3 \perp V_4$,

■ *T*: point set of embedded F₄-building with (s', t') = (q, q): $\implies \chi_T \in V_0 \perp V_1 \perp V_2 \perp V_3 \perp V_4$.

Design-orthogonality yields: $|S \cap T| = \langle \chi_S, \chi_T \rangle = \frac{|S||T|}{|\Omega|} = q^3 + 1.$

Algebraic background	Description
Buildings	Interesting subsets of points
Buildings of type F ₄	An immediate consequence

Thank you for your attention!