
An algebraic approach to subsets in association
schemes from finite buildings

Frédéric Vanhove
Department of Pure Mathematics and Computer Algebra

Ghent University
fvanhove@cage.ugent.be

http://cage.ugent.be/ fvanhove

ALCOMA10
April 12, 2010



Algebraic background
Buildings

Buildings of type F4

Outline

Algebraic background: which techniques do we need? (Philippe
Delsarte)
Buildings: what are these structures? (Jacques Tits)
Buildings of type F4: some results!
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Two fundamental association schemes

Definition of association scheme
A d-class association scheme is a pair (Ω, {R0, . . . ,Rd}) with Ω a set
and R0, . . . ,Rd symmetric relations on Ω s.t.:

(i) R0 = identity relation,
(ii) {R0, . . . ,Rd} is a partition of Ω× Ω,
(iii) there are intersection numbers pk

ij :
if (x , y) ∈ Rk , the number of elements z in Ω for which (x , z) ∈ Ri
and (z, y) ∈ Rj is pk

ij .

x

Ri >>>>>>>>
Rk y

z
Rj

�������

Every relation Ri is thus regular, with valency ki = p0
ii .
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Example: the Paley scheme P5 = (Ω, {R0,R1,R2})

Ω = F5 = {0,1,2,3,4}.
We define 3 relations R0,R1,R2:

R0 is the identity relation: e.g. (2,2) ∈ R0,
(a,b) ∈ R1 if a− b is 1 or 4 (and hence square): e.g. (2,3) ∈ R1,
(a,b) ∈ R2 if a− b is 2 or 3 (and hence non-square): e.g.
(1,4) ∈ R2.

Intersection number p1
12 is 1:

1

R1 @@@@@@@@
R1

2

z?

R2

~~~~~~~~

4

R1 @@@@@@@@
R1

0

z?

R2

~~~~~~~~

z can only be 0 z can only be 3
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Definition of matrices Ai

Consider an association scheme (Ω, {R0, . . . ,Rd}) and order the
elements of Ω: ω1, . . . , ω|Ω|.
For each relation Ri , define the (|Ω| × |Ω|)-matrix Ai over R:{

(Ai)rs = 1 if (ωr , ωs) ∈ Ri ,
(Ai)rs = 0 if (ωr , ωs) /∈ Ri .

Properties

A0 is the identity matrix.
A0 + . . .+ Ad is all-one matrix.
Ai is symmetric.
AiAj =

∑
k pk

ij Ak .
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Example: Paley scheme P5 = ({0,1,2,3,4}, {R0,R1,R2})

A0 =



0 1 2 3 4
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 2
0 0 0 1 0 3
0 0 0 0 1 4

,

A1 =



0 1 2 3 4
0 1 0 0 1 0
1 0 1 0 0 1
0 1 0 1 0 2
0 0 1 0 1 3
1 0 0 1 0 4

 ,A2 =



0 1 2 3 4
0 0 1 1 0 0
0 0 0 1 1 1
1 0 0 0 1 2
1 1 0 0 0 3
0 1 1 0 0 4


Note that A0,A1 and A2 are symmetric and add up to the all-one matrix!
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Decomposition into strata for scheme (Ω, {R0, . . . ,Rd})
RΩ is the vector space with basis indexed by elements of Ω.
RΩ uniquely decomposes as:

RΩ = V0 ⊥ V1 ⊥ . . . ⊥ Vd ,

with every v ∈ Vi an eigenvector of every relation Rj : Ajv = λijv .
These Vi are the strata, and by convention V0 = 〈χΩ〉.

Matrix of eigenvalues P

P =

R0 R1 . . . Rd
V0 1 λ01 . . . λ0d

V1 1
. . . . . . λ1d

... 1
. . . . . .

...
Vd 1 λd1 . . . λdd
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Counting algebraically
The characteristic vector χS of S ⊆ Ω has :
(χS)i = 1 if ωi ∈ S and (χS)i = 0 if ωi /∈ S. So χS = (0,1,0,1,1, . . .).
For any S,S′ ⊆ Ω : 〈χS, χS′〉 = (1,1, . . . ,1)(0,1, . . . ,0) = |S ∩ S′|.

Design-orthogonality of subsets S and S′

If RΩ = V0 ⊥ V1 ⊥ . . . ⊥ Vd and:

χS =
|S|
|Ω|

χΩ + v1 +��v2 + . . .+ vd , vi ∈ Vi

χS′ =
|S′|
|Ω|

χΩ + ��v
′
1 + v ′2 + . . .+��v

′
d , v

′
i ∈ Vi

with ∀i ∈ {1, . . . ,d}: vi = 0 or v ′i = 0 then

|S ∩ S′| = 〈χS, χS′〉 =
|S||S′|
|Ω||Ω|

〈χΩ, χΩ〉 =
|S||S′|
|Ω|

.

Frédéric Vanhove Association schemes from finite buildings



Algebraic background
Buildings

Buildings of type F4

Association schemes
Two fundamental association schemes

Which components vi of χS are zero?
The inner distribution a of S ⊆ Ω: ai = 1

|S| |(S × S) ∩ Ri |.
So ai is average valency of Ri in S,and a0 = 1,a0 + . . .+ ad = |S|.
Example: Paley scheme (Ω, {R0,R1,R2}), and S = {0,1,3}.

a = 1
3

(
(1,1,1)0 + (1,1,1)1 + (1,0,2)3

)
= (1, 2

3 ,
4
3).
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Which components vi of χS are zero?

RΩ = V0 ⊥ V1 ⊥ . . . ⊥ Vd

χS = |S|
|Ω|χΩ + v1 + . . .+ vd , with vi ∈ Vi .

For any (non-empty) subset S ⊆ Ω, inner distribution a satisfies:

(aP−1)i ≥ 0,

with equality if and only if vi = 0 (or hence χS ∈ (Vi)
⊥).
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The Johnson scheme J(n, k) in a set X of size n

Ω: the
(n

k

)
= n(n−1)...(n−k+1)

k(k−1)...1 k -subsets in X ,

(ω1, ω2) ∈ Ri ⇐⇒ |ω1 ∩ ω2| = k − i .

The Grassmann scheme Jq(n, k) in V (n,q)

Ω: the
[n

k

]
q = (qn−1)(qn−1−1)...(qn−k+1−1)

(qk−1)(qk−1−1)...(q−1)
k -subspaces in V (n,q),

(ω1, ω2) ∈ Ri ⇐⇒ dim(ω1 ∩ ω2) = k − i .
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Delsarte’s characterization in J(n, k) and Jq(n, k)

In both schemes: RΩ = V0 ⊥ V1 ⊥ . . . ⊥ Vd with
d = min(k ,n − k) (with “natural ordering”).
In J(n, k): S ⊆ Ω is t − (n, k , λ)-design
(i.e. every t-subset in X is in λ elements of S)
⇐⇒ χS ∈ V0 ⊥��V1 ⊥ . . . ⊥��Vt ⊥ Vt+1 ⊥ . . . ⊥ Vd .
In Jq(n, k): S ⊆ Ω is t − (n, k , λ; q)-design
(i.e. every t-space in V (n,q) is in λ elements of S)
⇐⇒ χS ∈ V0 ⊥��V1 ⊥ . . . ⊥��Vt ⊥ Vt+1 ⊥ . . . ⊥ Vd .

Where else do we have these characterizations in schemes and their
q-analogues?
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Buildings of any type
The well known An buildings
The well known Bn buildings

Buildings of rank n are certain incidence structures with n types (Tits).
Each finite building has a Coxeter-Dynkin diagram, for instance:

q1 q2 q3 qn−2 qn−1 qn(3) (3) (3) (4)

Each node corresponds with a type (points, lines,planes,...).
If x1, . . . , xi−1, xi+1 . . . , xn of types 1, . . . , i − 1, i + 1, . . . ,n are
incident,
they are incident with qi + 1 common objects of type i .
The thin building with (q1, . . . ,qn) = (1, . . . ,1) is constructed from
“Coxeter group" itself,
thick building is more complicated but similar.
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Coxeter group W and its thin building

(m12 = 3) (m23 = 4) (m34 = 3)

w1 w2 w3 w4

W is generated by involutions wi , with (wiwj)
mij = e

(we draw no line if mij = 2⇐⇒ wiwj = wjwi ),
maximal parabolic subgroup Pi := 〈{w1, . . . ,wn}\{wi}〉,
objects of type i : cosets wPi ,
aPi and bPj are incident iff aPi ∩ bPj 6= ∅,
(aPi ,bPj) and (a′Pi ,b′Pj) in same relation iff
Pia−1bPj = Pia′−1b′Pj
(if i = j , this is an association scheme in SOME cases!)
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The well known An buildings
The well known Bn buildings

q1 q2 q3 qn−2 qn−1 qn(3) (3) (3) (3)

An ∼= symmetric group of size (n + 1)! on n + 1 elements.

Thin buildings of type An, with q1 = . . . = qn = 1→ Johnson scheme!

objects of type i : the
(n+1

i

)
subsets of size i ,

2 objects of type i are k -related iff size intersection is i − k .

Thick buildings of type An, with q1 = . . . = qn = q → Grassmann
scheme!

objects of type i : the
[

n+1
i

]
q

i-spaces of V (n + 1,q),

two objects of type i are k -related iff dim intersection is i − k .
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The well known An buildings
The well known Bn buildings

q1 q2 q3 qn−2 qn−1 qn(3) (3) (3) (4)

Bn ∼= hyperoctahedral group of size 2nn!

Thin building, with q1 = . . . = qn = 1->coding theory!

type n: 2n binary codewords of length n,
2 objects of type n are k -related iff they are equal in n − k
positions.

Thick building, with q1 = . . . = qn−1 = q,qn = qe->polar spaces!

type n: (qe + 1) . . . (qn−1+e + 1) maximals of rank n polar space,
2 maximals are k -related iff dim intersection is n − k .
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What about other finite Coxeter groups?
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Description
Interesting subsets of points
An immediate consequence

(3) (4) (3)

points lines planes symplecta

Thin building of type F4

|F4| = 1152 = 27.32,
24 points, 96 lines and planes, 24 symplecta.
Points: all 24 vectors in R4 of form (±1,±1,0,0) up to
permutation.
Relations between points: R0,R1,R2,R3,R4 correspond with inner
products 2,1,0,−1,−2 (24-cell).
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(3) (4) (3)s s t t

points lines planes symplecta

Thick building of type F4

(s, t) = (q,1), (1,q), (q,q), (q,q2) or (q2,q),
number of points: |Ω| = (s2 + s + 1)(s2t + 1)(s2t2 + 1)(s3t3 + 1),
association scheme on points:
R0: identity,
R1: on unique common line (collinear),
R2: in unique common symplecton (cohyperlinear),
R3: unique common neighbour wrt collinearity (almost opposite),
R4: no common neighbour (opposite).
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(3) (4) (3)s s t t

points lines planes symplecta

Matrix of eigenvalues P of association scheme on points (Gomi):
RΩ decomposes into strata: V0 ⊥ V1 ⊥ V2 ⊥ V3 ⊥ V4.

R0 R1 R2 R3 R4

V0 1 s (s + 1) (st + 1)
“

st2 + 1
”

s4t
“

t2 + t + 1
” “

st2 + 1
”

s5t3 (s + 1) (st + 1)
“

st2 + 1
”

s9t6

V1 1 (s + 1)(st + 1)(st + s − 1) s2
“

t2 + t + 1
” “

s2t − 1
”

s3t (s + 1) (st + 1) (st − t − 1) −s6t3

V2 1
“
−1 + s2

”
(st + 1)

“
s3t − s2t2 − s2t − st − s + t

”
s − (s − 1) (s + 1) (st + 1) s2t s5t2

V3 1 −1− st − st2 + s2 s (t − s)
“

t2 + t + 1
”

st
“

s2t2 − t2 + st + s
”

−s3t3

V4 1 −(st + 1)(st2 + 1) st
“

t2 + t + 1
” “

st2 + 1
”

− (st + 1)
“

st2 + 1
”

st3 t6s3

.
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(3) (4) (3)s s t t

points lines planes symplecta

The set of points S inside an object

points in plane interact as in projective plane (so all collinear):
inner distribution of S: a = (1, s2 + s,0,0,0),
aP−1 = (?, ?, ?, ?,0) =⇒ χS ∈ V0 ⊥ V1 ⊥ V2 ⊥ V3 ⊥��V4.
points in symplecton interact as in rank 3 polar space
(collinear or cohyperlinear):
inner distribution of S: a = (1, s(s + 1)(st + 1), s4t ,0,0).
aP−1 = (?, ?, ?,0,0) =⇒ χS ∈ V0 ⊥ V1 ⊥ V2 ⊥��V3 ⊥��V4.
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(3) (4) (3)s s t t

points lines planes symplecta

Notion of design T in F4-building

Set of points S in any plane : χS ∈ V0 ⊥ V1 ⊥ V2 ⊥ V3 ⊥��V4,
So if χT ∈ V0 ⊥��V1 ⊥��V2 ⊥��V3 ⊥ V4
=⇒ |S ∩ T | = |S||T |

|Ω| = |S|/((s2t + 1)(s2t2 + 1)(s3t3 + 1)).

Set of points S in any symplecton: χS ∈ V0 ⊥ V1 ⊥ V2 ⊥��V3 ⊥��V4,
So if χT ∈ V0 ⊥��V1 ⊥��V2 ⊥ V3 ⊥ V4
=⇒ |S ∩ T | = |S||T |

|Ω| = |S|/((s2t2 + 1)(s3t3 + 1)).
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Cliques of the oppositeness-relation R4

If S is a set of mutually opposite points (hence not collinear with a
common point):

a = (1,0,0,0, |S| − 1).

RΩ = V0 ⊥ V1 ⊥ V2 ⊥ V3 ⊥ V4, matrix of eigenvalues P:

R0 R1 R2 R3 R4

V0 1 s (s + 1) (st + 1)
“

st2 + 1
”

s4t
“

t2 + t + 1
” “

st2 + 1
”

s5t3 (s + 1) (st + 1)
“

st2 + 1
”

s9t6

V1 1 (s + 1)(st + 1)(st + s − 1) s2
“

t2 + t + 1
” “

s2t − 1
”

s3t (s + 1) (st + 1) (st − t − 1) −s6t3

V2 1
“
−1 + s2

”
(st + 1)

“
s3t − s2t2 − s2t − st − s + t

”
s − (s − 1) (s + 1) (st + 1) s2t s5t2

V3 1 −1− st − st2 + s2 s (t − s)
“

t2 + t + 1
”

st
“

s2t2 − t2 + st + s
”

−s3t3

V4 1 −(st + 1)(st2 + 1) st
“

t2 + t + 1
” “

st2 + 1
”

− (st + 1)
“

st2 + 1
”

st3 t6s3

.

(aP−1)i ≥ 0 with equality iff χS ∈ (Vi)
⊥.

i = 1 yields best bound: |S| ≤ s3t3 + 1, with equality iff
χS ∈ V0 ⊥��V1 ⊥ V2 ⊥ V3 ⊥ V4.
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Embedding of one F4-building in another

(3) (4) (3)s s t t

points lines planes symplecta

Embed points T of F4-building with parameters (s′, t ′) in this building:
(inner distribution a of T consists just of valencies in smallest building)

if (s′, t ′) = (q,1), (s, t) = (q,q), then
χT ∈ V0 ⊥ V1 ⊥ V2 ⊥��V3 ⊥��V4,
if (s′, t ′) = (q,q), (s, t) = (q,q2), then
χT ∈ V0 ⊥ V1 ⊥��V2 ⊥��V3 ⊥��V4,
if (s′, t ′) = (q,q), (s, t) = (q2,q), then
χT ∈ V0 ⊥ V1 ⊥��V2 ⊥ V3 ⊥��V4,
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An immediate consequence of the previous for (s, t) = (q,q2)!

(3) (4) (3)
q q q2 q2

points lines planes symplecta

S: set of 1 + s3t3 = 1 + q9 mutually opposite points
=⇒ χS ∈ V0 ⊥��V1 ⊥ V2 ⊥ V3 ⊥ V4,
T : point set of embedded F4-building with (s′, t ′) = (q,q):
=⇒ χT ∈ V0 ⊥ V1 ⊥��V2 ⊥��V3 ⊥��V4.

Design-orthogonality yields:|S ∩ T | = 〈χS, χT 〉 = |S||T |
|Ω| = q3 + 1.
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Thank you for your attention!
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