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Plücker Embedding and Schubert Varieties

Plücker Embedding

Let M∗ be the k× n-matrix representation of M ∈ G(k, n). The
maximal minors of M∗ constitute the Plücker coordinates of the
subspace M . They embed G(k, n) into the projective space
P(nk)−1.

Plücker coordinates in G(2, 4)

M∗ =
[
a0 a1 a2 a3

b0 b1 b2 b3

]
xi,j := aibj − ajbi

the Plücker coordinates are [x1,2 : x1,3 : x1,4 : x2,3 : x2,4 : x3,4].
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Plücker Embedding and Schubert Varieties

Bruhat Order

Let
([n]
k

)
denote the set of all ordered multiindices of length k of

the numbers between 1 and n and let α, β ∈
([n]
k

)
. The Bruhat

order
α ≤ β ⇔ αi ≤ βi ∀ i = 1, ..., k

is a partial order on
([n]
k

)
.

Bruhat order on
(

[4]
2

)
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Plücker Embedding and Schubert Varieties

The straightening syzygies form a minimal Gröbner basis for the
Plücker ideals (i.e. the Grassmann variety embedded in
projective space via the Plücker coordinates).

Gröbner basis of G(2, 4):

x14x23 − x13x24 + x12x34

Gröbner basis of G(2, 5):

x14x23 − x13x24 + x12x34

x15x24 − x14x25 + x12x45

x15x34 − x14x35 + x13x45

x15x23 − x13x25 + x12x35

x25x34 − x23x45 + x24x35
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Plücker Embedding and Schubert Varieties

Schubert Cells

A Schubert cell Cα is the set of all subspaces such that the
leading ones (pivots) of the reduced row-echelon form of the
matrix representations are in positions
xᾱ := n+ 1− αk, ..., n+ 1− α1 (i.e. positions αi counted from
right to left).
This is equivalent to saying that all minors xβ̄ where β is
greater than or not comparable to α in the Bruhat order have
to be zero:

Definition

Cα := {M ∈ Gk,n : xᾱ = 1, xβ̄ = 0 ∀β 6≤ α}
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Plücker Embedding and Schubert Varieties

Schubert cells in G(2, 4)

C1,3 =
[

0 1 ∗ 0
0 0 0 1

]
C2,3 =

[
0 1 0 ∗
0 0 1 ∗

]

Theorem
The size of a Schubert cell is

|(Cα)| = q
Pk
i=1 αi−i
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Plücker Embedding and Schubert Varieties

Schubert Systems

Let A1, ..., Ad be a flag of linear subspaces of Fnq with respective
dimensions α1, ..., αd:

A1 ⊂ A2 ⊂ ... ⊂ Ad

0 ≤ α1 < α2 < ... < αd ≤ n

Definition
Schubert system:

ΩA1,...,Ak := {B ∈ G(k, n)| dim(B ∩Aj) ≥ j}

If we choose the flag to be of standard form (from the right),
i.e. Ai = Ei := 〈en−i+1, ..., en〉, we may write

Ωα1,...,αk := ΩEα1 ,...,Eαk
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Plücker Embedding and Schubert Varieties

Theorem

Ωα =
⋃
β≤α

Cβ = {M ∈ Gk,n : xβ̄ = 0 ∀β 6≤ α}

i.e. the Schubert system Ωα is the union of all reduced
row-echelon forms with leading ones in positions
n+ 1− βk, ..., n+ 1− β1, where β ≤ α.

Corollary
A Schubert system is an algebraic projective variety of size

|Ωα| =
1

qk(k+1)/2

∑
β≤α

q
Pk
i=1 βi
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Schubert Varieties in Network Coding

Schubert Varieties in Network Coding

Theorem
Let A = 〈en−k+1, ..., en〉 (standard flag) and

α1 = d+ 1, α2 = d+ 2, . . . , αk−d−1 = k − 1

αk−d = k

αk−d+1 = n− d+ 1, . . . , αk−1 = n− 1, αk = n

Then
B2d(A) = Ωα1,...,αk
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Schubert Varieties in Network Coding

Example in G(2, 4)

Let A =
(

0 0 1 0
0 0 0 1

)
and d = 1. Then

α1 = αk−d = k = 2 α2 = αk = n = 4

B2(A) = Ω2,4 = {B ∈ G(2, 4)|xβ̄ = 0, β 6≤ (2, 4)}
= {B ∈ G(2, 4)|x3̄4 = 0}
= {B ∈ G(2, 4)|x12 = 0}

For d = 2 we get

α1 = αk−1 = n− 1 = 3 α2 = αk = n = 4

B4(A) = {B ∈ G(2, 4)|xβ̄ = 0, β 6≤ (3, 4)} = G(2, 4)
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Schubert Varieties in Network Coding

B2(A) in Plücker coordinates (RREF):

[0 : 0 : 0 : 0 : 0 : 1], [0 : 0 : 0 : 0 : 1 : ∗], [0 : 0 : 0 : 1 : ∗ : ∗′],

[0 : 0 : 1 : 0 : ∗ : ∗′], [0 : 1 : ∗ : ∗′ : −(∗ · ∗′) : ∗′′]

B2(A) in representation matrices (RREF):(
0 0 1 0
0 0 0 1

)
,

(
0 1 ∗ 0
0 0 0 1

)
,

(
0 1 0 ∗
0 0 1 ∗′

)
(

1 ∗ ∗′ 0
0 0 0 1

)
,

(
1 ∗ 0 ∗′
0 0 1 ∗′′

)
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Schubert Varieties in Network Coding

Question: How can we describe balls around
non-standard-subspaces?

Theorem
The subspace distance remains the same under GL(n, q)-action,
i.e.

dS(U, V ) = dS(U · T, V · T )

for an invertible n× n-matrix T .

Thus, if we know B2d(U) we also know B2d(V ) for V = U · T :

B2d(U) = {M : dim(U ∩M) ≥ k − d}

⇔ B2d(V ) = {M · T : dim(U ∩M) ≥ k − d}
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Schubert Varieties in Network Coding

GL(n)-actions in Plücker coordinates

Let U ∈ G(k, n), Û its corresponding element in P(nk)−1 (i,e. its
Plücker coordinates) and T ∈ GL(n). Define

T̂ :=


t̂11 . . . t̂1(nk)
...

...
t̂(nk)1 . . . t̂(nk)(

n
k)


where t̂ij is the k × k-minor of T with rows denoted by the i-th
element of

([n]
k

)
and columns denoted by the j-th element of([n]

k

)
. Then it holds that

Theorem

V = U · T ⇒ V̂ = Û · T̂
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Schubert Varieties in Network Coding

This implies that

Corollary

xVα =
∑
l∈([n]

k )

xUl x
Tl
α

where xTlα denotes the k × k-minor of T involving rows l1, ..., lk
and columns α1, ..., αk.

This way one can translate the linear conditions of B2d(A) (for
A standard) to arbitrary elements of G(k, n).



Schubert Calculus over Finite Fields and Random Network Codes

Schubert Varieties in Network Coding

Example in G(2, 5)

A =
(

0 0 0 1 0
0 0 0 0 1

)
B4(A) = Ω25 = {M ∈ G(k, n) : x12 = x13 = x23 = 0}

We choose

B =
(

0 1 0 0 0
0 0 1 0 0

)
We compute S fulfilling A = B · S:

S =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


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Schubert Varieties in Network Coding

We use the formula for the Plücker coordinates:

xA12 =
∑
l∈([5]

2 )

xAl x
Sl
12 = xB45

xA13 =
∑
l∈([5]

2 )

xAl x
Sl
13 = xB14

xA23 =
∑
l∈([5]

2 )

xAl x
Sl
23 = xB15

hence

B4(B) = {M ∈ G(k, n) : x14 = x15 = x45 = 0}
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Schubert Varieties in Network Coding

Code Construction

Construction 1
1 choose A1 =< e1, ..., ek >

2 construct B2d(A1)
3 choose A2 6∈ B2d(A1)
4 construct B2d(A2)
5 choose A3 6∈ Bd2(A1) ∪B2d(A2)
...

6 until B2d(A1) ∪B2d(A2) ∪ ... ∪B2d(Al) = G(2, n)
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Construction 2
For constructing a code with minimum distance 2d we have to
find elements such that the balls around these of radius d− 1 do
not intersect pairwise.

This construction only works for d ≡ 1 mod 2 and k ≥ 3,
because

The radius of a ball is a multiple of 2 and is equal to d− 1.
It holds that k ≥ d, thus d = 1 and the ball of radius
d− 1 = 0 is just the element itself.
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Orbit Codes

For any A,B ∈ G(k, n) there exists a (non-unique) T ∈ GL(n)
such that B = A · T . The Grassmannian G(k, n) is an orbit of
any of its elements under GL(n).

Theorem

Stab(A) := {g ∈ GL(n)|A · g = A}

G(k, n) ∼= GL(n)/Stab(A)

Similarly a Schubert cell is an orbit under the action of upper
triangular matrices. Let C0

α be the matrix with pivots in
positions ᾱ and all other entries 0,

Cα = {C0
α · g|g ∈ UT (n) ⊂ GL(n)}

Cα ∼= UT (n)/Stab(C0
α)
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Orbit Codes

Orbit Codes

Definition
Let A ∈ G(k, n) be fixed and G a (multiplicative) subgroup of
GL(n). Then

C = {A · g|g ∈ G}

is called an orbit code and it holds

dS(C) = min
g∈G\Stab(A)

dS(A,A · g)

Theorem
The dual code of an orbit code is an orbit code.

C = {A·g|g ∈ G} ⊆ G(k, n)⇔ C⊥ = {A⊥·g|g ∈ G} ⊆ G(n−k, n)



Schubert Calculus over Finite Fields and Random Network Codes

Orbit Codes

Cyclic Orbit Codes

Example over F2

Let G be the group generated by

g :=


0 1 1 0
0 0 0 1
0 1 0 0
1 0 1 0


and

A :=
(

1 0 0 0
0 1 0 0

)
Then C = {A · g|g ∈ G} = {A · gi} is an [4, 4, 4, 2]-code.
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Orbit Codes

Reed-Solomon-like Codes

Let U = {Ui} be an additive subgroup of Matk×n−k such that
all elements are of rank ≥ 2δ − k and

Gi =
(
Ik×k Ui

0 In−k×n−k

)
and G be the group generated (multiplicatively) by all Gi.

Theorem

C = {A · g|g ∈ G}

is a [n, 2δ, |U |, k]-code. If U = GAB(k × n− k) (Gabidulin
rank-metric-codes) it is exactly the Reed-Solomon-like code
(Koetter and Kschischang).
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Proof.
Any element of G has the shape of Gi(

I Ui1
0 I

)
·
(
I Ui2
0 I

)
=
(
I Ui1 + Ui2
0 I

)
Then

A ·Gi =
[
I Ui

]
and

dS(A,A ·Gi) = rank

[
Ik×k 0
Ik×k Ui

]
= k + rank(Ui)

Known result: The RS-like codes correspond to the lifting of
Gabidulin codes.
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Orbit Codes

Spread Codes

Let n = 2k and U = Fq[P ] be the Fq-algebra of a companion
matrix of an irreducible polynomial.

Gi1 =
(
I Ui
0 I

)
G2 =

(
0 I

I 0

)
and G be the group generated (multiplicatively) by all Gi1 and
G2.

Theorem

C = {A · g|g ∈ G}

is exactly the [n, n, qn−1
qn/2−1

, n/2]-spread code. (Manganiello,
Gorla, Rosenthal)
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Orbit Codes

Proof.
The blocks are always a linear combination of 0, I and elements
of U , thus each block is again an element of U . Letting G act
on A we get elements of the shape[

Ui Uj
]

If Ui is non-zero

rowspace
[
Ui Uj

]
= rowspace

[
I U−1

i · Uj
]

Remark
The construction can be generalized to n = j · k and works for
U being any subgroup of GL(n/j) with field structure.
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Thank you for your attention!
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