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Pliicker Embedding

Let M* be the k x n-matrix representation of M € G(k,n). The
maximal minors of M* constitute the Plicker coordinates of the
subspace M. They embed G(k,n) into the projective space
p(i)-1.

Pliicker coordinates in G(2,4)

ap a1 a2 ag

M:b0b1b2b3

l'i,j = aibj — (ljb@'

the Pliicker coordinates are [.731’2 DT13 X140 T23 1 T4t T34

V.
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Bruhat Order

Let ([Z}) denote the set of all ordered multiindices of length k of

the numbers between 1 and n and let o, 3 € ([Z]). The Bruhat
order
a<lp & q<f Vi=1,...,k

is a partial order on ([Z]).

Bruhat order on ([g])
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The straightening syzygies form a minimal Grébner basis for the
Pliicker ideals (i.e. the Grassmann variety embedded in
projective space via the Pliicker coordinates).

Grobner basis of G(2,4):

14723 — £13%24 + T12234

Grobner basis of G(2,5):

14723 — £13%24 + 12734
T15%24 — X14T25 + T12%45
T15%34 — 14235 + T13%45
T15%23 — £13T25 + T12235

To5T34 — X23X45 + T24T35
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Schubert Cells

A Schubert cell Cy, is the set of all subspaces such that the
leading ones (pivots) of the reduced row-echelon form of the
matrix representations are in positions
zs:=n+1—ag,...,n+1—a; (i.e. positions a; counted from
right to left).

This is equivalent to saying that all minors x5 where [ is
greater than or not comparable to « in the Bruhat order have
to be zero:

O {MeGk’n:xazl,a%:OVﬂﬁa}




Schubert cells in G(2,4)

01 % 0 010 #
01’3_[0 00 1] 0273_[0 01 *]

<

Theorem

The size of a Schubert cell is

k oi—i
(Ca)l = gZtor s
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Schubert Systems

Let Ay, ..., Aq be a flag of linear subspaces of Fy with respective
dimensions aq, ..., ag:

A1 C Ay C...C Ay

<o <a<..<ag<n

Definition

Schubert system:

Qa,,..4, :={B € G(k,n)|dim(BNA,) > j}

If we choose the flag to be of standard form (from the right),
ie. Aj=FE; == (en—it1,.., €n), We may write

Qal,...,ak = QEal,...,Eak
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Theorem

Qo= |JCs={M€Gppn:253=0Y3%a}

BLa

i.e. the Schubert system q is the union of all reduced
row-echelon forms with leading ones in positions
n+1— 0k ...n+1— 731, where 8 < .

A Schubert system is an algebraic projective variety of size

Bi
2] = k+1)/2 Z q==

BLa
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Schubert Varieties in Network Coding

Theorem

Let A = (en—k+1, .., €n) (standard flag) and
ar=d+1l,ao=d+2,...,ap_g1=k—1

ag—q=k
Qp—dgt1 =n—d+1,... ;a1 =n—1lar=n

Then

B2d(A) - Qal,,.. e}

Yk
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Schubert Varieties in Network Coding

By(A) =4 ={B € G(2,4)x5 =0, £ (2,4)}
={B e G(2,4)|zgy = 0}
= {B S G(2,4)‘IL’12 = O}

For d = 2 we get
al=aqp 1=n—1=3 ag=aqp=n=4

By(A) ={B € G(2,4)|z5=0,8 £ (3,4)} = G(2,4)
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Schubert Varieties in Network Coding

By (A) in Pliicker coordinates (RREF):
0:0:0:0:0:1],[0:0:0:0:1:%],[0:0:0:1:%:%],

[0:0:1:0:%:%],[0:1 %t —(x- %) %]

1 0 =%
0 1 «

*/
*//

Bs(A) in representation matrices (RREF):
00 0 0
0 0 1)\ 0

0

1

* 0 1
0 1 /)°\0 0

O =
O =
S ¥

(s (

S *
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Schubert Varieties in Network Coding

Question: How can we describe balls around
non-standard-subspaces?

The subspace distance remains the same under GL(n,q)-action,
1.e.

ds(U,V) =ds(U-T,V -T)

for an invertible n x n-matriz T

Thus, if we know Byi(U) we also know Byy(V) for V.=U -T":
Boy(U) ={M :dim(UNM) > k —d}

& Byy(V)={M T :dim({U M) >k—d}



Schubert Calculus over Finite Fi
Schubert Va s in Network Coding

G L(n)-actions in Pliicker coordinates

Let U € G(k,n), U its corresponding element in p(i)-1 (i,e. its
Pliicker coordinates) and T' € GL(n). Define

where fz-j is the k£ x k-minor of T" with rows denoted by the i-th
element of ([Z]) and columns denoted by the j-th element of
([Z]). Then it holds that

Theorem
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This implies that

| U,T;
Lo = lema

e

where 21! denotes the k x k-minor of T involving rows Iy, ..., [y
and columns aq, ..., Q.

This way one can translate the linear conditions of Byy(A) (for
A standard) to arbitrary elements of G(k,n).
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Schubert Varieties in Network Coding

Example in G(2,5)
00 0 10
A= ( 000 0 1)
B4(A) = Qo5 = {M € G(k,n) P T19 = T13 = T23 = 0}

01000
B_<00100>

We compute S fulfilling A =B - S:

We choose

00100
00 010
S=1000 01
1 00 00
01 00O
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We use the formula for the Pliicker coordinates:
_ A S _ B
= Z Ty L1 = Ty45
1e(3)
A S _ B
Z 2y Wiy = i
1e(td)
A S _ B
Z ) iy = Vi

1e(td)

“IL

hence

B4(B) = {M S G(k,n) X114 = T15 = T45 = 0}
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Code Construction

Construction 1

@ choose A1 =< eq,...,¢e1 >

@ construct Bgg(A1)

@ choose Ay & Boy(A1)

Q construct Bgg(As2)

@ choose A3 ¢ Bap(A1) U Bag(As)

@ until Bgd(Al) U Bgd(Ag) U...u Bgd(Al) = G(Q, n)
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Schubert Varieties in Network Coding

For constructing a code with minimum distance 2d we have to
find elements such that the balls around these of radius d — 1 do
not intersect pairwise.

This construction only works for d =1 mod 2 and k > 3,
because

@ The radius of a ball is a multiple of 2 and is equal to d — 1.

o It holds that k > d, thus d = 1 and the ball of radius
d —1 =0 is just the element itself.
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For any A, B € G(k,n) there exists a (non-unique) 7' € GL(n)
such that B = A-T. The Grassmannian G(k,n) is an orbit of
any of its elements under GL(n).

Stab(A) :={g € GL(n)|A-g= A}
G(k,n) = GL(n)/Stab(A)

Similarly a Schubert cell is an orbit under the action of upper
triangular matrices. Let C2 be the matrix with pivots in
positions @ and all other entries 0,

Co ={CY - glg € UT(n) C GL(n)}

Co =2 UT(n)/Stab(C?)
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Orbit Codes

Definition
Let A € G(k,n) be fixed and G a (multiplicative) subgroup of
GL(n). Then

C={A-glgeG}

is called an orbit code and it holds

ds(C) = i ds(A, A -
s R s(A,A-g)

Theorem

—
~—
N

The dual code of an orbit code is an orbit code.

C ={Aglg € G} CG(k,n) & C = {ATglg € G} C G(n—k,n)

v
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Cyclic Orbit Codes

Example over Fy

Let G be the group generated by
01 1 0
o001
97101 0 0
1 01 0
and
1 0 0 0
A'_(o 10 0)
Then C = {A-glg € G} = {A- ¢g'} is an [4, 4,4, 2]-code.
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Reed-Solomon-like Codes

Let U = {U;} be an additive subgroup of Matyx,_x such that
all elements are of rank > 26 — k and

(k| Ui >
Gi= < 0 ‘ In—kxcn—k

and G be the group generated (multiplicatively) by all G;.

C={A-glgeG}

is a [n, 26, |U|, k]-code. If U = GAB(k x n — k) (Gabidulin
rank-metric-codes) it is exactly the Reed-Solomon-like code
(Koetter and Kschischang).
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Proof.
Any element of G has the shape of G;

I‘Ui .I‘Ui . I‘Uj-{-UZ‘
0 1 o 1 ) \o| I

Then
AGi=[1 U]
and
N Ipwi 0 | A
ds(A, A-G;) =rank =k + rank(U;)
I U

Known result: The RS-like codes correspond to the lifting of
Gabidulin codes. O
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Spread Codes

Let n = 2k and U = F,[P] be the Fj-algebra of a companion
matrix of an irreducible polynomial.

i () (30

and G be the group generated (multiplicatively) by all G} and
Ga.

Theorem

C={A glgeG}

is exactly the [n,n, ﬁT__ll, n/2]-spread code. (Manganiello,
Gorla, Rosenthal)
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Orbit Codes

Proof.

The blocks are always a linear combination of 0, I and elements
of U, thus each block is again an element of U. Letting G act
on A we get elements of the shape

[ Ui Uj ]
If U; is non-zero

rowspace[ U, Uj ] = rowspace[ 1 U;l -Uj ]

The construction can be generalized to n = j - k£ and works for
U being any subgroup of GL(n/j) with field structure.
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Thank you for your attention!
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