Schubert Calculus over Finite Fields and Random Network Codes

Anna-Lena Trautmann

Institute of Mathematics
University of Zurich

ALCOMA10

Thurnau, April 12-17 2010

Outline

(1) Plücker Embedding and Schubert Varieties
(2) Schubert Varieties in Network Coding
(3) Orbit Codes

Plücker Embedding

Let M^{*} be the $k \times n$-matrix representation of $M \in G(k, n)$. The maximal minors of M^{*} constitute the Plücker coordinates of the subspace M. They embed $G(k, n)$ into the projective space $\mathbb{P}\binom{n}{k}-1$.

Plücker coordinates in $G(2,4)$

$$
\begin{gathered}
M^{*}=\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3}
\end{array}\right] \\
x_{i, j}:=a_{i} b_{j}-a_{j} b_{i}
\end{gathered}
$$

the Plücker coordinates are $\left[x_{1,2}: x_{1,3}: x_{1,4}: x_{2,3}: x_{2,4}: x_{3,4}\right]$.

Bruhat Order

Let $\binom{[n]}{k}$ denote the set of all ordered multiindices of length k of the numbers between 1 and n and let $\alpha, \beta \in\binom{[n]}{k}$. The Bruhat order

$$
\alpha \leq \beta \Leftrightarrow \alpha_{i} \leq \beta_{i} \quad \forall i=1, \ldots, k
$$

is a partial order on $\binom{[n]}{k}$.
Bruhat order on $\binom{[4]}{2}$

The straightening syzygies form a minimal Gröbner basis for the Plücker ideals (i.e. the Grassmann variety embedded in projective space via the Plücker coordinates).

Gröbner basis of $G(2,4)$:

$$
x_{14} x_{23}-x_{13} x_{24}+x_{12} x_{34}
$$

Gröbner basis of $G(2,5)$:

$$
\begin{aligned}
& x_{14} x_{23}-x_{13} x_{24}+x_{12} x_{34} \\
& x_{15} x_{24}-x_{14} x_{25}+x_{12} x_{45} \\
& x_{15} x_{34}-x_{14} x_{35}+x_{13} x_{45} \\
& x_{15} x_{23}-x_{13} x_{25}+x_{12} x_{35} \\
& x_{25} x_{34}-x_{23} x_{45}+x_{24} x_{35}
\end{aligned}
$$

Schubert Cells

A Schubert cell C_{α} is the set of all subspaces such that the leading ones (pivots) of the reduced row-echelon form of the matrix representations are in positions
$x_{\bar{\alpha}}:=n+1-\alpha_{k}, \ldots, n+1-\alpha_{1}$ (i.e. positions α_{i} counted from right to left).
This is equivalent to saying that all minors $x_{\bar{\beta}}$ where β is greater than or not comparable to α in the Bruhat order have to be zero:

Definition

$$
C_{\alpha}:=\left\{M \in G_{k, n}: x_{\bar{\alpha}}=1, x_{\bar{\beta}}=0 \forall \beta \not \leq \alpha\right\}
$$

Schubert cells in $G(2,4)$

$$
C_{1,3}=\left[\begin{array}{cccc}
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad C_{2,3}=\left[\begin{array}{cccc}
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]
$$

Theorem

The size of a Schubert cell is

$$
\left|\left(C_{\alpha}\right)\right|=q^{\sum_{i=1}^{k} \alpha_{i}-i}
$$

Schubert Systems

Let A_{1}, \ldots, A_{d} be a flag of linear subspaces of \mathbb{F}_{q}^{n} with respective dimensions $\alpha_{1}, \ldots, \alpha_{d}$:

$$
\begin{gathered}
A_{1} \subset A_{2} \subset \ldots \subset A_{d} \\
0 \leq \alpha_{1}<\alpha_{2}<\ldots<\alpha_{d} \leq n
\end{gathered}
$$

Definition

Schubert system:

$$
\Omega_{A_{1}, \ldots, A_{k}}:=\left\{B \in G(k, n) \mid \operatorname{dim}\left(B \cap A_{j}\right) \geq j\right\}
$$

If we choose the flag to be of standard form (from the right), i.e. $A_{i}=E_{i}:=\left\langle e_{n-i+1}, \ldots, e_{n}\right\rangle$, we may write

$$
\Omega_{\alpha_{1}, \ldots, \alpha_{k}}:=\Omega_{E_{\alpha_{1}}, \ldots, E_{\alpha_{k}}}
$$

Theorem

$$
\Omega_{\alpha}=\bigcup_{\beta \leq \alpha} C_{\beta}=\left\{M \in G_{k, n}: x_{\bar{\beta}}=0 \forall \beta \not \leq \alpha\right\}
$$

i.e. the Schubert system Ω_{α} is the union of all reduced row-echelon forms with leading ones in positions $n+1-\beta_{k}, \ldots, n+1-\beta_{1}$, where $\beta \leq \alpha$.

Corollary

A Schubert system is an algebraic projective variety of size

$$
\left|\Omega_{\alpha}\right|=\frac{1}{q^{k(k+1) / 2}} \sum_{\beta \leq \alpha} q^{\sum_{i=1}^{k} \beta_{i}}
$$

Schubert Varieties in Network Coding

Theorem

Let $A=\left\langle e_{n-k+1}, \ldots, e_{n}\right\rangle$ (standard flag) and

$$
\begin{gathered}
\alpha_{1}=d+1, \alpha_{2}=d+2, \ldots, \alpha_{k-d-1}=k-1 \\
\alpha_{k-d}=k \\
\alpha_{k-d+1}=n-d+1, \ldots, \alpha_{k-1}=n-1, \alpha_{k}=n
\end{gathered}
$$

Then

$$
B_{2 d}(A)=\Omega_{\alpha_{1}, \ldots, \alpha_{k}}
$$

Example in $G(2,4)$

Let $A=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ and $d=1$. Then

$$
\begin{aligned}
\alpha_{1}=\alpha_{k-d} & =k=2 \quad \alpha_{2}=\alpha_{k}=n=4 \\
B_{2}(A)=\Omega_{2,4} & =\left\{B \in G(2,4) \mid x_{\bar{\beta}}=0, \beta \not \leq(2,4)\right\} \\
& =\left\{B \in G(2,4) \mid x_{\overline{34}}=0\right\} \\
& =\left\{B \in G(2,4) \mid x_{12}=0\right\}
\end{aligned}
$$

For $d=2$ we get

$$
\begin{gathered}
\alpha_{1}=\alpha_{k-1}=n-1=3 \quad \alpha_{2}=\alpha_{k}=n=4 \\
B_{4}(A)=\left\{B \in G(2,4) \mid x_{\bar{\beta}}=0, \beta \not \leq(3,4)\right\}=G(2,4)
\end{gathered}
$$

$B_{2}(A)$ in Plücker coordinates (RREF):

$$
\begin{gathered}
{[0: 0: 0: 0: 0: 1],[0: 0: 0: 0: 1: *],\left[0: 0: 0: 1: *: *^{\prime}\right],} \\
{\left[0: 0: 1: 0: *: *^{\prime}\right],\left[0: 1: *: *^{\prime}:-\left(* \cdot *^{\prime}\right): *^{\prime \prime}\right]}
\end{gathered}
$$

$B_{2}(A)$ in representation matrices (RREF):

$$
\begin{gathered}
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
0 & 1 & 0 & * \\
0 & 0 & 1 & *^{\prime}
\end{array}\right) \\
\left(\begin{array}{llll}
1 & * & *^{\prime} & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & * & 0 & *^{\prime} \\
0 & 0 & 1 & *^{\prime \prime}
\end{array}\right)
\end{gathered}
$$

Question: How can we describe balls around non-standard-subspaces?

Theorem

The subspace distance remains the same under $G L(n, q)$-action, i.e.

$$
d_{S}(U, V)=d_{S}(U \cdot T, V \cdot T)
$$

for an invertible $n \times n$-matrix T.

Thus, if we know $B_{2 d}(U)$ we also know $B_{2 d}(V)$ for $V=U \cdot T$:

$$
\begin{aligned}
B_{2 d}(U) & =\{M: \operatorname{dim}(U \cap M) \geq k-d\} \\
\Leftrightarrow B_{2 d}(V) & =\{M \cdot T: \operatorname{dim}(U \cap M) \geq k-d\}
\end{aligned}
$$

$G L(n)$-actions in Plücker coordinates

Let $U \in G(k, n), \hat{U}$ its corresponding element in $\mathbb{P}^{\binom{n}{k}-1}$ (i,e. its Plücker coordinates) and $T \in G L(n)$. Define

$$
\hat{T}:=\left[\begin{array}{ccc}
\hat{t}_{11} & \ldots & \hat{t}_{1}\binom{n}{k} \\
\vdots & & \vdots \\
\hat{t}_{\binom{n}{k} 1} & \ldots & \left.\hat{t}_{\binom{n}{k}} \begin{array}{l}
n \\
k
\end{array}\right)
\end{array}\right]
$$

where $\hat{t}_{i j}$ is the $k \times k$-minor of T with rows denoted by the i-th element of $\binom{[n]}{k}$ and columns denoted by the j-th element of $\binom{[n]}{k}$. Then it holds that

Theorem

$$
V=U \cdot T \Rightarrow \hat{V}=\hat{U} \cdot \hat{T}
$$

This implies that

Corollary

$$
x_{\alpha}^{V}=\sum_{l \in\binom{[n]}{k}} x_{l}^{U} x_{\alpha}^{T_{l}}
$$

where $x_{\alpha}^{T_{l}}$ denotes the $k \times k$-minor of T involving rows l_{1}, \ldots, l_{k} and columns $\alpha_{1}, \ldots, \alpha_{k}$.

This way one can translate the linear conditions of $B_{2 d}(A)$ (for A standard) to arbitrary elements of $G(k, n)$.

Example in $G(2,5)$

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
B_{4}(A)=\Omega_{25}=\left\{M \in G(k, n): x_{12}=x_{13}=x_{23}=0\right\}
\end{gathered}
$$

We choose

$$
B=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

We compute S fulfilling $A=B \cdot S$:

$$
S=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

We use the formula for the Plücker coordinates:

$$
\begin{aligned}
& x_{12}^{A}=\sum_{l \in\binom{[5]}{2}} x_{l}^{A} x_{12}^{S_{l}}=x_{45}^{B} \\
& x_{13}^{A}=\sum_{l \in\binom{[5]}{2}} x_{l}^{A} x_{13}^{S_{l}}=x_{14}^{B} \\
& x_{23}^{A}=\sum_{l \in\binom{[5]}{2}} x_{l}^{A} x_{23}^{S_{l}}=x_{15}^{B}
\end{aligned}
$$

hence

$$
B_{4}(B)=\left\{M \in G(k, n): x_{14}=x_{15}=x_{45}=0\right\}
$$

Code Construction

Construction 1

(1) choose $A_{1}=<e_{1}, \ldots, e_{k}>$
(2) construct $B_{2 d}\left(A_{1}\right)$
(3) choose $A_{2} \notin B_{2 d}\left(A_{1}\right)$
(1) construct $B_{2 d}\left(A_{2}\right)$
(6) choose $A_{3} \notin B_{d 2}\left(A_{1}\right) \cup B_{2 d}\left(A_{2}\right)$
(6) until $B_{2 d}\left(A_{1}\right) \cup B_{2 d}\left(A_{2}\right) \cup \ldots \cup B_{2 d}\left(A_{l}\right)=G(2, n)$

Construction 2

For constructing a code with minimum distance $2 d$ we have to find elements such that the balls around these of radius $d-1$ do not intersect pairwise.

This construction only works for $d \equiv 1 \bmod 2$ and $k \geq 3$, because

- The radius of a ball is a multiple of 2 and is equal to $d-1$.
- It holds that $k \geq d$, thus $d=1$ and the ball of radius $d-1=0$ is just the element itself.

For any $A, B \in G(k, n)$ there exists a (non-unique) $T \in G L(n)$ such that $B=A \cdot T$. The Grassmannian $G(k, n)$ is an orbit of any of its elements under $G L(n)$.

Theorem

$$
\begin{gathered}
\operatorname{Stab}(A):=\{g \in G L(n) \mid A \cdot g=A\} \\
G(k, n) \cong G L(n) / \operatorname{Stab}(A)
\end{gathered}
$$

Similarly a Schubert cell is an orbit under the action of upper triangular matrices. Let C_{α}^{0} be the matrix with pivots in positions $\bar{\alpha}$ and all other entries 0 ,

$$
\begin{gathered}
C_{\alpha}=\left\{C_{\alpha}^{0} \cdot g \mid g \in U T(n) \subset G L(n)\right\} \\
C_{\alpha} \cong U T(n) / \operatorname{Stab}\left(C_{\alpha}^{0}\right)
\end{gathered}
$$

Orbit Codes

Definition

Let $A \in G(k, n)$ be fixed and G a (multiplicative) subgroup of $G L(n)$. Then

$$
C=\{A \cdot g \mid g \in G\}
$$

is called an orbit code and it holds

$$
d_{S}(C)=\min _{g \in G \backslash \operatorname{Stab}(A)} d_{S}(A, A \cdot g)
$$

Theorem

The dual code of an orbit code is an orbit code.

$$
C=\{A \cdot g \mid g \in G\} \subseteq G(k, n) \Leftrightarrow C^{\perp}=\left\{A^{\perp} \cdot g \mid g \in G\right\} \subseteq G(n-k, n)
$$

Cyclic Orbit Codes

Example over \mathbb{F}_{2}

Let G be the group generated by

$$
g:=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

and

$$
A:=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Then $C=\{A \cdot g \mid g \in G\}=\left\{A \cdot g^{i}\right\}$ is an $[4,4,4,2]$-code.

Reed-Solomon-like Codes

Let $U=\left\{U_{i}\right\}$ be an additive subgroup of $M a t_{k \times n-k}$ such that all elements are of rank $\geq 2 \delta-k$ and

$$
G_{i}=\left(\begin{array}{c|c}
I_{k \times k} & U_{i} \\
\hline 0 & I_{n-k \times n-k}
\end{array}\right)
$$

and G be the group generated (multiplicatively) by all G_{i}.

Theorem

$$
C=\{A \cdot g \mid g \in G\}
$$

is a $[n, 2 \delta,|U|, k]$-code. If $U=G A B(k \times n-k)$ (Gabidulin rank-metric-codes) it is exactly the Reed-Solomon-like code (Koetter and Kschischang).

Proof.

Any element of G has the shape of G_{i}

$$
\left(\begin{array}{c|c}
I & U_{i_{1}} \\
\hline 0 & I
\end{array}\right) \cdot\left(\begin{array}{c|c}
I & U_{i_{2}} \\
\hline 0 & I
\end{array}\right)=\left(\begin{array}{c|c}
I & U_{i_{1}}+U_{i_{2}} \\
\hline 0 & I
\end{array}\right)
$$

Then

$$
A \cdot G_{i}=\left[\begin{array}{ll}
I & U_{i}
\end{array}\right]
$$

and

$$
d_{S}\left(A, A \cdot G_{i}\right)=\operatorname{rank}\left[\begin{array}{cc}
I_{k \times k} & 0 \\
I_{k \times k} & U_{i}
\end{array}\right]=k+\operatorname{rank}\left(U_{i}\right)
$$

Known result: The RS-like codes correspond to the lifting of Gabidulin codes.

Spread Codes

Let $n=2 k$ and $U=F_{q}[P]$ be the F_{q}-algebra of a companion matrix of an irreducible polynomial.

$$
G_{1}^{i}=\left(\begin{array}{c|c}
I & U_{i} \\
\hline 0 & I
\end{array}\right) \quad G_{2}=\left(\begin{array}{c|c}
0 & I \\
\hline I & 0
\end{array}\right)
$$

and G be the group generated (multiplicatively) by all G_{1}^{i} and G_{2}.

Theorem

$$
C=\{A \cdot g \mid g \in G\}
$$

is exactly the $\left[n, n, \frac{q^{n}-1}{q^{n / 2}-1}, n / 2\right]$-spread code. (Manganiello, Gorla, Rosenthal)

Proof.

The blocks are always a linear combination of $0, I$ and elements of U, thus each block is again an element of U. Letting G act on A we get elements of the shape

$$
\left[\begin{array}{ll}
U_{i} & U_{j}
\end{array}\right]
$$

If U_{i} is non-zero

$$
\operatorname{rowspace}\left[\begin{array}{ll}
U_{i} & U_{j}
\end{array}\right]=\operatorname{rowspace}\left[\begin{array}{cc}
I & U_{i}^{-1} \cdot U_{j}
\end{array}\right]
$$

Remark

The construction can be generalized to $n=j \cdot k$ and works for U being any subgroup of $G L(n / j)$ with field structure.

Thank you for your attention!

