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Overview

P -rank of incidence matrices and majority
decoding

Geometric designs and Hamada’s conjecture

Polarities and non-geometric designs with
geometric parameters

An infinite class of counter-examples to
Hamada’s conjecture

An infinite class of quasi-symmetric designs.
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Majority Decoding and Designs

Theorem. (Rudolph ’67).
If the supports of vectors of weight w in
the dual code of a linear [n, k] code C over GF (q)
form a 2-(n,w, λ) design then C can correct by
majority decoding up to e errors, where

e = ⌊
(n− 1)λ + (w − 1)(λ− 1)

2λ(w − 1)
⌋.
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Majority Decoding and Designs

Theorem. (Rudolph ’67).
If the supports of vectors of weight w in
the dual code of a linear [n, k] code C over GF (q)
form a 2-(n,w, λ) design then C can correct by
majority decoding up to e errors, where

e = ⌊
(n− 1)λ + (w − 1)(λ− 1)

2λ(w − 1)
⌋.

The Majority Decoding algorithm evaluates
r=λ(n− 1)/(w − 1) linear functions of n variables
for each of the n coordinates and chooses the
predominant value by a majority vote.
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Majority Decoding and Designs

Corollary. Rudolph’s Theorem applies if C has a
parity check matrix H being the incidence matrix
of a 2-(n,w, λ) design.
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Majority Decoding and Designs

Corollary. Rudolph’s Theorem applies if C has a
parity check matrix H being the incidence matrix
of a 2-(n,w, λ) design.

Note. dim(C) = n− rankqH.
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Majority Decoding and Designs

Corollary. Rudolph’s Theorem applies if C has a
parity check matrix H being the incidence matrix
of a 2-(n,w, λ) design.

Note. dim(C) = n− rankqH.

Theorem. (Hamada ’73).

rankqH ≥ n− 1 if gcd(q,
λ(n− w)

w − 1
) = 1.
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Majority Decoding and Designs

Corollary. Rudolph’s Theorem applies if C has a
parity check matrix H being the incidence matrix
of a 2-(n,w, λ) design.

Note. dim(C) = n− rankqH.

Theorem. (Hamada ’73).

rankqH ≥ n− 1 if gcd(q,
λ(n− w)

w − 1
) = 1.

Problem: Given n,w, λ and q, find a 2-(n,w, λ)
design of minimum q-rank.
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Designs from Finite Geometry

PGd(n, q) : 2− (
qn+1 − 1

q − 1
,
qd+1 − 1

q − 1
,
[n− 1

d− 1

]

q
),
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Designs from Finite Geometry

PGd(n, q) : 2− (
qn+1 − 1

q − 1
,
qd+1 − 1

q − 1
,
[n− 1

d− 1

]

q
),

AGd(n, q) : 2− (qn, qd,
[n− 1

d− 1

]

q
), 1 ≤ d ≤ n− 1,
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Designs from Finite Geometry

PGd(n, q) : 2− (
qn+1 − 1

q − 1
,
qd+1 − 1

q − 1
,
[n− 1

d− 1

]

q
),

AGd(n, q) : 2− (qn, qd,
[n− 1

d− 1

]

q
), 1 ≤ d ≤ n− 1,

AGd(n, 2) : 3− (2n, 2d,
[n− 2

d− 2

]

q
), 1 ≤ d ≤ n− 1,

where

[n

i

]

q
=

(qn − 1) · · · (qn−i+1 − 1)

(qi − 1) · · · (q − 1)
.
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1 P-ranks of Geometric Designs

rank2(AGd(m, 2)) = rank2(PGd−1(m−1, 2)) =
d

∑

i=0

(

m

i

)

.

Reed-Muller code RM(d, m).

rankp(PG1(2, p
m)) =

(

p + 1

2

)m

+ 1.

In patricular, if m = 1

rankp(PG1(2, p)) =

(

p + 1

2

)

+ 1.

Graham & MacWilliams ’66.

Note: The p-rank of the incidence matrix Π
of any projective plane of a prime order p
is equal to

rankp(Π) =
(

p+1
2

)

+ 1.

rankp(PGn−1(n, pm)) =

(

p + n− 1

n

)m

+ 1.

MacWilliams & Mann ’68, Goethals & Delsarte ’68, Smith ’69.
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2 The general case

Theorem (N. Hamada ’73).

(a)

rankp(PGd(n, pm)) =
∑

t0,...,tm

∏m−1
j=0

∑[(tj+1p−tj)/p]
i=0 (−1)i

(

n+1
i

)(

n+tj+1p−tj−ip
n

)

,

where summation is over all ordered sets (t0, . . . , tm)
of integers t0, . . . , tm such that

tm = t0, d+1 ≤ tj ≤ n+1, 0 ≤ tj+1p−tj ≤ (n+1)(p−1)

for each j = 0, 1, . . . , m− 1.

(b)

rankp(AGd(n, pm) =

rankp(PGd(n, pm))− rankp(PGd(n− 1, pm)).
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3 Hamada’s Conjecture

The geometric designs PGd(n, q) and AGd(n, q)
are characterized as the designs of minimum q-rank

among all designs with the given parameters.

The conjecture indicates that the geometric designs are

the best (and practically unique) choice to use for

designing majority-logic decodable codes in the given

range of parameters.

Note: The number of non-isomorphic designs having

the same parameters as the classical geometric

designs PGn−1(n, q) or AGn−1(n, q), n ≥ 3,

grows exponentially with linear growth of n
(Jungnickel ’84, Kantor ’94, Lam2 & VDT ’00, ’02).

True also for 2 ≤ d ≤ n− 2 (Jungnickel & T, ’09).

The conjecture provides a computationally simple

characterization of the geometric designs in terms of

the p-rank of their incidence matrices.

Hamada’s conjecture implies that for any prime p,

the only projective plane of order p is PG(2, p).

11-3



4 The Proven Cases

Theorem 3.1 (Hamada and Ohmori ’75).

(i) The 2-rank of the incidence matrix A of any

2-(2n+1 − 1, 2n, 2n−1) design D satisfies the

inequality

rank2(A) ≥ n + 1,

with equality if and only if D is isomorphic to the

complementary design of PGn−1(n, 2).
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4 The Proven Cases

Theorem 3.2 (Hamada and Ohmori ’75).

(i) The 2-rank of the incidence matrix A of any

2-(2n+1 − 1, 2n, 2n−1) design D satisfies the

inequality

rank2(A) ≥ n + 1,

with equality if and only if D is isomorphic to the

complementary design of PGn−1(n, 2).

(ii) The 2-rank of the incidence matrix A of any

2-(2n, 2n−1, 2n−1 − 1) design D satisfies the

inequality

rank2(A) ≥ n + 1,

with equality if and only if D is isomorphic to the design

of the hyperplanes in AG(n, 2).
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Theorem. (Doyen, Hubaut and Vandensavel ’78).

(i) The 2-rank of the incidence matrix A of any

2-(2n+1 − 1, 3, 1) D satisfies the inequality

rank2(A) ≥ 2n+1 − n− 2,

with equality if and only if D is isomorphic to the design

PG1(n, 2) of the lines in PG(n, 2).
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Theorem. (Doyen, Hubaut and Vandensavel ’78).

(i) The 2-rank of the incidence matrix A of any

2-(2n+1 − 1, 3, 1) D satisfies the inequality

rank2(A) ≥ 2n+1 − n− 2,

with equality if and only if D is isomorphic to the design

PG1(n, 2) of the lines in PG(n, 2).

(ii) The 3-rank of the incidence matrix A of any

2-(3n, 3, 1) design D satisfies the inequality

rank3(A) ≥ 3n − 1− n,

with equality if and only if D is isomorphic to the design

AG1(n, 3) of the lines in AG(n, 3).
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Theorem. (Doyen, Hubaut and Vandensavel ’78).

(i) The 2-rank of the incidence matrix A of any

2-(2n+1 − 1, 3, 1) D satisfies the inequality

rank2(A) ≥ 2n+1 − n− 2,

with equality if and only if D is isomorphic to the design

PG1(n, 2) of the lines in PG(n, 2).

(ii) The 3-rank of the incidence matrix A of any

2-(3n, 3, 1) design D satisfies the inequality

rank3(A) ≥ 3n − 1− n,

with equality if and only if D is isomorphic to the design

AG1(n, 3) of the lines in AG(n, 3).

Theorem. (Teirlinck ’80).

The 2-rank of the incidence matrix A of a 3-(2n, 4, 1)
design D satisfies the inequality

rank2(A) ≥ 2n − 1− n,

with equality if and only if D is isomorphic to the design

AG2(n, 2) of the planes in AG(n, 2).
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5 A revised version:
Generalized Incidence Matrices

A generalized incidence matrix has entries in GF (q),

with nonzero entries designating incidence.
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5 A revised version:
Generalized Incidence Matrices

A generalized incidence matrix has entries in GF (q),

with nonzero entries designating incidence.

The dimension of a design D over GF (q),

dimq(D), is defined as the minimum q-rank

of all generalized incidence matrices of D over GF (q).
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5 A revised version:
Generalized Incidence Matrices

A generalized incidence matrix has entries in GF (q),

with nonzero entries designating incidence.

The dimension of a design D over GF (q),

dimq(D), is defined as the minimum q-rank

of all generalized incidence matrices of D over GF (q).

Example. The 3-rank of the incidence matrix

of the unique 5-(12, 6, 1) design D12 is 11, while

dim3(D12) ≤ 6.
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Theorem. (T ’99).

Let D be a 2-((qn+1 − 1)/(q − 1), qn, qn − qn−1)
design, n ≥ 2. Then

dimq(D) ≥ n + 1.

The equality dimq(D) = n + 1 holds if and only if D
is isomorphic to the complementary design of

PGn−1(n, q).
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Theorem. (T ’99).

Let D be a 2-((qn+1 − 1)/(q − 1), qn, qn − qn−1)
design, n ≥ 2. Then

dimq(D) ≥ n + 1.

The equality dimq(D) = n + 1 holds if and only if D
is isomorphic to the complementary design of

PGn−1(n, q).

Theorem. (T ’99).

Let D be a 2-(qn, qn − qn−1, qn − qn−1 − 1)
design, n ≥ 2. Then

dimq(D) ≥ n + 1.

The equality dimq(D) = n + 1 holds if and only if D
is isomorphic to the complementary design of

AGn−1(n, q).
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Theorem. (T ’99).

Let D be a 2-((qn+1 − 1)/(q − 1), qn, qn − qn−1)
design, n ≥ 2. Then

dimq(D) ≥ n + 1.

The equality dimq(D) = n + 1 holds if and only if D
is isomorphic to the complementary design of

PGn−1(n, q).

Theorem. (T ’99).

Let D be a 2-(qn, qn − qn−1, qn − qn−1 − 1)
design, n ≥ 2. Then

dimq(D) ≥ n + 1.

The equality dimq(D) = n + 1 holds if and only if D
is isomorphic to the complementary design of

AGn−1(n, q).

Example. Let D be a 2-(121, 100, 99) design. Then

dim11(D) ≥ 3,

with equality dim11(D) = 3 if and only if D is

isomorphic to the complementary design of the

Desarguesian affine plane of order 11, AG(2, 11).
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6 Non-geometric designs having
the same p-rank as geometric ones

(A) Deigns from self-dual codes

Theorem (T ’86).

(i) There are exactly five non-isomorphic

quasi-symmetric 2-(31, 7, 7) designs (with block

intersection numbers 1 and 3), one being PG2(4, 2),

all five having the same 2-rank, 16.

(ii) There are exactly five non-isomorphic 3-(32, 8, 7)
designs with even block intersection numbers, one

being AG3(5, 2), all five having the same 2-rank, 16.
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quasi-symmetric 2-(31, 7, 7) designs (with block

intersection numbers 1 and 3), one being PG2(4, 2),

all five having the same 2-rank, 16.

(ii) There are exactly five non-isomorphic 3-(32, 8, 7)
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being AG3(5, 2), all five having the same 2-rank, 16.

Proof. Use the classification of self-dual binary

[32, 16, 8] codes.
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6 Non-geometric designs having
the same p-rank as geometric ones

(A) Deigns from self-dual codes

Theorem (T ’86).

(i) There are exactly five non-isomorphic

quasi-symmetric 2-(31, 7, 7) designs (with block

intersection numbers 1 and 3), one being PG2(4, 2),

all five having the same 2-rank, 16.

(ii) There are exactly five non-isomorphic 3-(32, 8, 7)
designs with even block intersection numbers, one

being AG3(5, 2), all five having the same 2-rank, 16.

Proof. Use the classification of self-dual binary

[32, 16, 8] codes.

Note. The non-geometric 2-(31, 7, 7) design

supported by the QR code of length 31 was mentioned

in a paper by Goethals and Delsarte from 1968.
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(B) Designs from codes of nets

A symmetric (µ, m)-net is

a symmetric 1-(m2µ, mµ, mµ) design D
such that both D and its dual design D∗ are

affine resolvable.
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(B) Designs from codes of nets

A symmetric (µ, m)-net is

a symmetric 1-(m2µ, mµ, mµ) design D
such that both D and its dual design D∗ are

affine resolvable.

A symmetric (µ, m)-net is class-regular

if it admits an automorphism group of order m
that acts transitively on each block and point

parallel class.
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(B) Designs from codes of nets

A symmetric (µ, m)-net is

a symmetric 1-(m2µ, mµ, mµ) design D
such that both D and its dual design D∗ are

affine resolvable.

A symmetric (µ, m)-net is class-regular

if it admits an automorphism group of order m
that acts transitively on each block and point

parallel class.

The classical class-regular (q, q)-net:

Points and planes of AG(3, q) that

do not contain lines from a given parallel class.
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A (4, 4)-net consists of 64 points and 64 blocks, each

block of size 16 and each point in 16 blocks, so that

the blocks (as well as and points) are partitioned into 16

parallel classes of size 4, and any two non-parallel

blocks share 4 points.
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A (4, 4)-net consists of 64 points and 64 blocks, each

block of size 16 and each point in 16 blocks, so that

the blocks (as well as and points) are partitioned into 16

parallel classes of size 4, and any two non-parallel

blocks share 4 points.

Theorem. (Harada, Lam, & T, ’05).

(i) Up to isomorphism, there are exactly 239

class-regular (4, 4)-nets.
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(i) Up to isomorphism, there are exactly 239
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designs of 2-rank 16:
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A (4, 4)-net consists of 64 points and 64 blocks, each

block of size 16 and each point in 16 blocks, so that

the blocks (as well as and points) are partitioned into 16

parallel classes of size 4, and any two non-parallel

blocks share 4 points.

Theorem. (Harada, Lam, & T, ’05).

(i) Up to isomorphism, there are exactly 239

class-regular (4, 4)-nets.

(ii) The 2-rank a symmetric class-regular (4, 4)-net is

greater than or equal to 16.

(iii) The binary codes of length 64 of three of the

class-regular (4, 4)-nets support affine 2-(64, 16, 5)
designs of 2-rank 16:

The code of the classical (4, 4)-net supports

the geometric design AG2(3, 4).

Two other nets support non-geometric

2-(64, 16, 5) designs having the same 2-rank

as AG2(3, 4).
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(C) Designs from polarities

in PG(2k − 1, q)

The motivating example:

A quasi-symmetric 2-(31,7,7) design with the following

structure:

15+16















































2− (15, 7, 3) 2− (15, 3, 1)× 4
Planes in PG(3, 2) Lines in PG(3, 2)

3− (16, 4, 1)
∅ Planes in AG(4, 2)
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(C) Designs from polarities

in PG(2k − 1, q)

The motivating example:

A quasi-symmetric 2-(31,7,7) design with the following

structure:

15+16















































2− (15, 7, 3) 2− (15, 3, 1)× 4
Planes in PG(3, 2) Lines in PG(3, 2)

3− (16, 4, 1)
∅ Planes in AG(4, 2)

Note: PG2(4, 2) and one other design share

this structure.
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Polarities in PG(n, q)
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Polarities in PG(n, q)

A polarity α of PG(n, q) is an involutory isomorphism

between PG(n, q) and its dual space:
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Polarities in PG(n, q)

A polarity α of PG(n, q) is an involutory isomorphism

between PG(n, q) and its dual space:

α : point ←→ hyperplane, . . . ,
i−subspace ←→ (n-1-i)−subspace

. . .
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Polarities in PG(n, q)

A polarity α of PG(n, q) is an involutory isomorphism

between PG(n, q) and its dual space:

α : point ←→ hyperplane, . . . ,
i−subspace ←→ (n-1-i)−subspace

. . .

Example: The null polaity:

point ←→ hyperplane
(a0, . . . , an) ←→ a0x0 + · · ·+ anxn = 0.
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A generalization to PG(4, q)

A polarity α of PG(3, q):

α : point←→ plane; line←→ line

PG2(4, q)















































PG2(3, q) PG1(3, q)
Planes Lines

AG2(4, q)
∅ Planes
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A generalization to PG(4, q)

A polarity α of PG(3, q):

α : point←→ plane; line←→ line

PG2(4, q)















































PG2(3, q) PG1(3, q)
Planes Lines

AG2(4, q)
∅ Planes

Theorem. Permuting the lines of a hyperplane

H = PG(3, q) ⊂ PG(4, q)

via a polarity α transforms PG2(4, q) into another

non-geometric quasi-symmetric design.
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A generalization to PG(4, q)

A polarity α of PG(3, q):

α : point←→ plane; line←→ line

PG2(4, q)















































PG2(3, q) PG1(3, q)
Planes Lines

AG2(4, q)
∅ Planes

Theorem. Permuting the lines of a hyperplane

H = PG(3, q) ⊂ PG(4, q)

via a polarity α transforms PG2(4, q) into another

non-geometric quasi-symmetric design.

Note: Lines of PG(4, q) which meet H = PG(3, q)
in one point are transformed by α into ”lines” of size 2.
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A generalization to PG(2k, q)

PGk(2k, q)































PGk(2k − 1, q) PGk−1(2k − 1, q)

∅ AGk(2k, q)
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A generalization to PG(2k, q)

PGk(2k, q)































PGk(2k − 1, q) PGk−1(2k − 1, q)

∅ AGk(2k, q)

Note. Any polarity α of PG(2k − 1, q) maps

any (k − 1)-subspace to a (k − 1)-subspace.
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A generalization to PG(2k, q)

PGk(2k, q)































PGk(2k − 1, q) PGk−1(2k − 1, q)

∅ AGk(2k, q)

Note. Any polarity α of PG(2k − 1, q) maps

any (k − 1)-subspace to a (k − 1)-subspace.

Theorem. Permuting the (k − 1)-subspaces

of a hyperplane

H = PG(2k − 1, q) ⊂ PG(2k, q)

via a polarity α transforms D = PGk(2k, q) to

a non-geometric design α(D) having the same

parameters and block intersection numbers as

PGk(2k, q).
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The q-ranks of the new designs
Theorem.

Let α be a polarity in PG(2k − 1, q), where q = ps

and p is a prime.
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The q-ranks of the new designs
Theorem.

Let α be a polarity in PG(2k − 1, q), where q = ps

and p is a prime.

The p-rank the design α(D) satisfies the

inequalities

rankp(D) ≤ rankp(α(D)) ≤
1

2

(q2k+1 − 1

q − 1
+1

)

,

where rankp(D) is the p-rank of the geometric

design D = PGk(2k, q).

If q = p is a prime number then

rankp(D) = rankp(α(D))
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The q-ranks of the new designs
Theorem.

Let α be a polarity in PG(2k − 1, q), where q = ps

and p is a prime.

The p-rank the design α(D) satisfies the

inequalities

rankp(D) ≤ rankp(α(D)) ≤
1

2

(q2k+1 − 1

q − 1
+1

)

,

where rankp(D) is the p-rank of the geometric

design D = PGk(2k, q).

If q = p is a prime number then

rankp(D) = rankp(α(D))

Note. If q = 4 = 22, k = 2,

rank2(PG2(4, 4)) = 146 < rank2(α(D)) = 154 <

< ((45 − 1)/(4− 1) + 1)/2 = 171.
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Hamada’s formula for rp = rankp(PGk(2k, p)),

p prime, as simplified by Hirschfeld and Shaw ’94:

11-41



Hamada’s formula for rp = rankp(PGk(2k, p)),

p prime, as simplified by Hirschfeld and Shaw ’94:

rp = p2k+1
−1

p−1 −
∑k−1

i=0 (−1)i
(

(k−i)(p−1)−1
i

)(

k+(k−i)p
2k−i

)

.
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p prime, as simplified by Hirschfeld and Shaw ’94:

rp = p2k+1
−1

p−1 −
∑k−1

i=0 (−1)i
(

(k−i)(p−1)−1
i

)(

k+(k−i)p
2k−i

)

.

What we need is

rp =
1

2

(p2k+1 − 1

p− 1
+ 1

)

.
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Hamada’s formula for rp = rankp(PGk(2k, p)),

p prime, as simplified by Hirschfeld and Shaw ’94:

rp = p2k+1
−1

p−1 −
∑k−1

i=0 (−1)i
(

(k−i)(p−1)−1
i

)(

k+(k−i)p
2k−i

)

.

What we need is

rp =
1

2

(p2k+1 − 1

p− 1
+ 1

)

.

Claim.

1
2

(

p2k+1
−1

p−1 + 1
)

=

p2k+1
−1

p−1 −
∑k−1

i=0 (−1)i
(

(k−i)(p−1)−1
i

)(

k+(k−i)p
2k−i

)

.
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Hamada’s formula for rp = rankp(PGk(2k, p)),

p prime, as simplified by Hirschfeld and Shaw ’94:

rp = p2k+1
−1

p−1 −
∑k−1

i=0 (−1)i
(

(k−i)(p−1)−1
i

)(

k+(k−i)p
2k−i

)

.

What we need is

rp =
1

2

(p2k+1 − 1

p− 1
+ 1

)

.

Claim.

1
2

(

p2k+1
−1

p−1 + 1
)

=

p2k+1
−1

p−1 −
∑k−1

i=0 (−1)i
(

(k−i)(p−1)−1
i

)(

k+(k−i)p
2k−i

)

.

J. L. W. V. Jensen: Sur une identité d’Abel et sur

d’autres formules analogues, Acta Math. 26 (1902),

307-318.
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J. L. W. V. Jensen: Sur une identité d’Abel et sur

d’autres formules analogues, Acta Math. 26 (1902),

307-318.

M. E. Larsen: Summa Summarum, CMS Treatises in

Mathematics, Canadian Mathematical Society, Ottawa,

ON; A K Peters, Ltd., Wellesley, MA (2007).
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Thank You!

Polarities, Quasi-Symmetric Designs, and Hamada’s Conjecture – p. 12/12



We will need two lemmas for the proof of Theorem ??.

Lemma 3.3 Let α be a polarity in PG(2k − 1, q),

where q = ps and p is a prime. The p-rank rp(α) of

the incidence matrix of the design α(D) from Theorem

?? satisfies the inequalities

rp(D) ≤ rp(α) ≤
1

2

(q2k+1 − 1

q − 1
+ 1

)

, (1)

where rp(D) is the p-rank of the geometric design

D = PGk(2k, q).

By the construction described in Section 2, the design

α(D) has an incidence matrix of the form

M =

(

M1 M2

0 M3

)

,

where M1 is a point by block incidence matrix of the

geometric design PGk(2k − 1, q), and M3 is a point

by block incidence matrix of the geometric design

AGk(2k, q). Thus, we have

rp(M1) + rp(M3) ≤ rp(α).
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On the other hand, it follows from [1, Corollary 5.7.3,

page 186], that

rp(PGk(2k, q)) = rp(PGk(2k−1, q))+rp(AGk(2k, q)).

Hence, we have

rp(D) = rp(M1) + rp(M3).

This proves the left-hand side inequality in (1). To prove

the right-hand side inequality in (1), we consider the

complementary design α(D). By Lemma ??, the

design α(D) has the same intersection numbers as

D = PGk(2k, q), that is, (qi − 1)/(q − 1) for i in

the range 1 ≤ i ≤ k. Consequently, the block

intersection numbers of the complementary design

α(D) are

qi(q2k+1−i − 2qk+1−i + 1)

q − 1
, 1 ≤ i ≤ k.

Note that all these numbers are divisible by q, and that

the blocks of α(D) are of size

qk+1(qk − 1)

q − 1
,
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which is also divisible by q. Thus, the incidence vectors

of the blocks of α(D) span a linear self-orthogonal

code of length (q2k+1 − 1)/(q − 1) over GF (p).

Hence, the p-rank of the incidence matrix (J −M) of

α(D), where J denotes the all-one matrix of

appropriate size, does not exceed ( q2k+1
−1

q−1 − 1)/2

(note that the number of points of α(D),

(q2k+1 − 1)/(q − 1) is an odd number). The

columns of J −M have 0 and 1 entries, and the

number of 1’s in each column is a multiple of p.

Therefore, each column of J −M is orthogonal (over

GF (p)) to the all-one column j, and consequently, the

whole column space is orthogonal to j. Since j is not

orthogonal to itself, j is not in the column space of

J −M . On the other hand, j is a nonzero multiple of

the sum of columns of M over GF (p). This implies

rp(M) = rp(J −M) + 1,

and therefore

rp(M) ≤
1

2

(q2k+1 − 1

q − 1
−1

)

+1 =
1

2

(q2k+1 + 1

q − 1
+1

)

.

This proves the right-hand side inequality in (1).

A summation formula for the p-rank of the incidence

matrix of a geometric design PGr(n, q),
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1 ≤ r ≤ n− 1, q = pt, p a prime, was found by

Hamada [8]. If r 6= 1, n− 1, Hamada’s formula

involves some parameters that have to be computed. A

simplified formula for the case when q = p is a prime

was found by Hirschfeld and Shaw [13, Theorem 5.10].

In particular, the p-rank ofD = PGk(2k, p) is given

by:

rp(D) =
p2k+1 − 1

p− 1
−

k−1
∑

i=0

(−1)i

(

(k − i)(p− 1)− 1

i

)(

k +

(2)

If p = 2, the linear code spanned by the blocks of

D = PGk(2k, 2) is a punctured Reed-Muller code of

length v = 22k+1 − 1 and order k [1, Proposition

5.3.2], so we have an alternative formula for r2(D)
which can be written in a simple closed form, namely

r2(D) =

k
∑

i=0

(

2k + 1

i

)

= 22k.

Note that 22k = (v + 1)/2, so the inequalities in (1)

are replaced by equalities:

r2(D) = r2(α) = 22k = (v + 1)/2.
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Thus, the pseudo-geometric designs from Section 2 for

q = p = 2 are counter-examples to the “only if” part of

Hamada’s conjecture.

In addition, the two formulas for r2(D) imply the

following identity:

22k−1 =

k−1
∑

i=0

(−1)i

(

k − i− 1

i

)(

3k − 2i

2k − i

)

. (3)

It turns out that a similar closed formula for rp(D)
holds for any prime number p.

Lemma 3.4 If p is any prime, the p-rank of

D = PGk(2k, p) is equal to

rp(D) =
1

2

(p2k+1 − 1

p− 1
+ 1

)

. (4)

We will use the following result by Hirschfeld and Shaw

[13, Corollary 5.5]): if p is a prime and C∗(k, n, p) is

the dual of the linear code over GF (p) spanned by the

incidence vectors of the k-dimensional subspaces of

PG(n, p), 1 ≤ k ≤ n− 1, then

dimC∗(k, n, p)+dimC∗(n−k, n, p) =
pn+1 − 1

p− 1
−1.

(5)
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In the special case n = 2k, (5) implies that

dimC∗(k, 2k, p) =
1

2

(p2k+1 − 1

p− 1
− 1

)

.

Note that C∗(k, 2k, p) is the code having the

incidence matrix ofD=PGk(2k, p) as a parity check

matrix, hence

rp(D) =
p2k+1 − 1

p− 1
−dimC∗(k, 2k, p) =

1

2

(p2k+1 − 1

p− 1
+1

Now Theorem ?? follows from Lemmas 3.3 and 3.4.

We note that comparing (2) and (4) gives the following

identity, which generalizes (3):

1

2

(p2k+1 − 1

p− 1
−1

)

=
k−1
∑

i=0

(−1)i

(

(k − i)(p− 1)− 1

i

)(

k +

2

(6)

It was pointed to us by one of the reviewers, that

equation (6) is actually true for all positive integers p
and not just for primes; it follows from a formula of

J.L.W.V. Jensen [14, Equation (18)], which is given a

modern setting in [21, Section 14.1]. Of course, with

(11) in hand, Lemma 3.4 is an immediate consequence

of (2).
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d’autres formules analogues, Acta Math. 26
(1902), 307-318.

[15] D. Jungnickel: The number of designs with

classical parameters grows exponentially. Geom.

Dedicata 16 (1984), 167–178.

[16] D. Jungnickel and V. D. Tonchev: Polarities,

quasi-symmetric designs, and Hamada’s

conjecture, Designs, Codes and Cryptography, 51
(2009), 131-140.

[17] D. Jungnickel and V. D. Tonchev: The Number of

Designs with Geometric Parameters Grows

12-9



Exponentially, Designs, Codes and Cryptography,

submitted.

[18] W. M. Kantor: Automorphisms and isomorphisms

of symmetric and affine designs. J. Algebraic

Combin. 3 (1994), 307–338.

[19] C. Lam, S. Lam and V. D. Tonchev: Bounds on the

number of affine, symmetric, and Hadamard

designs and matrices. J. Combin. Theory Ser. A

92 (2000), 186–196.

[20] C. Lam and V. D. Tonchev: A new bound on the

number of designs with classical affine

parameters. Des. Codes Cryptogr. 27 (2002),

111–117.

[21] M. E. Larsen: Summa Summarum, CMS Treatises

in Mathematics, Canadian Mathematical Society,

Ottawa, ON; A K Peters, Ltd., Wellesley, MA

(2007).

[22] V. C. Mavron, T. P. McDonough and

M. S. Shrikhande: Quasi-symmetric designs with

good blocks and intersection number one. Des.

Codes Cryptogr. 28 (2003), 147–162.

[23] V. C. Mavron, T. P. McDonough and V. D. Tonchev:

On affine designs and Hadamard designs with line

spreads. Discrete Math. 308 (2008), 2742–2750.

12-10



[24] T. P. McDonough and V. C. Mavron:

Quasi-symmetric designs with good blocks. J.

Comb. Des. 3 (1995), 433–441.

[25] M. Rahman and I. F. Blake: Majority logic

decoding using combinatorial designs. IEEE

Trans. Inform. Theory 21 (1975), 585–587.

[26] L. D. Rudolph: A class of majority-logic decodable

codes. IEEE Trans. Inform. Theory 23 (1967),

305–307.

[27] S. S. Sane and M. S. Shrikhande: Some

characterizations of quasi-symmetric designs with

a spread. Des. Codes Cryptogr. 3 (1993),

155–166.

[28] M. S. Shrikhande and S. S. Sane:

Quasi-symmetric Designs. Cambridge University

Press, Cambridge (1991).

[29] L. Teirlinck: On projective and affine hyperplanes.

J. Combin. Theory Ser. A 28 (1980), 290–306.

[30] V. D. Tonchev: Quasi-symmetric 2-(31, 7,

7)-designs and a revision of Hamada’s conjecture.

J. Combin. Theory Ser. A 42 (1986), 104–110.

[31] V. D. Tonchev: Linear perfect codes and a

characterization of the classical designs. Des.

Codes Cryptogr. 17 (1999), 121–128.

12-11


	P-ranks of Geometric Designs
	The general case
	Hamada's Conjecture
	Overview
	Majority Decoding and Designs
	Majority Decoding and Designs
	Majority Decoding and Designs
	Majority Decoding and Designs
	Majority Decoding and Designs
	Majority Decoding and Designs
	Designs from Finite Geometry
	Designs from Finite Geometry
	Designs from Finite Geometry
	Thank You!

