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Introduction

There is a known link between two-weight codes and strongly
regular graphs.

1 Delsarte (1972) showed that a code over Fq with two
non-zero Hamming weights yields a strongly regular graph.

2 This result was extended by Byrne, Greferath and Honold
(2008) to codes with two non-zero homogeneous weights over
finite Frobenius rings satisfying certain conditions.
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Introduction

Our aim was to
1 Find new constructions of two-weight codes over finite

Frobenius rings.
2 Classify any strongly regular graphs resulting from these codes.

We will present two new constructions.
1 One resulting from unions of submodules.
2 One resulting from two-weight rings.
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Frobenius Rings

Let R be a finite ring.

Let χ be a character, χ : R → C×. Let R̂ denote the group of
characters of R. R̂ is an R-bimodule.

A finite ring R is called a Frobenius ring if it satisfies

RR ∼= R R̂.

Examples of Frobenius Rings
1 Finite fields are Frobenius.
2 Zm is Frobenius.
3 Chain rings are Frobenius.
4 If R is Frobenius, so is Mn(R).
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The Homogeneous Weight

Definition

A map w: R → R is called a (left) homogeneous weight if the
following hold:

1 w(0) = 0.

2 If Rx = Ry , then w(x) = w(y) for all x , y in R.

3 There exists a real number γ ≥ 0 such that∑
y∈Rx

w(y) = γ|Rx |, for all x ∈ R\{0}.

Examples:

1 Over Fq, the Hamming weight is homogeneous with
γ = q−1

q .
2 Over Z4, the Lee weight is homogeneous with γ = 1.

w(0) = 0; w(1) = 1; w(2) = 2; w(3) = 1.
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The Homogeneous Weight

If R is Frobenius:

1 It has a generating character χ.

2 For γ ∈ R, the (left) homogeneous weight is given by

w(x) = γ

1− 1

|R×|
∑

u∈R×

χ(ux)

 .

Example:

Over Z4, a generating character χ is given by i .

Taking γ = 1,

w(x) = 1− 1

2
(ix + i3x).

This results in the Lee weight.
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Codes Over Rings

From now on, R will always be Frobenius and we take γ = 1.

A (left) linear code C is a submodule of RRn. We write
C ≤ RRn.

For c = (c1, . . . , cn) ∈ C , the homogeneous weight of c is
given by w(c) =

∑n
i=1 w(ci ).
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Strongly Regular Graphs

Definition

A graph G = (V ,E ) with vertex set V and edge set E is strongly
regular with parameters (N,K , λ, µ) if:

1 G has N vertices.

2 Each vertex is connected to K edges.

3 Every adjacent pair of vertices have exactly λ common
neighbours in V .

4 Every non-adjacent pair of vertices have exactly µ common
neighbours in V .
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Strongly Regular Graphs

Example:
The Petersen Graph is strongly regular with parameters
(10, 3, 0, 1).
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The n2-graphs

The n2 or lattice graphs are formed by taking the elements of
the set {1, 2, . . . , n} × {1, 2, . . . , n} as vertices. Two vertices,
(x , y) and (x ′, y ′) are adjacent if and only if x = x ′ or y = y ′.

These graphs are strongly regular with parameters

(n2, 2n − 2, n − 2, 2).
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The n2-graphs

The 42-graph is strongly regular with parameters (16, 6, 2, 2).
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Graphs from Orthogonal Arrays

Definition

An orthogonal array OA(s, k) is an s2 × k array with entries from
an s-set S , such that in any two columns of the array, each ordered
pair of symbols from S × S occurs exactly once.

A strongly regular graph can be constructed from an OA(s, k):

We take the s2 rows as vertices.

Two rows or vertices are adjacent if they have a common
entry in a column.

The resulting strongly regular graph has parameters

(s2, sk − s, k2 − 3k + s, k2 − k).
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Graphs from Orthogonal Arrays

Example: This OA(4, 3) gives a strongly regular graph (16, 9, 4, 6).

0 0 0
0 1 1
0 2 2
0 3 3
1 0 1
1 1 2
1 2 3
1 3 0
2 0 2
2 1 3
2 2 0
2 3 1
3 0 3
3 1 0
3 2 1
3 3 2


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Classifying Strongly Regular Graphs

Two strongly regular graphs with the same parameters are not
necessarily isomorphic. The number of non-isomorphic
strongly regular graphs for a given parameter set can vary
greatly.

For n 6= 4, the n2 graphs are unique up to isomorphism
(Shrikhande, 1959). So there is exactly 1 strongly regular
graph with parameters (36, 10, 4, 2).

How many non-isomorphic graphs with parameters
(36, 15, 6, 6) are there? 32, 548 (McKay, Spence, 2001).

In most cases, the number is not known.
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Two-Weight Codes and Strongly Regular Graphs

Definition

A two-weight code C ≤ RRn is a code with the property that its
codewords have exactly two non-zero homogeneous weights, w1

and w2, with w1 < w2.

Definition

For a two-weight code C , we define a graph G(C) whose vertices
are the codewords of C . Two vertices c and c ′ are joined if
w(c − c ′) = w1.
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Two-Weight Codes and Strongly Regular Graphs

Theorem (Byrne, Greferath, Honold)

Let C ≤ RRn be a projective, regular two-weight code. Then G (C )
is a strongly regular graph with parameters

N = |C |,

K =
(n − w2)|C |+ w2

w1 − w2
,

λ =
nK [1− (1− w1

n )2] + w2(1− K )

w1 − w2
,

µ =
nK [1− (1− w1

n )(1− w2
n )]− w2K

w1 − w2
.

Alison Sneyd Constructions of Two-Weight Codes over Rings



Submodules Construction

There is a well known construction for a family of two-weight
codes over Fq arising from unions of subspaces of Fk

q (see for
example a survey paper by Calderbank and Kantor (1986)).
We will generalize this construction.

For M ≤ Rk
R , let M⊥ = {x ∈ Rk : x ·m = 0 ∀ m ∈ M}.

Some notation: Let M1,M2, . . . ,Mr ≤ Rk
R . We let

(M1\0|M2\0| . . . |Mr\0)

denote the matrix whose columns consist of the non-zero
elements of M1 in some order, followed by the non-zero
elements of M2 and so on.
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Submodules Construction

Theorem

Let M1, . . . ,Mr , r ≥ 2 be submodules of Rk
R such that

1 |Mi | = v ∀ i .

2 Mi ∩Mj = 0 ∀ i , j .

3 For every x ∈ Rk , |i : x ∈ M⊥i | ∈ {0, 1, r}.
Let C = {x · (M1\0|M2\0| . . . |Mr\0) : x ∈ Rk}.

Then C is a two-weight code of order v2 and length rv − r with

w1 = (r − 1)v and w2 = rv .
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Submodules Construction

Theorem

Let C be the two-weight code described on the previous slide.
Then G (C ) is a strongly regular graph with parameters

(v2, rv − r , r2 + v − 3r , r2 − r)

and is isomorphic to the graph from an orthogonal array OA(v , r)
derived from C.
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Submodules Construction

Example:

Let Rk = Z4
2 and let M1 =< (0, 1) >, M2 =< (1, 0) >,

M3 =< (1, 1) >.

These submodules satisfy our three conditions:
1 |Mi | = 4, i = 1, 2, 3.
2 Mi ∩Mj = 0.
3 for every x ∈ Z2

4, |i : x ∈ M⊥
i | ∈ {0, 1, 3}.

Let C = {x ·
(

0 0 0 1 2 3 1 2 3
1 2 3 0 0 0 1 2 3

)
: x ∈ Z2

4}.

C is a a two-weight code with w1 = 8 and w2 = 12.
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Submodules Construction

(0, 0, 0|0, 0, 0|0, 0, 0)
(0, 0, 0|1, 2, 3|1, 2, 3)
(0, 0, 0|2, 0, 2|2, 0, 2)
(0, 0, 0|3, 2, 1|3, 2, 1)
(1, 2, 3|0, 0, 0|1, 2, 3)
(1, 2, 3|1, 2, 3|2, 0, 2)
(1, 2, 3|2, 0, 2|3, 2, 1)
(1, 2, 3|3, 2, 1|0, 0, 0)
(2, 0, 2|0, 0, 0|2, 0, 2)
(2, 0, 2|1, 2, 3|3, 2, 1)
(2, 0, 2|2, 0, 2|0, 0, 0)
(2, 0, 2|3, 2, 1|1, 2, 3)
(3, 2, 1|0, 0, 0|3, 2, 1)
(3, 2, 1|1, 2, 3|0, 0, 0)
(3, 2, 1|2, 0, 2|1, 2, 3)
(3, 2, 1|3, 2, 1|2, 0, 2)

−→

(0, 0, 0) 7→ 0
(1, 2, 3) 7→ 1
(2, 0, 2) 7→ 2
(3, 2, 1) 7→ 3

−→



0 0 0
0 1 1
0 2 2
0 3 3
1 0 1
1 1 2
1 2 3
1 3 0
2 0 2
2 1 3
2 2 0
2 3 1
3 0 3
3 1 0
3 2 1
3 3 2


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
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Submodules Construction

Example

Let M1 =< (1, 0) >R , M2 =< (0, 1) >R ,M3 =< (1, 1) >R≤ R2
R .

1 The code C = {x · (M1\0|M2\0|M3\0) : x ∈ R2} is a
two-weight code with w1 = 2|R| and w2 = 3|R|. G (C ) is
isomorphic to the strongly regular graph from an orthogonal
array OA(|R|, 3) that can be constructed from C . It has
parameters

(|R|2, 3|R| − 3, |R|, 6).

2 The code C = {x · (M1\0|M2\0) : x ∈ R2} is a two-weight
code w1 = |R| and w2 = 2|R|. G (C ) is a strongly regular
graph, isomorphic to the |R|2-graph and has parameters

(|R|2, 2|R| − 2, |R| − 2, 2).
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Two-Weight Ring Construction

Definition

A two-weight ring is a ring whose elements take exactly two
non-zero homogeneous weights.

Construction

Let R be a two-weight ring. Then the elements of R yield a
two-weight code and a strongly regular graph.

Examples of two-weight rings:

Chain rings.

Fq ⊕ Fq.
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M2(Fq) Construction

M2(F2) : Consider the left ideal lattice of M2(F2).

M2(F2) is a two-weight ring. It yields a strongly regular graph with
parameters (16, 6, 2, 2).
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M2(Fq) Construction

Theorem

M2(Fq) is a two-weight ring and yields a two-weight code C with

w1 =
q3 − q2 − q

q3 − q2 − q + 1
and w2 =

q2

q2 − 1
.

G (C ) is a strongly regular graph with parameters

(q4, q4 − q3 − q2 + q, q4 − 2q3 − q2 + 3q, q4 − 2q3 + q).

It was known that M2(Fq) yields a strongly regular graph by
taking its elements as vertices and joining two matrices if their
difference has rank 2. G (C ) is isomorphic to this graph.

So we have a new interpretation of the result that the
elements of M2(Fq) give a strongly regular graph by using the
concept of a two-weight code.
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