Constructions of Two-Weight Codes over Rings

Alison Sneyd

Claude Shannon Institute and School of Mathematical Sciences University College Dublin Ireland

ALCOMA10

4 B 6 4 B

There is a known link between **two-weight codes** and **strongly regular graphs**.

- Delsarte (1972) showed that a code over F_q with two non-zero Hamming weights yields a strongly regular graph.
- This result was extended by Byrne, Greferath and Honold (2008) to codes with two non-zero homogeneous weights over finite Frobenius rings satisfying certain conditions.

• Our aim was to

- Find new constructions of two-weight codes over finite Frobenius rings.
- ② Classify any strongly regular graphs resulting from these codes.

A B M A B M

э

Our aim was to

- Find new constructions of two-weight codes over finite Frobenius rings.
- ② Classify any strongly regular graphs resulting from these codes.
- We will present two new constructions.
 - One resulting from unions of submodules.
 - One resulting from two-weight rings.

A B > A B >

- Codes over rings
- Strongly regular graphs
- Two-weight codes and strongly regular graphs
- Two new constructions for two-weight codes

∃ ▶ ∢

• Let *R* be a finite ring.

æ

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Let *R* be a finite ring.
- Let χ be a character, χ : R → C[×]. Let R denote the group of characters of R. R is an R-bimodule.

- Let R be a finite ring.
- Let χ be a character, χ : R → C[×]. Let R denote the group of characters of R. R is an R-bimodule.
- A finite ring R is called a **Frobenius ring** if it satisfies

$$_{R}R\cong _{R}\widehat{R}.$$

- Let R be a finite ring.
- Let χ be a character, χ : R → C[×]. Let R denote the group of characters of R. R is an R-bimodule.
- A finite ring R is called a **Frobenius ring** if it satisfies

$$_{R}R\cong _{R}\widehat{R}.$$

• Examples of Frobenius Rings

- Finite fields are Frobenius.
- **2** \mathbb{Z}_m is Frobenius.
- Ohain rings are Frobenius.
- If R is Frobenius, so is $M_n(R)$.

The Homogeneous Weight

Definition

A map w: $R \to \mathbb{R}$ is called a (left) **homogeneous weight** if the following hold:

•
$$w(0) = 0.$$

- 3 If Rx = Ry, then w(x) = w(y) for all x, y in R.
- **③** There exists a real number $\gamma \ge 0$ such that

$$\sum_{y\in extsf{Rx}} w(y) = \gamma | extsf{Rx}|, extsf{ for all } x\in extsf{R}ackslash \{m{0}\}.$$

4 E b

The Homogeneous Weight

Definition

A map w: $R \to \mathbb{R}$ is called a (left) **homogeneous weight** if the following hold:

•
$$w(0) = 0.$$

- 3 If Rx = Ry, then w(x) = w(y) for all x, y in R.
- $\textcircled{O} There exists a real number $\gamma \geq 0$ such that}$

$$\sum_{y\in {\it R}x}w(y)=\gamma |{\it R}x|,\,\, {
m for \,\, all}\,\, x\in {\it R}ackslash \{m 0\}.$$

Examples:

Over F_q, the Hamming weight is homogeneous with γ = q-1/q.
 Over Z₄, the Lee weight is homogeneous with γ = 1.

$${\sf w}(0)=0; {\sf w}(1)=1; {\sf w}(2)=2; {\sf w}(3)=1$$

The Homogeneous Weight

If R is Frobenius:

- **1** It has a generating character χ .
- **2** For $\gamma \in \mathbb{R}$, the (left) homogeneous weight is given by

$$w(x) = \gamma \left[1 - \frac{1}{|R^{\times}|} \sum_{u \in R^{\times}} \chi(ux) \right].$$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

If R is Frobenius:

- **1** It has a generating character χ .
- **2** For $\gamma \in \mathbb{R}$, the (left) homogeneous weight is given by

$$w(x) = \gamma \left[1 - \frac{1}{|R^{\times}|} \sum_{u \in R^{\times}} \chi(ux) \right]$$

Example:

• Over \mathbb{Z}_4 , a generating character χ is given by *i*.

• Taking
$$\gamma = 1$$
,
$$w(x) = 1 - \frac{1}{2}(i^x + i^{3x}).$$

This results in the Lee weight.

• From now on, R will always be Frobenius and we take $\gamma = 1$.

伺 ト イヨト イヨト

æ

- From now on, R will always be Frobenius and we take $\gamma = 1$.
- A (left) **linear code** C is a submodule of $_{R}R^{n}$. We write $C \leq _{R}R^{n}$.

伺 ト く ヨ ト く ヨ ト

3

- From now on, R will always be Frobenius and we take $\gamma = 1$.
- A (left) **linear code** C is a submodule of $_{R}R^{n}$. We write $C \leq _{R}R^{n}$.
- For $c = (c_1, \ldots, c_n) \in C$, the homogeneous weight of c is given by $w(c) = \sum_{i=1}^{n} w(c_i)$.

伺 ト く ヨ ト く ヨ ト

Definition

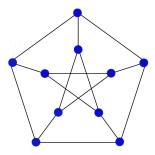
A graph G = (V, E) with vertex set V and edge set E is **strongly** regular with parameters (N, K, λ, μ) if:

- G has N vertices.
- **2** Each vertex is connected to K edges.
- Solution Sector 2 Sector 2 Common neighbours in V.
- Severy non-adjacent pair of vertices have exactly μ common neighbours in V.

Strongly Regular Graphs

Example:

The **Petersen Graph** is strongly regular with parameters (10, 3, 0, 1).



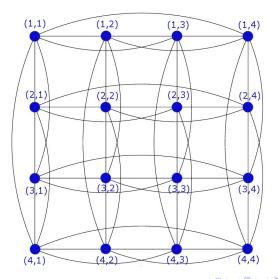
The n² or lattice graphs are formed by taking the elements of the set {1,2,..., n} × {1,2,..., n} as vertices. Two vertices, (x, y) and (x', y') are adjacent if and only if x = x' or y = y'.

- The n² or lattice graphs are formed by taking the elements of the set {1, 2, ..., n} × {1, 2, ..., n} as vertices. Two vertices, (x, y) and (x', y') are adjacent if and only if x = x' or y = y'.
- These graphs are strongly regular with parameters

$$(n^2, 2n-2, n-2, 2).$$

The *n*²-graphs

The 4^2 -graph is strongly regular with parameters (16, 6, 2, 2).



< ∃ >

э

Definition

An **orthogonal array** OA(s, k) is an $s^2 \times k$ array with entries from an *s*-set *S*, such that in any two columns of the array, each ordered pair of symbols from $S \times S$ occurs exactly once.

Definition

An **orthogonal array** OA(s, k) is an $s^2 \times k$ array with entries from an *s*-set *S*, such that in any two columns of the array, each ordered pair of symbols from $S \times S$ occurs exactly once.

A strongly regular graph can be constructed from an OA(s, k):

- We take the s^2 rows as vertices.
- Two rows or vertices are adjacent if they have a common entry in a column.
- The resulting strongly regular graph has parameters

$$(s^2, sk - s, k^2 - 3k + s, k^2 - k).$$

Graphs from Orthogonal Arrays

Example: This OA(4,3) gives a strongly regular graph (16,9,4,6).

(0	0	0	`
		1	1	
	0	2	1 2 3	
	0 0 1 1 1	2 3 0	3	
	1	0	1	
	1	1	1 2 3 0 2 3 0 1	
	1	1 2 3 0	3	
	1	3	0	
	2	0	2	
	2	1	3	
	2	2	0	
	2	1 2 3 0	1	
	3	0	3	
	3	1	3 0	
	1 2 2 2 2 3 3 3 3 3	2 3	1	
	3	3	2	,

Classifying Strongly Regular Graphs

• Two strongly regular graphs with the same parameters are not necessarily isomorphic. The number of non-isomorphic strongly regular graphs for a given parameter set can vary greatly.

• • = • • = •

- Two strongly regular graphs with the same parameters are not necessarily isomorphic. The number of non-isomorphic strongly regular graphs for a given parameter set can vary greatly.
- For $n \neq 4$, the n^2 graphs are unique up to isomorphism (Shrikhande, 1959). So there is exactly 1 strongly regular graph with parameters (36, 10, 4, 2).

伺 ト イ ヨ ト イ ヨ ト

- Two strongly regular graphs with the same parameters are not necessarily isomorphic. The number of non-isomorphic strongly regular graphs for a given parameter set can vary greatly.
- For $n \neq 4$, the n^2 graphs are unique up to isomorphism (Shrikhande, 1959). So there is exactly 1 strongly regular graph with parameters (36, 10, 4, 2).
- How many non-isomorphic graphs with parameters (36, 15, 6, 6) are there?

伺 ト イ ヨ ト イ ヨ ト

- Two strongly regular graphs with the same parameters are not necessarily isomorphic. The number of non-isomorphic strongly regular graphs for a given parameter set can vary greatly.
- For $n \neq 4$, the n^2 graphs are unique up to isomorphism (Shrikhande, 1959). So there is exactly 1 strongly regular graph with parameters (36, 10, 4, 2).
- How many non-isomorphic graphs with parameters (36, 15, 6, 6) are there? 32, 548 (McKay, Spence, 2001).

周 ト イ ヨ ト イ ヨ ト

- Two strongly regular graphs with the same parameters are not necessarily isomorphic. The number of non-isomorphic strongly regular graphs for a given parameter set can vary greatly.
- For $n \neq 4$, the n^2 graphs are unique up to isomorphism (Shrikhande, 1959). So there is exactly 1 strongly regular graph with parameters (36, 10, 4, 2).
- How many non-isomorphic graphs with parameters (36, 15, 6, 6) are there? 32, 548 (McKay, Spence, 2001).
- In most cases, the number is not known.

伺 ト イ ヨ ト イ ヨ ト

Two-Weight Codes and Strongly Regular Graphs

Definition

A two-weight code $C \leq {}_{R}R^{n}$ is a code with the property that its codewords have exactly two non-zero homogeneous weights, w_{1} and w_{2} , with $w_{1} < w_{2}$.

伺 ト イヨト イヨト

Definition

A two-weight code $C \leq {}_{R}R^{n}$ is a code with the property that its codewords have exactly two non-zero homogeneous weights, w_{1} and w_{2} , with $w_{1} < w_{2}$.

Definition

For a two-weight code C, we define a graph G(C) whose vertices are the codewords of C. Two vertices c and c' are joined if $w(c - c') = w_1$.

Two-Weight Codes and Strongly Regular Graphs

Theorem (Byrne, Greferath, Honold)

Let $C \leq_R R^n$ be a projective, regular two-weight code. Then G(C) is a strongly regular graph with parameters

$$N = |C|,$$

$$K = \frac{(n - w_2)|C| + w_2}{w_1 - w_2},$$

$$\lambda = \frac{nK[1 - (1 - \frac{w_1}{n})^2] + w_2(1 - K)}{w_1 - w_2},$$

$$\mu = \frac{nK[1 - (1 - \frac{w_1}{n})(1 - \frac{w_2}{n})] - w_2K}{w_1 - w_2}.$$

• There is a well known construction for a family of two-weight codes over \mathbb{F}_q arising from unions of subspaces of \mathbb{F}_q^k (see for example a survey paper by Calderbank and Kantor (1986)). We will generalize this construction.

• There is a well known construction for a family of two-weight codes over \mathbb{F}_q arising from unions of subspaces of \mathbb{F}_q^k (see for example a survey paper by Calderbank and Kantor (1986)). We will generalize this construction.

• For
$$M \leq R_R^k$$
, let $M^{\perp} = \{x \in R^k : x \cdot m = 0 \ \forall \ m \in M\}.$

• There is a well known construction for a family of two-weight codes over \mathbb{F}_q arising from unions of subspaces of \mathbb{F}_q^k (see for example a survey paper by Calderbank and Kantor (1986)). We will generalize this construction.

• For
$$M \leq R_R^k$$
, let $M^{\perp} = \{x \in R^k : x \cdot m = 0 \ \forall \ m \in M\}.$

• Some notation: Let $M_1, M_2, \ldots, M_r \leq R_R^k$. We let

$$(M_1 \setminus \mathbf{0} | M_2 \setminus \mathbf{0} | \dots | M_r \setminus \mathbf{0})$$

denote the matrix whose columns consist of the non-zero elements of M_1 in some order, followed by the non-zero elements of M_2 and so on.

Theorem

Let $M_1, \ldots, M_r, r \geq 2$ be submodules of R_R^k such that

- $|M_i| = v \ \forall \ i.$
- $M_i \cap M_j = \mathbf{0} \forall i, j.$
- **●** For every $x \in R^k$, $|i : x \in M_i^{\perp}| \in \{0, 1, r\}$.
- Let $C = \{x \cdot (M_1 \setminus \mathbf{0} | M_2 \setminus \mathbf{0} | \dots | M_r \setminus \mathbf{0}) : x \in \mathbb{R}^k\}.$

Theorem

Let $M_1, \ldots, M_r, r \geq 2$ be submodules of R_R^k such that

- $|M_i| = v \ \forall \ i.$
- $M_i \cap M_j = \mathbf{0} \forall i, j.$
- **●** For every $x \in R^k$, $|i : x \in M_i^{\perp}| \in \{0, 1, r\}$.

Let $C = \{x \cdot (M_1 \setminus \mathbf{0} | M_2 \setminus \mathbf{0} | \dots | M_r \setminus \mathbf{0}) : x \in \mathbb{R}^k\}$. Then C is a two-weight code of order v^2 and length rv - r with

$$w_1 = (r - 1)v$$
 and $w_2 = rv$.

Theorem

Let C be the two-weight code described on the previous slide. Then G(C) is a strongly regular graph with parameters

$$(v^2, rv - r, r^2 + v - 3r, r^2 - r)$$

and is isomorphic to the graph from an orthogonal array OA(v, r) derived from C.

Example:

• Let $R^k = \mathbb{Z}_4^2$ and let $M_1 = <(0,1)>$, $M_2 = <(1,0)>$, $M_3 = <(1,1)>$.

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

э

Example:

- Let $R^k = \mathbb{Z}_4{}^2$ and let $M_1 = <(0,1)>$, $M_2 = <(1,0)>$, $M_3 = <(1,1)>$.
- These submodules satisfy our three conditions:

$$|M_i| = 4, i = 1, 2, 3$$

$$M_i \cap M_j = \mathbf{0}.$$

③ for every
$$x \in \mathbb{Z}_4^2$$
, $|i : x \in M_i^{\perp}| \in \{0, 1, 3\}$.

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Example:

- Let $R^k = \mathbb{Z}_4^2$ and let $M_1 = <(0,1)>$, $M_2 = <(1,0)>$, $M_3 = <(1,1)>$.
- These submodules satisfy our three conditions:

$$\begin{array}{c|c} \bullet & |M_i| = 4, i = 1, 2, 3. \\ \hline \bullet & M_i \cap M_j = \mathbf{0}. \\ \hline \bullet & \text{for every } x \in \mathbb{Z}_4^2, |i : x \in M_i^{\perp}| \in \{0, 1, 3\}. \\ \hline \bullet & \text{Let } C = \{ x \cdot \begin{pmatrix} 0 & 0 & 0 & | & 1 & 2 & 3 \\ 1 & 2 & 3 & | & 0 & 0 & | & 1 & 2 & 3 \\ 1 & 2 & 3 & | & 0 & 0 & | & 1 & 2 & 3 \\ \end{array} \} : x \in \mathbb{Z}_4^2 \}.$$

∃ → < ∃ →</p>

Example:

- Let $R^k = \mathbb{Z}_4{}^2$ and let $M_1 = <(0,1)>$, $M_2 = <(1,0)>$, $M_3 = <(1,1)>$.
- These submodules satisfy our three conditions:

1
$$|M_i| = 4, i = 1, 2, 3.$$

3 $M_i \cap M_j = 0.$
5 for every $x \in \mathbb{Z}_4^2, |i: x \in M_i^{\perp}| \in \{0, 1, 3\}.$
• Let $C = \{x \cdot \begin{pmatrix} 0 & 0 & 0 & | & 1 & 2 & 3 \\ 1 & 2 & 3 & | & 0 & 0 & | & 1 & 2 & 3 \\ 1 & 2 & 3 & | & 0 & 0 & | & 1 & 2 & 3 \\ 0 & 0 & 0 & | & 1 & 2 & 3 \end{pmatrix} : x \in \mathbb{Z}_4^2\}.$
• C is a a two-weight code with $w_1 = 8$ and $w_2 = 12.$

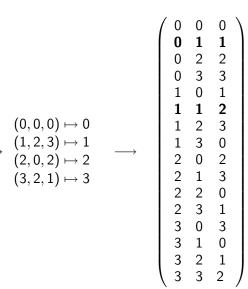
Image: A image: A

```
(0, 0, 0|0, 0, 0|0, 0, 0)
(0, 0, 0|1, 2, 3|1, 2, 3)
(0, 0, 0|2, 0, 2|2, 0, 2)
(0, 0, 0|3, 2, 1|3, 2, 1)
(1, 2, 3|0, 0, 0|1, 2, 3)
(1, 2, 3|1, 2, 3|2, 0, 2)
(1, 2, 3|2, 0, 2|3, 2, 1)
(1, 2, 3|3, 2, 1|0, 0, 0)
(2, 0, 2|0, 0, 0|2, 0, 2)
 (2, 0, 2|1, 2, 3|3, 2, 1)
(2, 0, 2|2, 0, 2|0, 0, 0)
(2, 0, 2|3, 2, 1|1, 2, 3)
(3, 2, 1|0, 0, 0|3, 2, 1)
(3, 2, 1|1, 2, 3|0, 0, 0)
(3, 2, 1|2, 0, 2|1, 2, 3)
(3, 2, 1|3, 2, 1|2, 0, 2)
```

$$(0,0,0|0,0,0|0,0,0)
0,0,0|1,2,3|1,2,3)
(0,0,0|2,0,2|2,0,2)
(0,0,0|3,2,1|3,2,1)
(1,2,3|0,0,0|1,2,3)
1,2,3|1,2,3|2,0,2)
(1,2,3|2,0,2|3,2,1)
(1,2,3|3,2,1|0,0,0)
(2,0,2|1,2,3|3,2,1)
(2,0,2|2,0,2|0,0,0)
(2,0,2|3,2,1|1,2,3)
(3,2,1|0,0,0|3,2,1)
(3,2,1|2,0,2|1,2,3)
(3,2,1|3,2,1|2,0,2)$$

æ

(0, 0, 0|0, 0, 0|0, 0, 0)(0, 0, 0|1, 2, 3|1, 2, 3)(0, 0, 0|2, 0, 2|2, 0, 2)(0, 0, 0|3, 2, 1|3, 2, 1)(1, 2, 3|0, 0, 0|1, 2, 3)(1, 2, 3|1, 2, 3|2, 0, 2)(1, 2, 3|2, 0, 2|3, 2, 1)(1, 2, 3|3, 2, 1|0, 0, 0)(2, 0, 2|0, 0, 0|2, 0, 2)(2, 0, 2|1, 2, 3|3, 2, 1)(2, 0, 2|2, 0, 2|0, 0, 0)(2, 0, 2|3, 2, 1|1, 2, 3)(3, 2, 1|0, 0, 0|3, 2, 1)(3, 2, 1|1, 2, 3|0, 0, 0)(3, 2, 1|2, 0, 2|1, 2, 3)(3, 2, 1|3, 2, 1|2, 0, 2)



Example

Let $M_1 = <(1,0)>_R$, $M_2 = <(0,1)>_R$, $M_3 = <(1,1)>_R \le R_R^2$.

э

∃ >

Example

Let
$$M_1 = <(1,0)>_R$$
, $M_2 = <(0,1)>_R$, $M_3 = <(1,1)>_R \le R_R^2$.

The code C = {x · (M₁\0|M₂\0|M₃\0) : x ∈ R²} is a two-weight code with w₁ = 2|R| and w₂ = 3|R|. G(C) is isomorphic to the strongly regular graph from an orthogonal array OA(|R|, 3) that can be constructed from C. It has parameters

$$(|R|^2, 3|R| - 3, |R|, 6).$$

Example

Let
$$M_1 = <(1,0)>_R$$
, $M_2 = <(0,1)>_R$, $M_3 = <(1,1)>_R \le R_R^2$.

The code C = {x ⋅ (M₁\0|M₂\0|M₃\0) : x ∈ R²} is a two-weight code with w₁ = 2|R| and w₂ = 3|R|. G(C) is isomorphic to the strongly regular graph from an orthogonal array OA(|R|, 3) that can be constructed from C. It has parameters

$$(|R|^2, 3|R| - 3, |R|, 6).$$

O The code C = {x ⋅ (M₁\0|M₂\0) : x ∈ R²} is a two-weight code w₁ = |R| and w₂ = 2|R|. G(C) is a strongly regular graph, isomorphic to the |R|²-graph and has parameters

$$(|R|^2, 2|R|-2, |R|-2, 2).$$

Definition

A **two-weight ring** is a ring whose elements take exactly two non-zero homogeneous weights.

B b 4

Definition

A **two-weight ring** is a ring whose elements take exactly two non-zero homogeneous weights.

Construction

Let R be a two-weight ring. Then the elements of R yield a two-weight code and a strongly regular graph.

.

Definition

A **two-weight ring** is a ring whose elements take exactly two non-zero homogeneous weights.

Construction

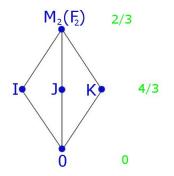
Let R be a two-weight ring. Then the elements of R yield a two-weight code and a strongly regular graph.

Examples of two-weight rings:

- Chain rings.
- $\mathbb{F}_q \oplus \mathbb{F}_q$.

→ 3 → < 3</p>

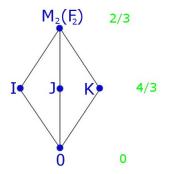
 $M_2(\mathbb{F}_2)$: Consider the left ideal lattice of $M_2(\mathbb{F}_2)$.



(4) 臣(1) (4) 臣(1)

æ

 $M_2(\mathbb{F}_2)$: Consider the left ideal lattice of $M_2(\mathbb{F}_2)$.



 $M_2(\mathbb{F}_2)$ is a two-weight ring. It yields a strongly regular graph with parameters (16, 6, 2, 2).

A B + A B +

3

Theorem

 $M_2(\mathbb{F}_q)$ is a two-weight ring and yields a two-weight code C with

$$w_1 = rac{q^3 - q^2 - q}{q^3 - q^2 - q + 1}$$
 and $w_2 = rac{q^2}{q^2 - 1}$

G(C) is a strongly regular graph with parameters

$$(q^4, q^4 - q^3 - q^2 + q, q^4 - 2q^3 - q^2 + 3q, q^4 - 2q^3 + q).$$

伺 と く ヨ と く ヨ と

3

Theorem

 $M_2(\mathbb{F}_q)$ is a two-weight ring and yields a two-weight code C with

$$w_1 = rac{q^3-q^2-q}{q^3-q^2-q+1}$$
 and $w_2 = rac{q^2}{q^2-1}$

G(C) is a strongly regular graph with parameters

$$(q^4, q^4 - q^3 - q^2 + q, q^4 - 2q^3 - q^2 + 3q, q^4 - 2q^3 + q).$$

 It was known that M₂(F_q) yields a strongly regular graph by taking its elements as vertices and joining two matrices if their difference has rank 2. G(C) is isomorphic to this graph.

伺 ト イ ヨ ト イ ヨ ト

Theorem

 $M_2(\mathbb{F}_q)$ is a two-weight ring and yields a two-weight code C with

$$w_1 = rac{q^3-q^2-q}{q^3-q^2-q+1}$$
 and $w_2 = rac{q^2}{q^2-1}$

G(C) is a strongly regular graph with parameters

$$(q^4, q^4 - q^3 - q^2 + q, q^4 - 2q^3 - q^2 + 3q, q^4 - 2q^3 + q).$$

- It was known that $M_2(\mathbb{F}_q)$ yields a strongly regular graph by taking its elements as vertices and joining two matrices if their difference has rank 2. G(C) is isomorphic to this graph.
- So we have a new interpretation of the result that the elements of M₂(F_q) give a strongly regular graph by using the concept of a two-weight code.

- Eimear Byrne, Marcus Greferath, and Thomas Honold, *Ring geometries, two-weight codes, and strongly regular graphs*, Des. Codes Cryptogr. 48 (2008).
- R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986).
- Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math. **3** (1972), 47–64.
- T. Honold, *Further results on homogeneous two-weight codes*, Proceedings of Optimal Codes and Related Topics, Bulgaria (2007).
- Brendan D. McKay and Edward Spence, Classification of regular two-graphs on 36 and 38 vertices, Australas. J. Combin. 24 (2001), 293–300.
- S. S. Shrikhande, *The uniqueness of the* L₂ *association scheme*, Ann. Math. Statist. **30** (1959), 781–798.