Large Constant Dimension Codes and Lexicodes

Natalia Silberstein Tuvi Etzion Department of Computer Science

Technion-Israel Institute of Technology

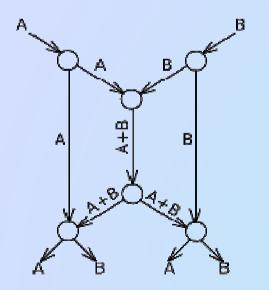
ALCOMA 10 Germany

Definitions

- Let $\mathbf{F}_{\mathbf{q}}$ be a finite field of size q
- The Grassmannian space, G_q(n,k), is the set of all k-dimensional subspaces of Fⁿ_q
- G_q(n,k) is a metric space with the distance function
 d_S(X,Y) = dim(X) + dim(Y) 2 dim(X∩Y)
- A C ⊆ G_q(n,k) is an (n,M,d,k)_q constant dimension code if |C| = M, and d_S(X,Y) ≥ d for all X≠Y∈C

Motivation

• Koetter and Kschischang (2007) showed an application of error-correcting codes in $G_q(n,k)$ to random network coding



Construction of large constant dimension codes

Lexicodes

- Lexicographic codes (lexicodes) are greedily generated codes
- The construction of a lexicode with a minimum distance *d* :
 - starts with the set $S = \{S_0\}$, where S_0 is the first element in a lexicographic order;
 - greedily adds the lexicographically first element whose distance from all the elements of S is at least d.

Outline

- Representation of subspaces
- Multilevel structure of constant dimension codes
- Search method for constant dimension lexicodes
- Lexicodes with a seed
- Conclusion and open problems

Representation of subspaces

 A subspace X ∈ G_q(n,k) can be represented by the k x n generator matrix RE(X) in reduced row echelon form

Example. Let X = {(0000000), (1011000), (1001101), (1010011), (0010101), (0001011), (0011110), (1000110)} be in $G_2(7,3)$. Then

 $RE(X) = \begin{pmatrix} 1000110 \\ 0010101 \\ 0001011 \end{pmatrix}$

Identifying vectors

- For each subspace $X \in G_q(n,k)$ there is an identifying vector $v(X) \in \{0,1\}^n$ of weight k
 - The ones in v(X) are in the positions where RE(X) has leading ones

Example. If
$$X \in G_2(7,3)$$
 is given by
 $RE(X) = \begin{pmatrix} 1000110 \\ 0010101 \\ 0001011 \end{pmatrix}$ then
 $v(X)=1011000$

Identifying vectors

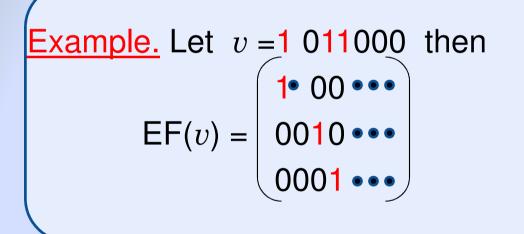
- For each subspace $X \in G_q(n,k)$ there is an identifying vector $v(X) \in \{0,1\}^n$ of weight k
 - The ones in v(X) are in the positions where RE(X) has leading ones

Example. If
$$X \in G_2(7,3)$$
 is given by

$$RE(X) = \begin{bmatrix} 1 & 00 & \cdots & 0 \\ 0010 & \cdots & 0001 & \cdots \\ 0001 & \cdots & 0001 & \cdots \end{bmatrix}$$
then
 $v(X) = 1011000$

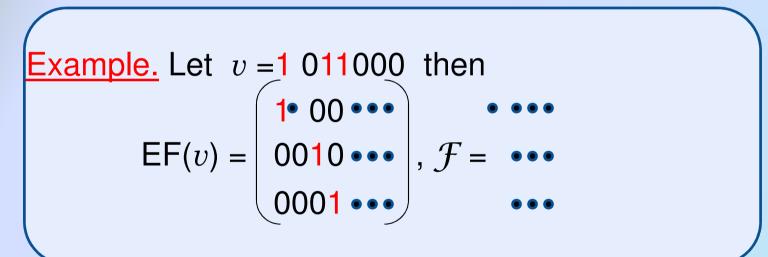
Echelon Ferrers Form

 For each vector v ∈ {0,1}ⁿ of weight k there is the echelon Ferrers form, EF(v):



Echelon Ferrers Form

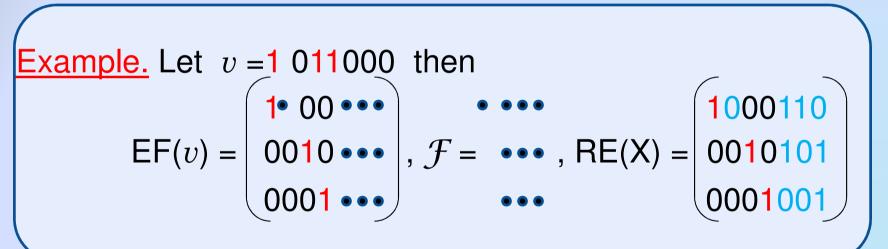
 For each vector v ∈ {0,1}ⁿ of weight k there is the echelon Ferrers form, EF(v):



• The dots of EF(v) form Ferrers diagram, \mathcal{F} .

Echelon Ferrers Form

 For each vector v ∈ {0,1}ⁿ of weight k there is the echelon Ferrers form, EF(v):



- The dots of EF(v) form Ferrers diagram, \mathcal{F} .
- If we substitute some elements of F_q in the dots of EF(v), we obtain RE(X) for some X ∈ G_q(n,k)

Multilevel Structure of $G_q(n,k)$

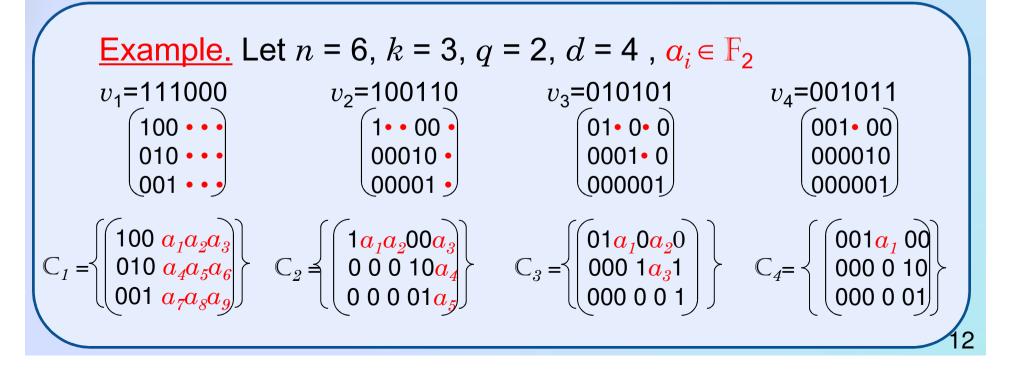
- All the binary vectors of the length n and weight k can be considered as the identifying vectors of all the subspaces in G_q(n,k)
- These $\binom{n}{k}$ vectors partition $G_q(n,k)$ into the $\binom{n}{k}$ different classes, which are called Schubert cells.
- Each Schubert cell contains all the subspaces with the same given echelon Ferrers form.

Multilevel Structure of Constant Dimension Codes

- We partition all the codewords of a constant dimension code into different classes (subcodes), by the identifying vectors.
- First level: the set of identifying vectors.
- <u>Second</u> <u>level</u>: subspaces corresponding to these vectors.

Multilevel Structure of Constant Dimension Codes

- Let $\mathbb{C} \subseteq \mathcal{G}_q(n,k)$,
- Let $\{v_1, \ldots, v_t\}$ be all the different identifying vectors in \mathbb{C} .
- Then {C₁,...,C_t} is the partition of C into t sub-codes, where v(C_i) = v_i, for each X ∈ C_i.



Identifying Vectors and Subspace Distance

- Theorem 1. $d_{S}(X, Y) = d_{H}(v(X), v(Y)) + 2rank(Z_{xy})$
- Corollary 1. $d_{S}(X, Y) \ge d_{H}(v(X), v(Y))$
- Corollary 2. If v(X) = v(Y), then $d_{S}(X, Y) = 2rank(RE(X) - RE(Y))$

Search Method for Constant Dimension Lexicodes

- In each step we have the current code C and the set of subspaces not examined yet.
- Order the set of all binary words of length *n* and weight *k* (they are the candidates to be the identifying vectors of codewords)
- For each candidate for an identifying vector v search for a sub-code C_v:
 - For each next subspace X calculate the distance between X and \mathbb{C} , and add X to \mathbb{C} if this distance at least d.

Search Method for Constant Dimension Lexicodes

- In each step we have the current code C and the set of subspaces not examined yet.
- Order the set of all binary words of length *n* and weight *k* (they are the candidates to be the identifying vectors of codewords)
- For each candidate for an identifying vector v search for a sub-code C_v:
 - For each next subspace X calculate the distance between X and \mathbb{C} , and add X to \mathbb{C} if this
 - Optimization:

Corollary 1: $d_{S}(Y, Z) \ge d_{H}(v(Y), v(Z))$

- first calculate the Hamming distance between the identifying vectors of representatives of sub-codes to determine a lower bound on the subspace distance,
- only if necessary, calculate the subspace distance

Constant Dimension Codes and Rank-Metric Codes

- Let $X \in G_q(n,k)$
- R(X) is the k x (n-k) sub-matrix of RE(X) with the columns indexed by zeroes of v(X)
- d_S(X,Y) = 2 d_R(R(X),R(Y)), for all X,Y∈C_i where d_R(A,B)=rank(A-B), for any two matrices A and B of the same size
- Let \mathcal{F} be a Ferrers diagram with m rows and η columns
- A code C is an [\mathcal{F} , ρ , δ] Ferrers diagram rank-metric code if
 - it forms a linear subspace of $\mathbb{F}_q^{m \times \eta}$ of dimension ρ ;
 - − for each A≠B∈C, $d_{\mathsf{R}}(\mathsf{A},\mathsf{B}) \ge \delta$
 - each codeword has zeroes in all entries not in ${\mathcal F}$

Upper Bound on Size of Ferrers Diagram Rank-Metric Codes

- Let dim(\mathcal{F}, δ) be the largest possible dimension of an $[\mathcal{F}, \rho, \delta]$ code.
- <u>Theorem 2</u>. dim $(\mathcal{F}, \delta) \leq \min \{v_i\}$, where v_i , $0 \leq i \leq \delta$ -1, is the number of dots in \mathcal{F} which are not contained in the first *i* rows or the rightmost δ -1-*i* columns
- It is not known whether this upper bound is attained for all parameters.
- A code which attains this bound is called maximum rank distance Ferrers diagram code (MRD code).

Properties of Constant Dimension Codes

- For each C_i ⊆ C define a Ferrers diagram rank-metric code
 R(C_i) = {R(X): X ∈ C_i}
- $R(\mathbb{C}_i)$ will be called unlifted code of \mathbb{C}_i
- $d_S(\mathbb{C}_i, \mathbb{C}_j) = \min \{ d_S(\mathsf{X}, \mathsf{Y}) : \mathsf{X} \in \mathbb{C}_i, \mathsf{Y} \in \mathbb{C}_j \}$
- $d_S(\mathbb{C}_i, \mathbb{C}_j) \ge d_H(v_i, v_j)$
- Lemma 1. Let C_i, C_j be two sub-codes of C ⊆ G_q(n,k), such that X ∈ C_i, Y ∈ C_j and RE(X) and RE(Y) are some column permutation of the matrix (I_k0_{kx(n-k)}). Then
 d_S(C_i, C_i) = d_H(v_i, v_i)
- Corollary 3. Let \mathbb{C} be an $(n, M, d, k)_q$ code. If $d_H(v_i, v_j) < d$ then at least one unlifted code $(\mathbb{R}(\mathbb{C}_i) \text{ or } \mathbb{R}(\mathbb{C}_j))$ is nonlinear.

Multilevel Construction for an $(n, M, d=2\delta, k)_q$ code \mathbb{C}^{ML}

- First level. Take a binary constant weight code C of length n, weight k and minimum distance δ to be the set of identifying vectors of C^{ML}
- <u>Second</u> <u>level</u>. For each constant weight codeword $v_i \in C$ construct a sub-code \mathbb{C}_i such that $R(\mathbb{C}_i)$ is a Ferrers diagram MRD code with the minimum distance δ .

Example: $(8,4605,4,4)_2$ lexicode \mathbb{C}^{lex} vs. $(8,4573,4,4)_2$ code \mathbb{C}^{ML}

 ★ - nonlinear unlifted code (coset of linear code)

i	id.vector v_i	size of \mathbb{C}_i^{lex}	size of \mathbb{C}_i^{ML}
1	11110000	4096	4096
2	11001100	256	256
3	10101010	64	64
4	10011010	16 ★	—
5	10100110	16 ★	—
6	00111100	16	16
7	01011010	16 ★	16
8	01100110	16 ★	16
9	10010110	16	16
10	01101001	32	32
11	10011001	16 ★	16
12	10100101	16 ★	16
13	11000011	16	16
14	01010101	8	8
15	00110011	4	4
16	00001111	1	1

19

Properties of Constant Dimension Codes

• Lemma 2. Let \mathbb{C} be an $(n, M, d, k)_q$ code. Let $\mathbb{C}_1 \subseteq \mathbb{C}$ be a sub-code with identifying vector $v_1 = \underbrace{11...100...0}_{k}$, such that

R(C₁) is an MRD code. Then there is no codeword Y in C such that $d_H(v(Y),v_1) < d$.

Corollary 4. If an (n,M,d,k)_q code C contains a sub-code C₁ such that R(C₁) is an MRD code, then the second sizewise Ferrers diagram of C corresponds to the identifying vector

$$\boldsymbol{v}_{2} = \underbrace{11\ldots 1}_{k-\delta} \underbrace{00\ldots 0}_{\delta} \underbrace{11\ldots 1}_{n-k-\delta} \underbrace{00\ldots 0}_{n-k-\delta}.$$

Lexicodes with a Seed

• First step. Construct the maximal sub-code \mathbb{C}_1 which corresponds to the identifying vector $v_1 = \underbrace{11...100...0}_{k}$.

(take any known MRD code as a unlifted code $R(\mathbb{C}_1)$.)

• Second step. Construct a sub-code C_2 which corresponds to the identifying vector $v_2 = 11...100...011...100...0$

 $k-\delta$

δ

δ

n-k-8

(If there exists an MRD Ferrers diagram code, take any known construction of such code for $R(\mathbb{C}_2)$.)

• Third step. Construct the other sub-codes, according to the lexicode construction. (Examine only subspaces which are not pruned out by Lemma 2.)

Lexicodes with a Seed (a variant)

 We can take as a seed any subset of codewords obtained by any given construction and to continue by applying the lexicode with a seed construction

Lexicodes with a Seed (Examples)

n	k	d	q	Size of lexicode with a seed	Size of previously known code
7	3	4	3	6691	6685
9	4	4	2	37649	36945
10	5	6	2	32890	32841

Conclusion and Open Problems

- We presented a search method for constant dimension codes based on their multilevel structure.
- Some of the codes obtained by this search are the largest known constant dimension codes
- Open Problems
 - Is the upper bound on the size of Ferrers diagram rank-metric codes is attainable for all parameters?
 - What is the best choice of identifying vectors for constant dimension codes?
 - Is there an optimal combination of linear Ferrers diagram rankmetric codes and cosets of linear codes to form a large constant dimension codes?

Thank you!