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Definitions

• Let Fq be a finite field of size q

• The Grassmannian space, Gq (n,k), is the set of all 
k-dimensional subspaces of Fnk-dimensional subspaces of Fq

• Gq (n,k) is a metric space with the distance function 
dS(X,Y) = dim(X ) + dim(Y) - 2 dim(X∩Y)

• A C ⊆ Gq (n,k) is an (n,M,d,k)q constant dimension code 
if |C| = M, and dS(X,Y) ≥ d for all X≠Y∈C 

n
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Motivation

• Koetter and Kschischang (2007) showed an 
application of error-correcting codes in Gq(n,k)

to random network coding  
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Our goal: 

Construction of large constant Construction of large constant 
dimension codes
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Lexicodes

• Lexicographic codes (lexicodes) are greedily 

generated codes

• The construction of a lexicode with a minimum 
distance d :

starts with the set S = {S }, where S is the first – starts with the set S = {S0}, where S0  is the first 
element in a lexicographic order;

– greedily adds the lexicographically first element whose 
distance from all the elements of S is at least d. 
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Outline

• Representation of subspaces

• Multilevel structure of constant dimension codes

• Search method for constant dimension lexicodes

• Lexicodes with a seed• Lexicodes with a seed

• Conclusion and open problems
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Representation of subspaces

• A subspace X ∈ Gq(n,k) can be represented by 

the k x n generator matrix RE(X) in reduced row 
echelon form

Example. Let X = {(0000000), (1011000), (1001101), Example. Let X = {(0000000), (1011000), (1001101), 

(1010011), (0010101), (0001011), (0011110), (1000110)}  

be in G2(7,3). Then 

1000110

RE(X)=   0010101

0001011
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Identifying vectors

• For each subspace X ∈ Gq(n,k) there is an 

identifying vector v(X) ∈ {0,1}n of weight k

– The  ones in v(X) are in the positions where RE(X) 

has leading ones

Example. If X ∈ G2(7,3) is given by

1000110

RE(X) =  0010101 then

0001011

v(X)=1011000 
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Identifying vectors

• For each subspace X ∈ Gq(n,k) there is an 

identifying vector v(X) ∈ {0,1}n of weight k

– The  ones in v(X) are in the positions where RE(X) 

has leading ones

Example. If X ∈ G2(7,3) is given by

1  00   

RE(X) =  0010         then

0001

v(X)=1011000 
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• For each vector v ∈ {0,1}n of weight k there is 

the echelon Ferrers form, EF(v):

Example. Let  v =1 011000  then

1 00

Echelon Ferrers Form

1 00

EF(v) =   0010

0001
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• For each vector v ∈ {0,1}n of weight k there is 

the echelon Ferrers form, EF(v):

Example. Let  v =1 011000  then

1 00

Echelon Ferrers Form

1 00

EF(v) =   0010        , F =

0001

• The dots of EF(v) form Ferrers diagram, F.
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• For each vector v ∈ {0,1}n of weight k there is 

the echelon Ferrers form, EF(v):

Example. Let  v =1 011000  then

1 00                                          1000110

Echelon Ferrers Form

1 00                                          1000110

EF(v) =   0010        , F =         , RE(X) =  0010101

0001                                          0001001

• The dots of EF(v) form Ferrers diagram, F.

• If we substitute some elements of Fq in the dots of 

EF(v), we obtain RE(X) for some X ∈ Gq(n,k)
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Multilevel Structure of Gq(n,k)

• All the binary vectors of the length n and weight 
k can be considered as the identifying vectors of 
all the subspaces in Gq(n,k)





 n





 n

• These        vectors partition Gq(n,k) into the  
different classes, which are called Schubert 
cells.

• Each Schubert cell contains all the subspaces 
with the same given echelon Ferrers form.
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Multilevel Structure of 
Constant Dimension Codes

• We partition all the codewords of a constant 
dimension code into different classes (sub-
codes), by the identifying vectors.codes), by the identifying vectors.

• First level: the set of identifying vectors.
• Second level: subspaces corresponding to 

these vectors.
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Multilevel Structure of 
Constant Dimension Codes

• Let C ⊆ Gq (n,k), 
• Let {v1,…, vt} be all the different identifying vectors in C. 
• Then {C1 ,…,Ct}  is the partition of C into t sub-codes, 

where v(Ci) = vi, for each X ∈ Ci .

Example. Let n = 6, k = 3, q = 2, d = 4 , ai ∈ F2
v1=111000              v2=100110            v3=010101             v4=001011

C4=

1• • 00 •

00010 •

00001 •

100 • • •

010 • • •

001 • • •

01• 0• 0 

0001• 0 

000001 

001• 00 

000010

000001

100 a1a2a3

C1 =    010 a4a5a6

001 a7a8a9

1a1a200a3

C2 =    0 0 0 10a4

0 0 0 01a5

01a10a20
C3 =    000 1a31

000 0 0 1

001a1 00 

000 0 10

000 0 01
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Identifying Vectors and 
Subspace Distance

• Theorem 1. dS (X, Y) = dH(v(X),v(Y)) + 2rank(Zxy)

• Corollary 1. dS (X, Y) ≥ dH(v(X),v(Y))• Corollary 1. dS (X, Y) ≥ dH(v(X),v(Y))

• Corollary 2.    If v(X) = v(Y), then
dS (X, Y) = 2rank(RE(X) – RE(Y))
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Search Method for Constant 
Dimension Lexicodes

• In each step we have the current code C and the set of 

subspaces not examined yet.

• Order the set of all binary words of length n and weight k 

(they are the candidates to be the identifying vectors of codewords)

• For each candidate for an identifying vector v search for • For each candidate for an identifying vector v search for 
a sub-code Cv:

– For each next subspace X calculate the distance between X and 
C, and add X to C if this distance at least d.
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Search Method for Constant 
Dimension Lexicodes

• In each step we have the current code C and the set of 

subspaces not examined yet.

• Order the set of all binary words of length n and weight k 

(they are the candidates to be the identifying vectors of codewords)

• For each candidate for an identifying vector v search for • For each candidate for an identifying vector v search for 
a sub-code Cv:

– For each next subspace X calculate the distance between X and 
C, and add X to C if this distance at least d.

– Optimization:

• first calculate the Hamming distance between the identifying 
vectors of representatives of sub-codes to determine a lower 
bound on the subspace distance, 

• only if necessary, calculate the subspace distance

Corollary 1: dS (Y, Z) ≥ dH(v(Y), v(Z)) 
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Constant Dimension Codes
and Rank-Metric Codes

• Let  X ∈ Gq(n,k) 
• R(X) is the k x (n-k) sub-matrix of RE(X) with the columns 

indexed by zeroes of v(X)

• dS(X,Y) = 2 dR(R(X),R(Y)), for all X,Y∈Ci

where d (A,B)=rank(A-B), for any two matrices A and B of the same sizewhere dR(A,B)=rank(A-B), for any two matrices A and B of the same size

• Let F be a Ferrers diagram with m rows and η columns

• A code C is an [F, ρ, δ] Ferrers diagram rank-metric code if 

– it forms a linear subspace of Fq of dimension ρ ;

– for each A≠B∈C, dR(A,B) ≥ δ

– each codeword has zeroes in all entries not in F

η×m

15



Upper Bound on Size of Ferrers
Diagram Rank-Metric Codes

• Let dim(F, δ) be the largest possible dimension of an 

[F,ρ,δ] code.

• Theorem 2. dim(F, δ) ≤ min {vi}, where vi, 0 ≤ i ≤ δ-1, is 

the number of dots in F which are not contained in the the number of dots in F which are not contained in the 

first i rows or the rightmost δ-1-i columns

• It is not known whether this upper bound is attained for 

all parameters.

• A code which attains this bound is called maximum rank 

distance Ferrers diagram code (MRD code).
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Properties of Constant 
Dimension Codes

• For each Ci ⊆ C define a Ferrers diagram rank-metric code

R(Ci) = {R(X): X ∈ Ci}

• R(Ci) will be called unlifted code of Ci

• dS(Ci, Cj) = min {dS(X, Y) : X ∈ Ci, Y ∈ Cj}

• d (C , C ) ≥ d (v , v )• dS(Ci, Cj) ≥ dH(vi, vj)

• Lemma 1. Let Ci, Cj be two sub-codes of C ⊆ Gq (n,k), 
such that X ∈ Ci, Y ∈ Cj and RE(X) and RE(Y) are some 
column permutation of the matrix (Ik0kx(n-k)). Then

dS(Ci, Cj) = dH(vi, vj)

• Corollary 3. Let C be an (n,M,d,k)q code. If dH(vi, vj) < d

then at least one unlifted code (R(Ci) or R(Cj) ) is nonlinear.
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Multilevel Construction 
for an (n,M,d=2δ,k)q code CML

• First level. Take a binary constant weight code C of 

length n, weight k and minimum distance δ to be the set 
of identifying vectors of CML

• Second level.  For each constant weight codeword vi ∈ C  
construct a sub-code Ci such that R(Ci) is a Ferrers
diagram MRD code with the minimum distance δ.
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Example: (8,4605,4,4)2 lexicode Clex

vs. (8,4573,4,4)2 code CML

- nonlinear unlifted code

(coset of linear code)
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• Lemma 2. Let C be an (n,M,d,k)q code. Let C1 ⊆ C be a 

sub-code with identifying vector v1 =11…100…0, such that 

R(C1 ) is an MRD code. Then there is no codeword Y in C

such that  d (v(Y),v ) < d.

Properties of Constant 
Dimension Codes

k n-k

such that  dH(v(Y),v1) < d.

• Corollary 4. If an (n,M,d,k)q code C contains a sub-code C1 

such that R(C1 ) is an MRD code, then the second sizewise

Ferrers diagram of C corresponds to the identifying vector 

v2 = 11…100…011…100…0.

k-δ δ δ n-k-δ
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Lexicodes with a Seed

• First step. Construct the maximal sub-code C1 which 

corresponds to the identifying vector v1 = 11…100…0.

(take any known MRD code as a unlifted code R(C1).)

• Second step. Construct  a sub-code C which corresponds 

k n-k

• Second step. Construct  a sub-code C2 which corresponds 

to the identifying vector v2 = 11…100…011…100…0

(If there exists an MRD Ferrers diagram code, take any known 
construction of such code for R(C2).)

• Third step. Construct the other sub-codes, according to the 

lexicode construction. (Examine only subspaces which are not 

pruned out by Lemma 2.)

k-δ δ δ n-k-δ
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Lexicodes with a Seed 
(a variant)

• We can take as a seed any subset of codewords 

obtained by any given construction and to 

continue by applying the lexicode with a seed continue by applying the lexicode with a seed 

construction
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Lexicodes with a Seed 
(Examples)

n k d q Size of lexicode
with a seed

Size of previously 
known code

7 3 4 3 6691 6685

9 4 4 2 37649 36945

10 5 6 2 32890 32841
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Conclusion and Open Problems

• We presented a search method for constant dimension 

codes based on their multilevel structure.

• Some of the codes obtained by this search are the 

largest known constant dimension codeslargest known constant dimension codes

• Open Problems

– Is the upper bound on the size of Ferrers diagram rank-metric 
codes is attainable for all parameters?

– What is the best choice of identifying vectors for constant 
dimension codes?

– Is there an optimal combination of linear Ferrers diagram rank-
metric codes and cosets of linear codes to form a large constant 
dimension codes?
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Thank you!Thank you!
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