Describing Polynomials as Equivalent to Explicit Solutions

Dr. Uwe Schauz
uwe.schauz@gmx.de
King Fhad University of Petroleum and Minerals, Saudi Arabia

Thurnau, April 14, 2010

Article: The Electronic Journal of Combinatorics 15 (2008), R10
(1) Introduction
(2) Algebraic Solutions (One Example)

- $\neq 1$-Theorems
- Example
- Advantages/Disadvantages
(3) The Coefficient Formula
- The Main Formula
- Main Corollaries ($\neq 1$-Theorems)
- Interpolation and Inversion Formulas for the Proof
- The Proof
- Specializations
(4) Appendix
- Applications
- The δ-permanent
- Generalizations

Observation

Polynomials $P\left(X_{1}\right) \neq 0$ of degree $\operatorname{deg}(P)<d_{1}$ have
fewer than d_{1} zeros.

Observation

Polynomials $P\left(X_{1}\right) \neq 0$ of degree $\operatorname{deg}(P)<d_{1}$ have
fewer than d_{1} zeros.

Polynomials $P\left(X_{1}\right)$ of degree $\operatorname{deg}(P)<d_{1}$ have

- on $d_{1}+1$ given points - not exactly one nonzero.

Polynomials $P\left(X_{1}, \ldots, X_{n}\right)$ of total degree $\operatorname{deg}(P)<d_{1}+\cdots+d_{n}$ have

Observation

Polynomials $P\left(X_{1}\right) \neq 0$ of degree $\operatorname{deg}(P)<d_{1}$ have

Polynomials $P\left(X_{1}\right)$ of degree $\operatorname{deg}(P)<d_{1}$ have

- on $d_{1}+1$ given points - not exactly one nonzero.

Polynomials $P\left(X_{1}, \ldots, X_{n}\right)$ of total degree $\operatorname{deg}(P)<d_{1}+\cdots+d_{n}$ have

- on grids $\mathfrak{X}=\mathfrak{X}_{1} \times \cdots \times \mathfrak{X}_{n}$ of $\left(d_{1}+1\right) \times \cdots \times\left(d_{n}+1\right)$ points not exactly one nonzero.

Observation
Polynomials $P\left(X_{1}\right) \neq 0$ of degree $\operatorname{deg}(P)<d_{1}$ have fewer than d_{1} zeros.

Polynomials $P\left(X_{1}\right)$ of degree $\operatorname{deg}(P)<d_{1}$ have

- on $d_{1}+1$ given points - not exactly one nonzero.

Polynomials $P\left(X_{1}, \ldots, X_{n}\right)$ of total degree $\operatorname{deg}(P)<d_{1}+\cdots+d_{n}$ have

- on grids $\mathfrak{X}=\mathfrak{X}_{1} \times \cdots \times \mathfrak{X}_{n}$ of $\left(d_{1}+1\right) \times \cdots \times\left(d_{n}+1\right)$ points not exactly one nonzero.

Definition
Assume $d=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ and let \mathcal{R} be an integral domain.

Observation
Polynomials $P\left(X_{1}\right) \neq 0$ of degree $\operatorname{deg}(P)<d_{1}$ have fewer than d_{1} zeros.

Polynomials $P\left(X_{1}\right)$ of degree $\operatorname{deg}(P)<d_{1}$ have

- on $d_{1}+1$ given points - not exactly one nonzero.

Polynomials $P\left(X_{1}, \ldots, X_{n}\right)$ of total degree $\operatorname{deg}(P)<d_{1}+\cdots+d_{n}$ have

- on grids $\mathfrak{X}=\mathfrak{X}_{1} \times \cdots \times \mathfrak{X}_{n}$ of $\left(d_{1}+1\right) \times \cdots \times\left(d_{n}+1\right)$ points not exactly one nonzero.

Definition
Assume $d=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ and let \mathcal{R} be an integral domain.
A d-grid $\mathfrak{X} \subseteq \mathcal{R}^{n}$ is a grid $\mathfrak{X}_{1} \times \cdots \times \mathfrak{X}_{n}$ of size $\left(d_{1}+1\right) \times \cdots \times\left(d_{n}+1\right)$.

Observation
Polynomials $P\left(X_{1}\right) \neq 0$ of degree $\operatorname{deg}(P)<d_{1}$ have fewer than d_{1} zeros.

Polynomials $P\left(X_{1}\right)$ of degree $\operatorname{deg}(P)<d_{1}$ have

- on $d_{1}+1$ given points - not exactly one nonzero.

Polynomials $P\left(X_{1}, \ldots, X_{n}\right)$ of total degree $\operatorname{deg}(P)<d_{1}+\cdots+d_{n}$ have

- on grids $\mathfrak{X}=\mathfrak{X}_{1} \times \cdots \times \mathfrak{X}_{n}$ of $\left(d_{1}+1\right) \times \cdots \times\left(d_{n}+1\right)$ points not exactly one nonzero.

Definition
Assume $d=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ and let \mathcal{R} be an integral domain.
A d-grid $\mathfrak{X} \subseteq \mathcal{R}^{n}$ is a grid $\mathfrak{X}_{1} \times \cdots \times \mathfrak{X}_{n}$ of size $\left(d_{1}+1\right) \times \cdots \times\left(d_{n}+1\right)$. (always connected: $\mathfrak{X} \longleftrightarrow \boldsymbol{d}$)

Observation
Polynomials $P\left(X_{1}\right) \neq 0$ of degree $\operatorname{deg}(P)<d_{1}$ have fewer than d_{1} zeros.

Polynomials $P\left(X_{1}\right)$ of degree $\operatorname{deg}(P)<d_{1}$ have

- on $d_{1}+1$ given points - not exactly one nonzero.

Polynomials $P\left(X_{1}, \ldots, X_{n}\right)$ of total degree $\operatorname{deg}(P)<d_{1}+\cdots+d_{n}$ have

- on grids $\mathfrak{X}=\mathfrak{X}_{1} \times \cdots \times \mathfrak{X}_{n}$ of $\left(d_{1}+1\right) \times \cdots \times\left(d_{n}+1\right)$ points not exactly one nonzero.

Definition
Assume $d=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ and let \mathcal{R} be an integral domain.
A d-grid $\mathfrak{X} \subseteq \mathcal{R}^{n}$ is a grid $\mathfrak{X}_{1} \times \cdots \times \mathfrak{X}_{n}$ of size $\left(d_{1}+1\right) \times \cdots \times\left(d_{n}+1\right)$. $\mathfrak{X}:=\{0,1\}^{n}$ is the Boolean grid. (always connected: $\mathfrak{X} \longleftrightarrow \boldsymbol{d}$)

Corollary ($\neq 1$-Theorem)

If $\operatorname{deg}(P)<\Sigma d$, then

$$
|\{x \in \mathfrak{X}: P(x) \neq 0\}| \neq 1 .
$$

Corollary ($\neq 1$-Theorem)

```
If deg(P) < \Sigmad, then
```

$$
|\{x \in \mathfrak{X}: P(x) \neq 0\}| \neq 1 .
$$

Corollary (Generalized Chevalley-Warning-Theorem)
Let $\mathcal{R}:=\mathbb{F}_{q}$ and $P_{1}, \ldots, P_{m} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$.
If $(q-1) \sum_{i} \operatorname{deg}\left(P_{i}\right)<\Sigma d$, then

Corollary ($\neq 1$-Theorem)
If $\operatorname{deg}(P)<\Sigma d$, then

$$
|\{x \in \mathfrak{X}: P(x) \neq 0\}| \neq 1 .
$$

Corollary (Generalized Chevalley-Warning-Theorem)
Let $\mathcal{R}:=\mathbb{F}_{q}$ and $P_{1}, \ldots, P_{m} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$.
If $(q-1) \sum_{i} \operatorname{deg}\left(P_{i}\right)<\Sigma d$, then

$$
\left|\left\{x \in \mathfrak{X}: P_{1}(x)=\cdots=P_{m}(x)=0\right\}\right| \neq 1
$$

Corollary ($\neq 1$-Theorem)
If $\operatorname{deg}(P)<\Sigma d$, then

$$
|\{x \in \mathfrak{X}: P(x) \neq 0\}| \neq 1
$$

Corollary (Generalized Chevalley-Warning-Theorem)
Let $\mathcal{R}:=\mathbb{F}_{q}$ and $P_{1}, \ldots, P_{m} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$.
If $(q-1) \sum_{i} \operatorname{deg}\left(P_{i}\right)<\Sigma d$, then

$$
\left|\left\{x \in \mathfrak{X}: P_{1}(x)=\cdots=P_{m}(x)=0\right\}\right| \neq 1
$$

Proof.
Define $P:=\prod_{i=1}^{m}\left(1-P_{i}^{q-1}\right)$ and apply the $\neq 1$-Theorem.

Theorem (Alon, Friedland, Kalai)

Every loopless 4-regular multigraph plus one edge $G=\left(V, E \uplus\left\{e_{0}\right\}\right)$ contains a nontrivial 3-regular subgraph.

Theorem (Alon, Friedland, Kalai)
extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}}^{E})$ contains a nontrivial 3-regular subgraph.

Theorem (Alon, Friedland, Kalai)
extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}})$ contains a nontrivial 3-regular subgraph.

A 4-regular graph without 3-regular subgraph

Theorem (Alon, Friedland, Kalai) extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}}^{E})$ contains a nontrivial 3-regular subgraph.

Extended graph

Theorem (Alon, Friedland, Kalai)
extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}}^{E})$ contains a nontrivial 3-regular subgraph.

3-regular subgraph

Theorem (Alon, Friedland, Kalai)
extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}})$ contains a nontrivial 3-regular subgraph.

Theorem (Alon, Friedland, Kalai)
extended 4-regular graph
Every $\overbrace{\text { Topless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}}^{E})$ contains a nontrivial 3-regular subgraph.

Theorem (Alon, Friedland, Kalai) extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}})$ contains a nontrivial 3-regular subgraph.

An other 4-regular graph

Theorem (Alon, Friedland, Kalai) extended 4-regular graph
 Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}}^{E})$ contains a nontrivial 3-regular subgraph.

I am sure there is one!

Theorem (Alon, Friedland, Kalai) extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}})$ contains a nontrivial 3 -regular subgraph.

Proof.
The subgraphs $\mathcal{S} \subseteq \bar{E}$ correspond to the points $x=\left(x_{e}\right)_{e \in \bar{E}}$ of the Boolean grid $\mathfrak{X}:=\{0,1\}^{\bar{E}} \subseteq \mathbb{F}_{3}^{\bar{E}}$.

$$
\binom{\bar{E} \longleftrightarrow\{1, \ldots, n\}}{V \longleftrightarrow\{1, \ldots, m\}}
$$

Theorem (Alon, Friedland, Kalai) extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}})$ contains a nontrivial 3 -regular subgraph.

Proof.
The subgraphs $\mathcal{S} \subseteq \bar{E}$ correspond to the points $x=\left(x_{e}\right)_{e \in \bar{E}}$ of the Boolean grid $\mathfrak{X}:=\{0,1\}^{\bar{E}} \subseteq \mathbb{F}_{3}^{\bar{E}}$.

$$
\binom{\bar{E} \longleftrightarrow\{1, \ldots, n\}}{V \longleftrightarrow\{1, \ldots, m\}}
$$

Algebraic Solution:

$$
\left.P_{v}:=\sum_{e \ni v} X_{e} \in \mathbb{F}_{3}\left[X_{e}\right\} e \in \bar{E}\right] \text { for all } v \in V \text {. }
$$

Theorem (Alon, Friedland, Kalai) extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}})$ contains a nontrivial 3-regular subgraph.

Proof.
The subgraphs $\mathcal{S} \subseteq \bar{E}$ correspond to the points $x=\left(x_{e}\right)_{e \in \bar{E}}$ of the Boolean grid $\mathfrak{X}:=\{0,1\}^{\bar{E}} \subseteq \mathbb{F}_{3}^{\bar{E}}$.

$$
\binom{\bar{E} \longleftrightarrow\{1, \ldots, n\}}{V \longleftrightarrow\{1, \ldots, m\}}
$$

Algebraic Solution:

$$
P_{v}:=\sum_{e \ni v} X_{e} \in \mathbb{F}_{3}\left[X_{e}: e \in \bar{E}\right] \text { for all } v \in V
$$

Degree Restriction: $(3-1) \sum_{v} \operatorname{deg}\left(P_{v}\right)=2|V|=|E|<|\bar{E}|=\Sigma d$.

Theorem (Alon, Friedland, Kalai) extended 4-regular graph
Every $\overbrace{\text { loopless 4-regular multigraph plus one edge }} G=(V, \overbrace{E \uplus\left\{e_{0}\right\}})$ contains a nontrivial 3-regular subgraph.

Proof.
The subgraphs $\mathcal{S} \subseteq \bar{E}$ correspond to the points $x=\left(x_{e}\right)_{e \in \bar{E}}$ of the Boolean grid $\mathfrak{X}:=\{0,1\}^{\bar{E}} \subseteq \mathbb{F}_{3}^{\bar{E}}$.

$$
\binom{\bar{E} \longleftrightarrow\{1, \ldots, n\}}{V \longleftrightarrow\{1, \ldots, m\}}
$$

Algebraic Solution:

$$
P_{v}:=\sum_{e \ni v} X_{e} \in \mathbb{F}_{3}\left[X_{e}: e \in \bar{E}\right] \text { for all } v \in V
$$

Degree Restriction: $(3-1) \sum_{v} \operatorname{deg}\left(P_{v}\right)=2|V|=|E|<|\bar{E}|=\Sigma d$.
not exactly one solution exactly one trivial solution

Advantages / Disadvantages of Algebraic Solutions

(1) Indirect proof, we do not obtain explicit solutions. (Just exponential time algorithms.)
\square

Advantages / Disadvantages of Algebraic Solutions
(1) Indirect proof, we do not obtain explicit solutions. (Just exponential time algorithms.)
(2) Sometimes, easy to find.

Advantages / Disadvantages of Algebraic Solutions

(1) Indirect proof, we do not obtain explicit solutions. (Just exponential time algorithms.)
(2) Sometimes, easy to find.
(3) Sometimes, infinitely many algebraic solutions fit into a general form and can be presented in just one line.
(\rightarrow "Finite Blackboard Problem")

Advantages / Disadvantages of Algebraic Solutions

(1) Indirect proof, we do not obtain explicit solutions. (Just exponential time algorithms.)
(2) Sometimes, easy to find.
(3) Sometimes, infinitely many algebraic solutions fit into a general form and can be presented in just one line.
(\rightarrow "Finite Blackboard Problem")
(9) Only the primes occur as characteristic of finite fields. (\rightarrow Olson's Theorem; Alon, Friedland, Kalai's Conjecture. (Appendix))

Theorem (Coefficient Formula)
 Let $\mathfrak{X} \subseteq \mathcal{R}^{n}$ be a d-grid.

\square
Corollary (Combinatorial Nullstellensatz (Alon, Tarsi))

Theorem (Coefficient Formula)

Let $\mathfrak{X} \subseteq \mathcal{R}^{n}$ be a d-grid.
For polynomials $P=\sum_{\delta \in \mathbb{N}^{n}} P_{\delta} X^{\delta} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$ of total degree $\operatorname{deg}(P) \leq \Sigma d:=\Sigma_{j} d_{j}$,

Theorem (Coefficient Formula)
Let $\mathfrak{X} \subseteq \mathcal{R}^{n}$ be a d-grid.
For polynomials $P=\sum_{\delta \in \mathbb{N}^{n}} P_{\delta} X^{\delta} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$ of total degree $\operatorname{deg}(P) \leq \Sigma d:=\Sigma_{j} d_{j}$,

$$
P_{d}=\Sigma\left(\left.N^{-1} P\right|_{\mathfrak{X}}\right)
$$

where the maps $N,\left.P\right|_{\mathfrak{X}}: \mathfrak{X} \longrightarrow \mathcal{R}$

Theorem (Coefficient Formula)
Let $\mathfrak{X} \subseteq \mathcal{R}^{n}$ be a d-grid.
For polynomials $P=\sum_{\delta \in \mathbb{N}^{n}} P_{\delta} X^{\delta} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$ of total degree $\operatorname{deg}(P) \leq \Sigma d:=\Sigma_{j} d_{j}$,

$$
P_{d}=\Sigma\left(\left.N^{-1} P\right|_{\mathfrak{X}}\right) \quad:=\sum_{x \in \mathfrak{X}} N(x)^{-1} P(x),
$$

where the maps $N,\left.P\right|_{\mathfrak{X}}: \mathfrak{X} \longrightarrow \mathcal{R}$ are defined by
$N\left(x_{1}, \ldots, x_{n}\right):=\prod_{j} \prod_{\xi \in \mathfrak{X}_{j} \backslash\left\{x_{j}\right\}}\left(x_{j}-\xi\right)$ and $\left.P\right|_{\mathfrak{X}}(x):=P(x)$.

Theorem (Coefficient Formula)
Let $\mathfrak{X} \subseteq \mathcal{R}^{n}$ be a d-grid.
For polynomials $P=\sum_{\delta \in \mathbb{N}^{n}} P_{\delta} X^{\delta} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$ of total degree $\operatorname{deg}(P) \leq \Sigma d:=\Sigma_{j} d_{j}$,

$$
P_{d}=\Sigma\left(\left.N^{-1} P\right|_{\mathfrak{X}}\right) \quad:=\sum_{x \in \mathfrak{X}} N(x)^{-1} P(x),
$$

where the maps $N,\left.P\right|_{\mathfrak{X}}: \mathfrak{X} \longrightarrow \mathcal{R}$ are defined by
$N\left(x_{1}, \ldots, x_{n}\right):=\prod_{j} \prod_{\xi \in \mathfrak{X}_{j} \backslash\left\{x_{j}\right\}}\left(x_{j}-\xi\right)$ and $\left.P\right|_{\mathfrak{X}}(x):=P(x)$.

Corollary (Combinatorial Nullstellensatz (Alon, Tarsi))
If $\operatorname{deg}(P) \leq \Sigma d$, then

$$
P_{d} \neq\left. 0 \Longrightarrow P\right|_{\mathfrak{X}} \not \equiv 0
$$

Corollary ($\neq 1$-Theorem)

If $\operatorname{deg}(P)<\Sigma d$, then

$$
|\{x \in \mathfrak{X}: P(x) \neq 0\}| \neq 1
$$

Corollary ($\neq 1$-Theorem)
If $\operatorname{deg}(P)<\Sigma d$, then

$$
|\{x \in \mathfrak{X}: P(x) \neq 0\}| \neq 1
$$

Corollary (Generalized Chevalley-Warning-Theorem)
Let $\mathcal{R}:=\mathbb{F}_{q}$ and $P_{1}, \ldots, P_{m} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$.
If $(q-1) \sum_{i} \operatorname{deg}\left(P_{i}\right)<\Sigma d$, then

$$
\left|\left\{x \in \mathfrak{X} \quad \mid P_{1}(x)=\cdots=P_{m}(x)=0\right\}\right| \neq 1
$$

```
Theorem (Interpolation Formula)
Let }\mathfrak{X}\subseteq\mp@subsup{\mathbb{F}}{}{n}\mathrm{ be a d-grid over a field }\mathbb{F}\mathrm{ and y: X }\longrightarrow\mathbb{F}\mathrm{ a map.
```

There exists a unique polynomial $P \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ with partial degrees
The coefficients P_{δ} of P are given by

\square

Theorem (Interpolation Formula)
Let $\mathfrak{X} \subseteq \mathbb{F}^{n}$ be a d-grid over a field \mathbb{F} and $y: \mathfrak{X} \longrightarrow \mathbb{F}$ a map.
There exists a unique polynomial $P \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ with partial degrees $\operatorname{deg}_{j}(P) \leq d_{j}$ that interpolates y, i.e., $\left.P\right|_{\mathfrak{X}}=y$.

Theorem (Interpolation Formula)

Let $\mathfrak{X} \subseteq \mathbb{F}^{n}$ be a d-grid over a field \mathbb{F} and $y: \mathfrak{X} \longrightarrow \mathbb{F}$ a map.
There exists a unique polynomial $P \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ with partial degrees $\operatorname{deg}_{j}(P) \leq d_{j}$ that interpolates y, i.e., $\left.P\right|_{\mathfrak{X}}=y$.
The coefficients P_{δ} of P are given by

$$
P_{\delta}=\Sigma\left(M_{\delta} y\right)
$$

with certain maps $M_{\delta}: \mathfrak{X} \longrightarrow \mathbb{F}$.

Theorem (Interpolation Formula)

Let $\mathfrak{X} \subseteq \mathbb{F}^{n}$ be a d-grid over a field \mathbb{F} and $y: \mathfrak{X} \longrightarrow \mathbb{F}$ a map.
There exists a unique polynomial $P \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ with partial degrees $\operatorname{deg}_{j}(P) \leq d_{j}$ that interpolates y, i.e., $\left.P\right|_{\mathfrak{x}}=y$.
The coefficients P_{δ} of P are given by

$$
P_{\delta}=\Sigma\left(M_{\delta} y\right)
$$

with certain maps $M_{\delta}: \mathfrak{X} \longrightarrow \mathbb{F}$.

Corollary (Inversion Formula)
Polynomials $P \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$ with partial degrees $\operatorname{deg}_{j}(P) \leq d_{j}$ are uniquely determined by $\left.P\right|_{\mathfrak{X}}$. The coefficients P_{δ} of P are given by

$$
P_{\delta}=\Sigma\left(\left.M_{\delta} P\right|_{\mathfrak{X}}\right) .
$$

Proof of the Coefficient Formula.

Transform P into a trimmed polynomial P / \mathfrak{X} with (i) $\left.(P / \mathfrak{X})\right|_{\mathfrak{X}}=\left.P\right|_{\mathfrak{X}}$,

Proof of the Coefficient Formula.
Transform P into a trimmed polynomial P / \mathfrak{X} with
(i) $\left.(P / \mathfrak{X})\right|_{\mathfrak{X}}=\left.P\right|_{\mathfrak{X}}$,
(ii) $(P / \mathfrak{X})_{d}=P_{d}$,

Proof of the Coefficient Formula.

Transform P into a trimmed polynomial P / \mathfrak{X} with
(i) $\left.(P / \mathfrak{X})\right|_{\mathfrak{X}}=\left.P\right|_{\mathfrak{X}}$,
(ii) $(P / \mathfrak{X})_{d}=P_{d}$,
(iii) $\operatorname{deg}_{j}(P / \mathfrak{X}) \leq d_{j}$ for $j=1, \ldots, n$.

Proof of the Coefficient Formula.

Transform P into a trimmed polynomial P / \mathfrak{X} with
(i) $\left.(P / \mathfrak{X})\right|_{\mathfrak{X}}=\left.P\right|_{\mathfrak{X}}$,
(ii) $(P / \mathfrak{X})_{d}=P_{d}$,
(iii) $\operatorname{deg}_{j}(P / \mathfrak{X}) \leq d_{j}$ for $j=1, \ldots, n$.

Then
$P_{d} \stackrel{(i i)}{=}(P / \mathfrak{X})_{d} \stackrel{(i i i)}{=} \Sigma\left(M_{d}(P / \mathfrak{X}) \mid \mathfrak{X}\right) \stackrel{(i)}{=} \Sigma\left(\left.M_{d} P\right|_{\mathfrak{X}}\right)=\Sigma\left(\left.N^{-1} P\right|_{\mathfrak{X}}\right)$.

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

Start with P and add successively ...

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}:$

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The transformation $P \longmapsto \longmapsto \longmapsto \cdots \longmapsto P / \mathfrak{X}$:

The trimmed polynomial P / \mathfrak{X}.

Specializations of the Coefficient Formula

If $\operatorname{deg}(P) \leq \Sigma d$, then
Let $A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^{m}$.
If $m \leq \Sigma d$, then

$$
P_{d}=\sum_{x \in \mathfrak{X}} N(x)^{-1} P(x)
$$

Matrix Poly.

$$
\operatorname{per}_{d}(A)=\sum_{x \in \mathfrak{X}} N(x)^{-1} \overbrace{\prod(A x-b)}
$$

Let d_{v} denote the indegree of the vertices $v \in V$ of $\vec{G}=(V, \vec{E})$ and let $\mathfrak{X}_{v} \subseteq \mathcal{R}$ be a "list of $d_{v}+1$ colors" so that the set $\mathfrak{X}:=\prod_{v \in V} \mathfrak{X}_{v}$ of potential list colorings of \vec{G} is a d-grid for $d:=\left(d_{v}\right)_{v \in V}$, then Graph Poly.

$$
\pm \underbrace{|E E| \mp|E O|}_{\text {Eulerian Subgraphs }}=\operatorname{per}_{d}(\underbrace{A(\vec{G})}_{\text {Incidence Matrix }})=\sum_{x \in \mathfrak{X}} N(x)^{-1} \overbrace{\prod_{\overrightarrow{s t} \in \vec{E}}\left(x_{t}-x_{s}\right)}
$$

If \vec{L} is the arbitrarily oriented line graph of a planar k-regular graph G and $d_{e}=k-1$ for all $e \in E(G)=V(\vec{L})$, then
const $\cdot \operatorname{per}_{d}(A(\vec{L}))=$ "the number of edge k-colorings of G "

Describing Polynomials as Equivalent to Explicit Solutions

Dr. Uwe Schauz
uwe.schauz@gmx.de

King Fhad University of Petroleum and Minerals, Saudi Arabia

Thurnau, April 14, 2010

Doctoral Thesis: http://tobias-lib.ub.uni-tuebingen.de/volltexte/2007/2955

Applications

(1) Alon and Tarsi's Combinatorial Nullstellensatz.
(2) Chevalley and Warning's Theorem about the number of simultaneous zeros of systems of polynomials over finite fields. A sharpening of Warning's lower bound for this number and a generalization of Olson's version.
(3) Ryser's Permanent Formula.
(1) Alon's Permanent Lemma.
(5) Alon and Tarsi's Theorem about orientations and colorings of graphs.
(0) Scheim's formula for the number of edge n-colorings of planar n-regular graphs.
(3) Ellingham and Goddyn's partial answer to the list coloring conjecture.
(3) Alon, Friedland and Kalai's Theorem about regular subgraphs.
(0) Alon and Füredi's Theorem about cube covers.
(0) Cauchy and Davenport's Theorem from additive number theory.
(1) Erdős, Ginzburg and Ziv's Theorem from additive number theory.

Definition (δ-permanent)

Let $A\langle\mid \delta\rangle$ be a matrix that contains the $j^{\text {th }}$ column of A exactly δ_{j} times.

Definition (δ-permanent)

Let $A\langle\mid \delta\rangle$ be a matrix that contains the $j^{\text {th }}$ column of A exactly δ_{j} times. The δ-permanent of $A=\left(a_{i, j}\right) \in \mathcal{R}^{m \times n}$ is defined through

$$
\operatorname{per}_{\delta}(A):=\sum_{\substack{\sigma:(m) \rightarrow(n] \\
|\sigma-1(j)|=\delta_{j}}} \prod_{i=1}^{m} a_{i, \sigma(i)}=\left\{\begin{array}{cl}
\frac{1}{\prod\left(\delta_{j}!\right)} \operatorname{per}(A\langle\mid \delta\rangle) & \text { if } \Sigma \delta=m, \\
0 & \text { else } .
\end{array}\right.
$$

Definition (δ-permanent)

Let $A\langle\mid \delta\rangle$ be a matrix that contains the $j^{\text {th }}$ column of A exactly δ_{j} times. The δ-permanent of $A=\left(a_{i, j}\right) \in \mathcal{R}^{m \times n}$ is defined through

$$
\operatorname{per}_{\delta}(A):=\sum_{\substack{\sigma:(m)|=(n)\\
| \sigma-1())=\delta_{j}}} \prod_{i=1}^{m} a_{i, \sigma(i)}=\left\{\begin{array}{cl}
\frac{1}{\Pi\left(\delta_{j}!\right)} \operatorname{per}(A\langle\mid \delta\rangle) & \text { if } \Sigma \delta=m, \\
0 & \text { else. }
\end{array}\right.
$$

Lemma (The Coefficients of the Matrix Polynomial)

$$
\begin{aligned}
\Pi(A X) & =\sum_{\delta \in \mathbb{N}^{n}} \operatorname{per}_{\delta}(A) X^{\delta}, \\
\Pi(A X-b) & :=\prod_{i=1}^{m}\left(\left(\sum_{j=1}^{n} a_{i j} X_{j}\right)-b_{i}\right) \\
& =\Pi(A X)+\text { "a polynomial of lower degree". }
\end{aligned}
$$

Definition (δ-permanent)

Let $A\langle\mid \delta\rangle$ be a matrix that contains the $j^{\text {th }}$ column of A exactly δ_{j} times. The δ-permanent of $A=\left(a_{i, j}\right) \in \mathcal{R}^{m \times n}$ is defined through

$$
\operatorname{per}_{\delta}(A):=\sum_{\substack{\sigma:(m)|=(n)\\
| \sigma-1())=\delta_{j}}} \prod_{i=1}^{m} a_{i, \sigma(i)}=\left\{\begin{array}{cl}
\frac{1}{\Pi\left(\delta_{j}!\right)} \operatorname{per}(A\langle\mid \delta\rangle) & \text { if } \Sigma \delta=m, \\
0 & \text { else. }
\end{array}\right.
$$

Lemma (The Coefficients of the Matrix Polynomial)

$$
\begin{aligned}
\underbrace{\Pi(A X)}_{P} & =\sum_{\delta \in \mathbb{N}^{n}} \underbrace{\operatorname{per}_{\delta}(A)}_{P_{\delta}} X^{\delta}, \\
\Pi(A X-b) & :=\prod_{i=1}^{m}\left(\left(\sum_{j=1}^{n} a_{i j} X_{j}\right)-b_{i}\right) \\
& =\Pi(A X)+\text { "a polynomial of lower degree". }
\end{aligned}
$$

Conjecture (Alon, Friedland, Kalai)

Set $\mathcal{R}:=\mathbb{Z} / k \mathbb{Z}$, let $\mathfrak{X}:=\{0,1\}^{n}$ be the Boolean grid and let $P_{1}, \ldots, P_{m} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$ be homogenous polynomials of degree 1 . If $(k-1) m<n$, then there is a nontrivial simultaneous zero, i.e.,

$$
\left|\left\{x \in \mathfrak{X}: P_{1}(x)=\cdots=P_{m}(x)=0\right\}\right| \neq 1
$$

Conjecture (Alon, Friedland, Kalai)
Set $\mathcal{R}:=\mathbb{Z} / k \mathbb{Z}$, let $\mathfrak{X}:=\{0,1\}^{n}$ be the Boolean grid and let $P_{1}, \ldots, P_{m} \in \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]$ be homogenous polynomials of degree 1 . If $(k-1) m<n$, then there is a nontrivial simultaneous zero, i.e.,

$$
\left|\left\{x \in \mathfrak{X}: P_{1}(x)=\cdots=P_{m}(x)=0\right\}\right| \neq 1
$$

Theorem (Generalized Olson-Theorem)
Let $p \in \mathbb{N}$ be a prime and $\mathfrak{X} \subseteq \mathbb{Z}^{n}$ a d-grid with the additional property that for all $j \in\{1, \ldots, n\}$ and all $x, \tilde{x} \in \mathfrak{X}_{j}$ with $x \neq \tilde{x}$ holds $p \nmid x-\tilde{x}$. For polynomials $P_{1}, \ldots, P_{m} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$, and numbers $k_{1}, \ldots, k_{m}>0$ small enough so that $\sum_{i}\left(p^{k_{i}}-1\right) \operatorname{deg}\left(P_{i}\right)<\Sigma d$,

$$
\mid\left\{x \in \mathfrak{X}: \forall i: p^{k_{i}}\left\lfloor P_{i}(x)\right\} \mid \neq 1 .\right.
$$

