ARCS IN PROJECTIVE GEOMETRIES
OVER \mathbb{F}_4 AND QUATERNARY LINEAR CODES

Assia Rousseva
Sofia University

Ivan Landjev
New Bulgarian University

1. Preliminaries

\mathbb{F}_q, $q = p^r$, p - prime, the field with q elements

Definition. A *multiset* in $\text{PG}(k-1, q)$ is a mapping

$$\mathcal{K} : \begin{cases} \mathcal{P} & \rightarrow & \mathbb{N}_0, \\ P & \rightarrow & \mathcal{K}(P). \end{cases}$$

$\mathcal{K}(P)$ - the *multiplicity* of the point P.

$Q \subset \mathcal{P}$: $\mathcal{K}(Q) = \sum_{P \in Q} \mathcal{K}(P)$.

$\mathcal{K}(\mathcal{P})$ - the *cardinality* of \mathcal{K}.
Points, lines, ..., hyperplanes of multiplicity \(i \) are called \(i \)-points, \(i \)-lines, ..., \(i \)-hyperplanes.

\(a_i \) – the number of \(i \)-hyperplanes

\((a_i)_{i \geq 0} \) – the spectrum of \(\mathcal{K} \)
Definition. (n, w)-arc in $\text{PG}(k - 1, q)$: a multiset \mathcal{K} with

1) $\mathcal{K}(\mathcal{P}) = n$;

2) for every hyperplane H: $\mathcal{K}(H) \leq w$;

3) there exists a hyperplane H_0: $\mathcal{K}(H_0) = w$.

Definition. (n, w)-blocking set with respect to hyperplanes in $\text{PG}(k - 1, q)$ (or (n, w)-minihyper): a multiset \mathcal{K} with

1) $\mathcal{K}(\mathcal{P}) = n$;

2) for every hyperplane H: $\mathcal{K}(H) \geq w$;

3) there exists a hyperplane H_0: $\mathcal{K}(H_0) = w$.
2. Linear codes over finite fields

C - linear $[n, k, d]_q$ code:

C is a linear subspace of \mathbb{F}_q^n with $\dim C = k$,

$\delta_{\text{Ham}}(u, v) \geq d$ for every $u, v \in C$, $u \neq v$.

Problem A. For given k, d and q find the smallest value of n for which there exists an $[n, k, d]_q$-code.

The **Griesmer** bound:

$$n_q(k, d) \geq g_q(k, d) = \sum_{i=0}^{k-1} \left\lfloor \frac{d}{q^i} \right\rfloor$$
For k, q fixed, there exist codes meeting the Griesmer bound for all sufficiently large d. (Tamari)

For d, q fixed, $k \to \infty$ Griesmer codes do not exist. (Dodunekov)

Hence it is reasonable to attack the problem for “small” fields \mathbb{F}_q and “small” dimensions k.

At present:

- $q = 2$, $k \leq 8$ – the problem is solved for all d;
- $q = 3$, $k \leq 5$ – the problem is solved for all d;
- $q = 4$, $k \leq 4$ – the problem is solved for all d;
 - $k = 5$, ≈ 110 open cases;
- $q = 5$, $k \leq 3$ – the problem is solved for all d;
 - $k = 4$ – only 4 open cases for d:
 - $d = 81, 82, 161, 162$;
- $q = 7, 8, 9$, $k \leq 3$ the problem is solved for all d.
3. Arcs and linear codes

Theorem. The existence of an $[n, k, d]_q$-code of full length is equivalent to that of an $(n, n - d)$-arc in $\text{PG}(k - 1, q)$.

$\diamond C - [n, k, d]_q$-code with $n = t + g_q(k, d)$;

$\diamond \mathcal{K} - (n, n - d)$-arc associated with C;

$\diamond \gamma_i :=$ maximal multiplicity of an i-dimensional subspace of $\text{PG}(k - 1, q)$, $i = 0, 1, \ldots, k - 1$,

$$\gamma_i \leq t + g_q(i + 1, d).$$
Problem B. Characterize geometrically all Griesmer codes with given parameters k, d and q. Equivalently: Characterize all minihypers in $\text{PG}(k - 1, q)$ with parameters

$$\left(\sum_{i=0}^{k-2} \epsilon_i v_{i+1}, \sum_{i=0}^{k-2} \epsilon_i v_i, \right), 0 \leq \epsilon_i \leq q - 1,$$

where $v_i = (q^i - 1)/(q - 1)$.

- probably hopeless in all generality
- Belov, Logachev, Sandimirov, 1974
- N. Hamada, T. Helleseth
- L. Storme, J. De Beule, P. Govaerts et al.
- A. Klein, Kl. Metsch and many others
3.1. Divisibility of arcs in $\text{PG}(k-1, q)$

Definition. A (n, w)-arc \mathcal{K} in $\text{PG}(k-1, q)$ is called **divisible** if there exists an integer $\Delta > 1$ such that $\mathcal{K}(H) \equiv n \pmod{\Delta}$ for every hyperplane H.

Theorem. (H. N. Ward) Let \mathcal{K} be a Griesmer (n, w)-arc in $\text{PG}(k-1, p)$, p a prime, with $w \equiv n \pmod{p^e}$, $e \geq 1$. Then $\mathcal{K}(H) \equiv n \pmod{p^e}$ for any hyperplane H.

Theorem. (H. N. Ward) Let \mathcal{K} be a Griesmer (n, w)-arc in $\text{PG}(k-1, 4)$ with $w \equiv n \pmod{2^e}$, $e \geq 1$. Then $\mathcal{K}(H) \equiv n \pmod{2^{e-1}}$ for any hyperplane H.
3.2. Extension of arcs in $\text{PG}(k - 1, q)$

Definition. An (n, w)-arc \mathcal{K} in $\text{PG}(k - 1, q)$ is called **extendable** if there exists an $(n + 1, w)$-arc \mathcal{K}^* in $\text{PG}(k - 1, q)$ with $\mathcal{K}^*(P) \geq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$.

Theorem. (Hill, Lizak) Let \mathcal{K} be an (n, w)-arc in $\text{PG}(k - 1, q)$ with $\gcd(n - w, q) = 1$. Let further $\mathcal{K}(H) \equiv n$ or $w \pmod q$ for all hyperplanes H. Then \mathcal{K} is extendable to an $(n + 1, w)$-arc in $\text{PG}(k - 1, q)$.
4. The status quo for $q = 4$

Problem.

For codes over \mathbb{F}_4, $n_4(k, d)$ has been found for $k \leq 4$ for all d.

For $k = 5$, $n_4(5, d)$ has been found for all but ≈ 110 values of d.

Some open cases for $k = 5$, $q = 4$:

\begin{tabular}{|c|c|c|c|c|}
\hline
d & $g_4(5, d)$ & $n_4(5, d)$ & (n, w)-arc \mathcal{K} & $\mathcal{K}|_H$ \\
\hline
333 & 446 & 446–447 & (446, 113)-arc & \\
334 & 447 & 447–448 & (447, 113)-arc & (113, 29)-arc in PG(3, 4) \\
335 & 448 & 448–449 & (448, 113)-arc & \\
336 & 449 & 449–450 & (449, 113)-arc & \\
\hline
\end{tabular}
| d | $g_4(5, d)$ | $n_4(5, d)$ | (n, w)-arc \mathcal{K} | $\mathcal{K}|_H$ |
|-----|-------------|-------------|-----------------|-----------------|
| 345 | 462 | 462–463 | (462, 117)-arc | |
| 346 | 463 | 463–464 | (463, 117)-arc | (117, 30)-arc |
| 347 | 464 | 464–465 | (464, 117)-arc | in PG(3, 4) |
| 348 | 465 | 465–466 | (465, 117)-arc | |
| 349 | 467 | 467–468 | (467, 118)-arc | |
| 350 | 468 | 468–469 | (468, 118)-arc | (118, 30)-arc |
| 351 | 469 | 469–470 | (469, 118)-arc | in PG(3, 4) |
| 352 | 470 | 470–471 | (470, 118)-arc | |
5. Characterization of the \((118, 30)\)-arcs in \(PG(3, 4)\)

Theorem. Let \(\mathcal{K}\) be a \((118, 30)\)-arc. Then

\[\gamma_0 = 2, \quad \gamma_1 = 8, \quad \gamma_2 = 30.\]

Moreover, the possible multiplicities of hyperplanes are 14, 18, 22, 26, 30.
5.1. Constructions using a (128, 32)-arc in PG(3, 4)

Step 1. \(\ell \) – a line in PG(3, 4);

\(\pi_0, \ldots, \pi_4 \) – the planes through \(\ell \)

\[
\mathcal{L}(P) = \begin{cases}
0 & \text{if } P \in \ell, \\
1 & \text{if } P \in (\pi_0 \cup \pi_1) \setminus \ell, \\
2 & \text{if } P \in (\pi_2 \cup \pi_3 \cup \pi_4) \setminus \ell,
\end{cases}
\]

Step 2. Delete a (10, 2)-minihyper \(\mathcal{F} \) with \(\mathcal{F}(P) \leq \mathcal{L}(P) \) for every point \(P \).

Possibilities for \(\mathcal{F} \):

(a) two skew lines different from \(\ell \);

(b) two intersecting lines different from \(\ell \); the common point is not on \(\pi_0 \) or \(\pi_1 \).
\[\mathcal{K} = \mathcal{L} - \mathcal{F} \]

is a \((118, 30)\)-arc in \(\text{PG}(3, 4)\) with one of the following spectra:

(a) \quad a_{14} = 2, \ a_{22} = 0, \ a_{26} = 10, \ a_{30} = 73, \\
\lambda_0 = 9, \ \lambda_1 = 34, \ \lambda_2 = 42;

(b) \quad a_{14} = 2, \ a_{22} = 1, \ a_{26} = 8, \ a_{30} = 74, \\
\lambda_0 = 10, \ \lambda_1 = 32, \ \lambda_2 = 43.
6.2. Constructions of arcs with $a_{18} \neq 0$

Step 1. ℓ – a line in $\text{PG}(3, 4)$;

π_0, \ldots, π_4 – the planes through ℓ

$$\mathcal{L}(P) = \begin{cases} 1 & \text{if } P \in (\pi_0 \cup \pi_1), \\ 2 & \text{if } P \in (\pi_2 \cup \pi_3 \cup \pi_4) \setminus \ell, \end{cases}$$

Step 2. Delete a $(15, 3)$-minihyper \mathcal{F} contained in $\pi_2 \cup \pi_3 \cup \pi_4$ and meeting ℓ in exactly three points.
Possibilities for \mathcal{F}:

(a) three skew lines contained in π_2, π_3 and π_4, respectively;

(b) $\text{PG}(3, 2)$ constructed in $\pi_2 \cup \pi_3 \cup \pi_4$ and meeting ℓ in three points.

$\mathcal{K} = \mathcal{L} - \mathcal{F}$ is a $(118, 30)$-arc in $\text{PG}(3, 4)$ with spectrum:

$a_{18} = 2$, $a_{26} = 12$, $a_{30} = 71$,

$\lambda_0 = 3$, $\lambda_1 = 46$, $\lambda_2 = 36$.
6.3. Arcs with weights 22, 26, 30 – dual constructions

Theorem. There exists a one-to-one correspondence between the arcs \mathcal{K} with parameters $(118, \{22, 26, 30\})$ and the arcs $\tilde{\mathcal{K}}$ with parameters $(18, \{2, 6, 10\})$ in $PG(3, 4)$.

Proof.

30-planes \rightarrow 0-points
26-planes \rightarrow 1-points
22-planes \rightarrow 2-points

0-points \rightarrow 10-planes
1-points \rightarrow 6-planes
2-points \rightarrow 2-planes
(c) \((18, \{2, 6, 10\})\)-arc
(d) $(18, \{2, 6, 10\})$-arc
(e) $(18, \{2, 6, 10\})$-arc
(d) (118, 30)-arc
6. Characterization of the \((117, 30)\)-arcs in \(\text{PG}(3, 4)\)

Theorem. Every \((117, 30)\)-arc in \(\text{PG}(3, 4)\) is extendable to a \((118, 30)\)-arc.

Proof.

Let \(\mathcal{K}\) be a \((117, 30)\)-arc in \(\text{PG}(3, 4)\).

The possible multiplicities of hyperplanes are all \(\equiv 1\) and \(2 \pmod{4}\).

Hence \(\mathcal{K}\) is extendable by Hill and Lizak’s Extension Theorem.
7. Characterization of the (113, 29)-arcs in PG(3, 4)

Theorem. Let \mathcal{K} be a (113, 29)-arc. Then

$$\gamma_0 = 2, \quad \gamma_1 = 8, \quad \gamma_2 = 29.$$

Moreover, the possible multiplicities of hyperplanes are 13, 17, 21, 25, 27, 29.

We can get a (113, 29)-arc by deleting a line from a (118, 30)-arc.

Apart from this we have the following possibilities:
7.1. Constructions using a $(128,32)$-arc in $\text{PG}(3,4)$

Step 1. ℓ – a line in $\text{PG}(3,4)$;

π_0,\ldots,π_4 – the planes through ℓ

$$\mathcal{L}(P) = \begin{cases}
0 & \text{if } P \in \ell, \\
1 & \text{if } P \in (\pi_0 \cup \pi_1) \setminus \ell, \\
2 & \text{if } P \in (\pi_2 \cup \pi_3 \cup \pi_4) \setminus \ell,
\end{cases}$$

Step 2. Delete a $(15,3)$-minihyper \mathcal{F} with $\mathcal{F}(P) \leq \mathcal{L}(P)$ for every point P.
\mathcal{F} is the complement of a plane hyperoval.

$\mathcal{K} = \mathcal{L} - \mathcal{F}$ – a $(113, 29)$-arc in $\text{PG}(3, 4)$ with $\mathcal{K}(H) \equiv 1 \pmod{4}$ for all H.
7.2. Construction using a \((28, 8)\)-arc in \(\text{PG}(3, 4)\)

\(\mathcal{L}\) – a \((28, 8)\)-arc in \(\text{PG}(3, 4)\);

Spectrum: \(a_0 = 1, a_4 = 21, a_8 = 63\)

\(\mathcal{K} = 1 + \mathcal{L}\) is a \((113, 29)\)-arc in \(\text{PG}(3, 4)\);

2-points – the points of \(\mathcal{L}\);

1-points – all other points.

\(\mathcal{K}(H) \equiv 1 \pmod{4}\) for all planes \(H\).
7.3. Constructions using a $(49, 13)$-arc in $\operatorname{PG}(3, 4)$

\mathcal{L} – a $(49, 13)$-arc in $\operatorname{PG}(3, 4)$;

Spectrum: $a_1 = 1, a_9 = 16, a_{13} = 68$

π – a fixed plane in $\operatorname{PG}(3, 4)$;

\mathcal{A} – a $(64, 16)$-arc in $\operatorname{PG}(3, 4)$:

$$
\mathcal{A}(P) = \begin{cases}
0 & \text{if } P \in \pi, \\
1 & \text{if } P \notin \pi.
\end{cases}
$$

$\mathcal{K} = \mathcal{L} + \mathcal{A}$ – a $(113, 29)$-arc in $\operatorname{PG}(3, 4)$ with $\mathcal{K}(H) \equiv 1 \pmod{4}$ for all H.

7.4. The exceptional $(113, 29)$-arc in $PG(3, 4)$

\(\ell \) – a fixed line;

\(\pi_0, \ldots, \pi_4 \) – the planes through \(\ell \);

\(\mathcal{O} \) – an oval in \(\pi_0 \) with nucleus \(N \), \(\ell \cap (\mathcal{O} \cup \{N\}) = \emptyset \);

\(\mathcal{H} \) – a hyperoval in \(\pi_1 \), \(\mathcal{H} \cap \ell = \emptyset \);

\(C \) – a cone with vertex \(N \) and base curve \(\mathcal{H} \)

The arc \(\mathcal{K} \):

0-point – the point \(N \);

2-points – the points of the cone (without \(N \)) and the points of \(\mathcal{O} \);

1-points – all other points.
\mathcal{K} is the only $(113, 29)$-arc which has 27-planes, i.e. planes H with $\mathcal{K}(H) \not\equiv 1 \pmod{4}$.
8. Applications of the characterization

Theorem. There are no $(448, 113)$-arcs in $\text{PG}(4, 4)$. Equivalently, there are no $[448, 5, 336]_4$-codes and $n_4(5, 335) = 449$, $n_4(5, 336) = 450$.

Theorem. There are no $(464, 117)$-arcs in $\text{PG}(4, 4)$. Equivalently, there are no $[464, 5, 347]_4$-codes and $n_4(5, 347) = 465$, $n_4(5, 348) = 466$.

Theorem. There are no $(467, 118)$-arcs in $\text{PG}(4, 4)$. Equivalently, there are no $[467, 5, 349]_4$-codes and $n_4(5, 349) = 468$, $n_4(5, 350) = 469$, $n_4(5, 351) = 470$, $n_4(5, 352) = 471$.
<table>
<thead>
<tr>
<th>d</th>
<th>$g_4(5, d)$</th>
<th>$n_4(5, d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>446</td>
<td>446–447</td>
</tr>
<tr>
<td>334</td>
<td>447</td>
<td>447–448</td>
</tr>
<tr>
<td>335</td>
<td>448</td>
<td>449</td>
</tr>
<tr>
<td>336</td>
<td>449</td>
<td>450</td>
</tr>
<tr>
<td>345</td>
<td>462</td>
<td>462–463</td>
</tr>
<tr>
<td>346</td>
<td>463</td>
<td>463–464</td>
</tr>
<tr>
<td>347</td>
<td>464</td>
<td>465</td>
</tr>
<tr>
<td>348</td>
<td>465</td>
<td>466</td>
</tr>
<tr>
<td>349</td>
<td>467</td>
<td>468</td>
</tr>
<tr>
<td>350</td>
<td>468</td>
<td>469</td>
</tr>
<tr>
<td>351</td>
<td>469</td>
<td>470</td>
</tr>
<tr>
<td>352</td>
<td>470</td>
<td>471</td>
</tr>
</tbody>
</table>
8. Characterization of the (102, 26)-arcs in $\text{PG}(3, 4)$

8.1. The (101, 26)- and (102, 26)-arcs in $\text{PG}(3, 4)$

Theorem. There exists exactly one (102, 26)-arc in $\text{PG}(3, 4)$. It is obtained as the sum of an ovoid and the complete space.

Spectrum:

$$a_{22} = 17, a_{26} = 68, \quad \lambda_0 = 0, \lambda_1 = 68, \lambda_2 = 17.$$

Theorem. Every (101, 26)-arc in $\text{PG}(3, 4)$ is extendable to a (102, 26)-arc.
| d | $g_4(5, d)$ | $n_4(5, d)$ | (n, w)-arc \mathcal{K} | $\mathcal{K}|_H$ |
|------|------------|-------------|-----------------------------|---------------------------|
| 297 | 398 | 399 | (399, 101)-arc | |
| 298 | 399 | 400 | (400, 101)-arc | (101, 26)-arc in PG(3, 4) |
| 299 | 400 | 401 | (401, 101)-arc | |
| 300 | 401 | 402 | (402, 101)-arc | |
| 301 | 403 | 404 | (404, 102)-arc | |
| 302 | 404 | 405 | (405, 102)-arc | (102, 26)-arc in PG(3, 4) |
| 303 | 405 | 406 | (406, 102)-arc | |
| 304 | 406 | 407 | (407, 102)-arc | |
Open problem. Characterize geometrically the arcs with parameters

\[(q^3 + 2q^2 + q + 2, q^2 + 2q + 2)\] in \(\text{PG}(3, q), q > 2\).

These arcs are associated with Griesmer codes with parameters

\([q^3 + 2q^2 + q + 2, 4, q^3 + q^2 - q]_q\).

An obvious construction: the sum of an ovoid and the whole space \(\text{PG}(3, q)\).

The question is: are there other constructions?
• **In PG(3, 3):** We have two (50, 17)-arcs:

(a) the sum of a cap and the whole space;

(b) two copies of PG(3, 3) minus two different planes π_0, π_1 minus a line (skew to the line $\ell = \pi_0 \cap \pi_1$).

• **In PG(3, 4):** There is exactly one (102, 26)-arc and it is the sum of an ovoid and the whole space.

• **In PG(3, 5):** There is exactly one (182, 37)-arc and it is the sum of an ovoid and the whole space.
Conjecture. (At least) for every prime $p \geq 5$ there is a unique arc with parameters $(p^3 + 2p^2 + p + 2, p^2 + 2p + 2)$ in $\text{PG}(3, p)$. It is obtained as the sum of an ovoid and the whole space.

How can one prove this?
8.2. Reducibility of plane \((x(q + 1) + 1, x)\)-minihypers

The planes of maximal multiplicity have parameters \((q^2 + 2q + 2, q + 3)\).

The existence of such arcs is equivalent to that of minihypers with parameters \((q^2, q - 1)\) (with maximal multiplicity of a point equal to 2).

These parameters can be written as \((x(q + 1) + 1, x)\) with \(x = q - 1\).
Reducible \((x(q + 1) + 1, x)\)-minihypers. can be obtained from \((x(q + 1), x)\)-minihypers by adding a point.

R. Hill, H.N Ward

I. Landjev, L. Storme

Irreducible \((x(q + 1) + 1, x)\)-minihypers.

- the complement of an oval for all odd \(q\)
- for \(q = 4\): one irreducible \((16, 3)\)-minihyper
- for \(q = 5\): one further irreducible minihyper with \(\lambda_2 = 2, \lambda_0 = 8\).
(16, 3)-minihyper in $\text{PG}(2, 4)$

(25, 4)-minihyper in $\text{PG}(2, 5)$