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1. Convolutional Codes, Basics

Definition. Let F be a finite field.R= F[z] the polynomial ring.
A submoduleC ⊂ Rn is called a convolutional code.
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A submoduleC ⊂ Rn is called a convolutional code.

Since R is a principal ideal domain, the submodule C is free and
there exists a n×k matrix G(z) such that:

C = {G(z)m(z) | m(z) ∈ F
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We call G(z) a generator matrix of the code C and one says C has
rate k/n.
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1. Convolutional Codes, Basics

Definition. Let F be a finite field.R= F[z] the polynomial ring.
A submoduleC ⊂ Rn is called a convolutional code.

Since R is a principal ideal domain, the submodule C is free and
there exists a n×k matrix G(z) such that:

C = {G(z)m(z) | m(z) ∈ F
k[z] = Rk}

We call G(z) a generator matrix of the code C and one says C has
rate k/n.

Without loss of generality one can assume that a generator matrix
is column reduced having column degrees δ1, . . . ,δk.
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Basics

Two n×k generator matrices G(z) and G̃(z) define the same code
if and only if there is a k×k unimodular matrix U(z) such that

G̃(z) = G(z)U(z).
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Two n×k generator matrices G(z) and G̃(z) define the same code
if and only if there is a k×k unimodular matrix U(z) such that

G̃(z) = G(z)U(z).

Definition. The largest degree of thek×k fullsize minors ofG(z)
is called the degreeδ of the code.

Remark. The degree is a code parameter and is also equal to the
sum of the column degrees:δ = ∑k

i=1 δi.
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Basics

Two n×k generator matrices G(z) and G̃(z) define the same code
if and only if there is a k×k unimodular matrix U(z) such that

G̃(z) = G(z)U(z).

Definition. The largest degree of thek×k fullsize minors ofG(z)
is called the degreeδ of the code.

Remark. The degree is a code parameter and is also equal to the
sum of the column degrees:δ = ∑k

i=1 δi.

It is a major design problem to construct (n,k,δ) codes, i.e. codes
having a rate k/n and degree δ such that the code has “good
parameters”.
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Parity Check Matrix

Definition. A codeC is calledobservableor non-catastrophicif
one and hence every generator matrixG(z) of C is right-prime.
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Parity Check Matrix

Definition. A codeC is calledobservableor non-catastrophicif
one and hence every generator matrixG(z) of C is right-prime.

Theorem. If C is an observable(n,k,δ) code, then there exists an
(n−k)×n parity check matrix H(z) such thatC is equivalently
described through

C = {v(z) ∈ F
n[z] | H(z)v(z) = 0.}
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Historical Remarks
Convolutional Codes were introduced by Elias (1955). For this
consider an [n,k] linear block code represented by an n×k
generator matrix G,
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Convolutional Codes were introduced by Elias (1955). For this
consider an [n,k] linear block code represented by an n×k
generator matrix G,

If messages m0,m1, . . . ,mN ∈ F
k have to be encoded define:

m(z) = m0 +m1z+ · · ·+mNzN ∈ F
k[z].

The encoding is then represented by

v(z) = Gm(z) ∈ F
n[z]
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Historical Remarks
Convolutional Codes were introduced by Elias (1955). For this
consider an [n,k] linear block code represented by an n×k
generator matrix G,

If messages m0,m1, . . . ,mN ∈ F
k have to be encoded define:

m(z) = m0 +m1z+ · · ·+mNzN ∈ F
k[z].

The encoding is then represented by

v(z) = Gm(z) ∈ F
n[z]

It was the idea of Elias to allow polynomial matrices G(z) in the
encoding process. Convolutional codes generalize block codes in
a natural way.
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Engineering Remarks

Convolutional codes belong to the most widely implemented
codes in (wireless) communications. The field is typically F2

and the rate and the degree are often small. The degree is
small so that the Viterbi decoding algorithm is efficient.
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small so that the Viterbi decoding algorithm is efficient.

In recent work by Hadjicostis and Verghese [HV02]
Convolutional codes over large alphabets were used in order
to construct fault tolerant finite state machines.
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Engineering Remarks

Convolutional codes belong to the most widely implemented
codes in (wireless) communications. The field is typically F2

and the rate and the degree are often small. The degree is
small so that the Viterbi decoding algorithm is efficient.

In recent work by Hadjicostis and Verghese [HV02]
Convolutional codes over large alphabets were used in order
to construct fault tolerant finite state machines.

In collaboration with Tomas and Smarandache [TRS09] we
showed that in packet switched networks (like e.g. the
Internet) convolutional codes over large alphabets have a lot
of potentials.
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Feed Forward Implementation

G(z) =

(

z2 +1
z2 +z+1

)

has the implementation:

I0

T1

T0
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Feed Forward Implementation

G(z) =

(

z2 +1
z2 +z+1

)

has the implementation:

0 0 0

x

y

 0, 1, 1
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Feed Forward Implementation

G(z) =

(

z2 +1
z2 +z+1

)

has the implementation:

1 0 0

1

1

x

y

 0, 1
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Feed Forward Implementation

G(z) =

(

z2 +1
z2 +z+1

)

has the implementation:

1 1 0

1, 1

0, 1

x

y
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z2 +1
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)

has the implementation:
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x
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Feed Forward Implementation

G(z) =

(

z2 +1
z2 +z+1

)

has the implementation:

0 0 1

1, 1, 1, 1

1, 0, 0, 1

x

y
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Feed Forward Implementation

G(z) =

(

z2 +1
z2 +z+1

)

has the implementation:

0 0 0

x

y

0,1, 1, 1, 1

0,1, 0, 0, 1
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Mathematical Remarks
A convolutional code C defines also a rational map

P
1 −→ Grass(k,Fn)

z 7−→ colspF(G(z)).
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Mathematical Remarks
A convolutional code C defines also a rational map

P
1 −→ Grass(k,Fn)

z 7−→ colspF(G(z)).

Alternatively one has an associated quotient sheaf.

The degree of the rational map corresponds to the degree of
the convolutional code. The column degrees correspond to
the Grothendieck indices and the set of all (n,k,δ)
convolutional codes is parameterized by Grothendieck’s Quot
Scheme Qδ

k,n.
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Connection to Systems Theory

It follows e.g. from the Hermann-Martin identification that every
convolutional code can also be represented by a linear system. In
particular for every (n,k,δ) code there exist matrices

A∈ F
δ×δ, B∈ F

δ×k, C∈ F
(n−k)×δ, and D ∈ F

(n−k)×k.
The rate k/n convolutional code C is then described by the linear
system of (McMillan) degree δ:

xt+1 = Axt +But ,

yt = Cxt +Dut , (1)

vt =

(

yt

ut

)

, x0 = 0.
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2. MDS Convolutional Codes

Definition. If v(z) = v0 +v1z+ · · ·+vNzN ∈ F
n[z] one defines the

weightof v(z) through:

wt(v(z)) :=
N

∑
i=0

wt(vi).
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n[z] one defines the

weightof v(z) through:

wt(v(z)) :=
N

∑
i=0

wt(vi).

If v(z), ṽ(z) ∈ F
n[z] one defines the Hamming distance through:

Ham((v(z), ṽ(z))) := wt(v(z)− ṽ(z)).
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2. MDS Convolutional Codes

Definition. If v(z) = v0 +v1z+ · · ·+vNzN ∈ F
n[z] one defines the

weightof v(z) through:

wt(v(z)) :=
N

∑
i=0

wt(vi).

If v(z), ṽ(z) ∈ F
n[z] one defines the Hamming distance through:

Ham((v(z), ṽ(z))) := wt(v(z)− ṽ(z)).

For a convolutional code C one defines the free distance

dfree := min
u,v∈C
u6=v

Ham(u(z),v(z)) . (4)
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Remark

For fixed values δ,k,n we are interested in the maximum possible
value of

df ree : Qδ
k,n(F) −→ N = {1,2,3, . . .}

For δ = 0 we know that the maximum value is given by the
Singleton bound:

n−k+1

and this value is attained if |F| > n.
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Examples:

Example.

G(z) =

(

z2 +1
z2 +z+1

)

defines a binary rate 1/2 convolutional code of degreeδ = 2 and
distancedfree = 5.
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Examples:

Example.

G(z) =

(

z2 +1
z2 +z+1

)

defines a binary rate 1/2 convolutional code of degreeδ = 2 and
distancedfree = 5.
Example. Let F = F7, the prime field of 7 elements.

G(z) =











z3 +2z+5 0
5z3 +3 1
z2 +5 2
2z+5 3











,

defines a convolutional code of ratek/n = 2/4, degreeδ = 3 and
free distanced0 = dfree = 3.
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Generalized Singleton Bound

Lemma ([RS99]). The free distance of an(n,k,δ)-code satisfies

dfree≤ (n−k)
(⌊δ

k

⌋

+1
)

+δ+1. (5)
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Generalized Singleton Bound

Lemma ([RS99]). The free distance of an(n,k,δ)-code satisfies

dfree≤ (n−k)
(⌊δ

k

⌋

+1
)

+δ+1. (6)

The bound on the right hand side is called the generalized
Singleton bound. Codes attaining this bound are called MDS
convolutional codes.
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dfree≤ (n−k)
(⌊δ

k

⌋

+1
)

+δ+1. (7)

The bound on the right hand side is called the generalized
Singleton bound. Codes attaining this bound are called MDS
convolutional codes.
Theorem ([RS99]). For every(n,k,δ) there exist MDS
convolutional codes over sufficiciently large fields.
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Generalized Singleton Bound

Lemma ([RS99]). The free distance of an(n,k,δ)-code satisfies

dfree≤ (n−k)
(⌊δ

k

⌋

+1
)

+δ+1. (8)

The bound on the right hand side is called the generalized
Singleton bound. Codes attaining this bound are called MDS
convolutional codes.
Theorem ([RS99]). For every(n,k,δ) there exist MDS
convolutional codes over sufficiciently large fields.
Remark. The original proof [RS99] was non-constructive and it
showed that MDS convolutional codes are Zariski dense in
Grothedieck’s Quot SchemeQδ

k,n.
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Remarks:

For δ = 0 the upper bound (5) reduces to the block code
situation:

dfree≤ n−k+1.
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Remarks:

For δ = 0 the upper bound (5) reduces to the block code
situation:

dfree≤ n−k+1.

If k = 1 the upper bound (5) reduces to

dfree≤ n(δ+1).

This situation was studied by Justesen [Jus75].
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3. MDP Convolutional Codes
Definition. The jth column distance of the codeC is defined as

d j := min

{

j

∑
t=0

wt(vt) |
N

∑
t=0

vtz
t ∈ C ,v0 6= 0

}

.
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3. MDP Convolutional Codes
Definition. The jth column distance of the codeC is defined as

d j := min

{

j

∑
t=0

wt(vt) |
N

∑
t=0

vtz
t ∈ C ,v0 6= 0

}

.

One has that d0 ≤ d1 ≤ d2 ≤ . . ..
The Free distance is also equal to:

dfree = lim
j→∞

d j (11)

Thurnau, April 13, 2010 – p. 16



Bound on Column Distance Indices
Lemma. [GLRS06] For every j∈ N0 we have

d j ≤ (n−k)( j +1)+1.

Thurnau, April 13, 2010 – p. 17



Bound on Column Distance Indices
Lemma. [GLRS06] For every j∈ N0 we have

d j ≤ (n−k)( j +1)+1.

C is said to have a maximum distance profile if

d j = (n−k)( j +1)+1 for j = 0, . . . ,L :=
⌊δ

k

⌋

+
⌊ δ

n−k

⌋

.
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Bound on Column Distance Indices
Lemma. [GLRS06] For every j∈ N0 we have

d j ≤ (n−k)( j +1)+1.

C is said to have a maximum distance profile if

d j = (n−k)( j +1)+1 for j = 0, . . . ,L :=
⌊δ

k

⌋

+
⌊ δ

n−k

⌋

.

Theorem ([HRS05]). For integers n,k,δ and for sufficiently large
fields the set of maximum distance profile codes forms a Zariski
dense subset of Grothendieck’s Quot Scheme Qδ

k,n.
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Example

Example. Let

G(z) =







(z−1) 1
(z−2) 1
(2z−3) 1







be an encoder for a rate 2/3 convolutional codeC of degree
δ = 1, overF5. The encoder is non-catastrophic. The generalized
Singleton bound givesdfree≤ 3.
One shows that the code hasdfree = 3, hence is a MDS code. The
code has maximum distance profile asd0 = 2 andd1 = dfree = 3.
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Algebraic Characterization

Assume that the parity check matrix is given as H(z) = ∑ν
i=0Hizi .

For each j > ν let H j = 0 and define:

H j =











H0

H1 H0
...

...
. . .

H j H j−1 · · · H0











∈ F
( j+1)(n−k)×( j+1)n. (12)
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Algebraic Characterization

Assume that the parity check matrix is given as H(z) = ∑ν
i=0Hizi .

For each j > ν let H j = 0 and define:

H j =











H0

H1 H0
...

...
. . .

H j H j−1 · · · H0











∈ F
( j+1)(n−k)×( j+1)n. (13)

Theorem. ([GLRS06, Proposition 2.1]) Let d∈ N. The following
properties are equivalent.

1. dc
j = d;

2. none of the first n columns ofH j is contained in the span of
any other d−2 columns and one of the first n columns ofH j

is in the span of some other d−1 columns of that matrix.
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4. Superregular Matrices

Definition. Let A be ann×n lower triangular Toeplitz matrix and
let Ai1,...,ir

j1,..., jr be the submatrix obtained fromA by picking the rows
with indicesi1, . . . , ir and columnsj1, . . . , jr .
A is calledsuperregularif every submatrixAi1,...,ir

j1,..., jr is nonsingular
for every 1≤ r ≤ n and everyi1, . . . , ir , j1, . . . , jr with jν ≤ iν.
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4. Superregular Matrices

Definition. Let A be ann×n lower triangular Toeplitz matrix and
let Ai1,...,ir

j1,..., jr be the submatrix obtained fromA by picking the rows
with indicesi1, . . . , ir and columnsj1, . . . , jr .
A is calledsuperregularif every submatrixAi1,...,ir

j1,..., jr is nonsingular
for every 1≤ r ≤ n and everyi1, . . . , ir , j1, . . . , jr with jν ≤ iν.

Remark. For rate 1/2 codes the construction of supperregular
matrices is essentially equivalent to the construction of MDP
convolutional codes.
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Example. For n = 3 andF = F3 the matrix






1 0 0
1 1 0
2 1 1







is superregular. Forn = 5 andF = F7 the matrix














1 0 0 0 0
2 1 0 0 0
1 2 1 0 0
6 1 2 1 0
4 6 1 2 1















is superregular.
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Using a computer algebra program one checks that the following
matrices are superregular.





















1

β 1

β3 β 1

β β3 β 1

1 β β3 β 1





















∈ F
5×5
23 ,



























1

γ 1

γ5 γ 1

γ5 γ5 γ 1

γ γ5 γ5 γ 1

1 γ γ5 γ5 γ 1



























∈ F
6×6
24 ,

where

β3 +β+1 = 0, and γ4 + γ+1 = 0,
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Example




























1 0 0 0 0 0 0 0
ω 1 0 0 0 0 0 0
ω9 ω 1 0 0 0 0 0
ω33 ω9 ω 1 0 0 0 0
ω33 ω33 ω9 ω 1 0 0 0
ω9 ω33 ω33 ω9 ω 1 0 0
ω ω9 ω33 ω33 ω9 ω 1 0
1 ω ω9 ω33 ω33 ω9 ω 1





























∈ F
8×8
26 .

where
ω6 +ω+1 = 0.
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Proof of Existence
Example. Let the matrixX be equal to

X =





















1
1 1

1 1
... ...

1 1
1 1





















. (14)
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Then

A = Xn−1 =





















1
n 1
(n

2

)

n 1
...

...
. . . . . .

( n
n−1

) ( n
n−2

)

. . . n 1
1

( n
n−1

)

. . . n 1





















(15)

is totally positive over the reals and superregular for sufficiently
large prime fields.
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Consequence

For every size n there exist superregular matrices over sufficiently
large field sizes.
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Consequence

For every size n there exist superregular matrices over sufficiently
large field sizes.

On the side of the presented existence result we do not have good
algebraic construction of superregular matrices. - Come up with
constructions!
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5. Decoding over the Erasure Channel:

Definition. The Erasure channel is a communication channel,
where symbols either arrive correctly or the receiver knows that
they are in error (or did not arrive at all).
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5. Decoding over the Erasure Channel:

Definition. The Erasure channel is a communication channel,
where symbols either arrive correctly or the receiver knows that
they are in error (or did not arrive at all).

Remark: The Internet can be viewed as an erassure channel

Convolutional codes over any size alphabet have a polynomial
time decoding algorithm over the erasure channel [TRS09]
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Results:

Theorem. LetC be an(n,k,δ) convolutional code with dcj0 the
j = j0-th column distance. If in any sliding window of length
( j0 +1)n at most dcj0 −1 erasures occur then we can recover
completely the transmited sequence.
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Theorem. LetC be an(n,k,δ) convolutional code with dcj0 the
j = j0-th column distance. If in any sliding window of length
( j0 +1)n at most dcj0 −1 erasures occur then we can recover
completely the transmited sequence.

The best scenario happens when the convolutional code is MDP.
In this case full error correction ‘from left to right’ is possible as
soon as the fraction of errasures is not more than n−k

n in any
sliding window of length (L+1)n.
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Results:

Theorem. LetC be an(n,k,δ) convolutional code with dcj0 the
j = j0-th column distance. If in any sliding window of length
( j0 +1)n at most dcj0 −1 erasures occur then we can recover
completely the transmited sequence.

The best scenario happens when the convolutional code is MDP.
In this case full error correction ‘from left to right’ is possible as
soon as the fraction of errasures is not more than n−k

n in any
sliding window of length (L+1)n.

Corollary 3. LetC be an(n,k,δ) MDP convolutional code. If in
any sliding window of length(L+1)n at most(L+1)(n−k)
erasures occur in a transmited sequence then we can completely
recover the sequence in polynomial time inδ.
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Cmplete-MDP Convolutional Codes

Assume that (n−k)ν = δ, the degree of the code C and C has a
parity check matrix H(z) = H0 +H1z+ · · ·+Hνzν.
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Cmplete-MDP Convolutional Codes

Assume that (n−k)ν = δ, the degree of the code C and C has a
parity check matrix H(z) = H0 +H1z+ · · ·+Hνzν.

Definition. A rate k
n convolutional codeC with parity check

matrix H(z) is called acomplete-MDP convolutional codeif in
the(L+1)(n−k)× (ν+L+1)n matrix











Hν · · · H0

Hν H0
... ...

Hν · · · H0











every full size minor which is not trivially zero, is nonzero.
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Example

The following parity check matrix represents a (3,1,1)
complete-MDP convolutional code over F128 with
α7 +α6 +α3 +α+1 = 0.

H(z) =

[

α76+α77z α62+α85z 1+α76z
α73+α37z α76+α77z α62+α85z

]

.

The partial parity check matrix has all its full size minors that are
not trivially zero nonzero. I.E. minors that don’t include columns 1,
2 and 3 or 7, 8 and 9, are nonzero.











α77 α85 α76 α76 α62 1
α13 α77 α85 α73 α76 α82

α77 α85 α76 α76 α62 1
α13 α77 α85 α73 α76 α82











.
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Results
Lemma. Complete-MDP convolutional codes are MDP
convolutional codes.
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Results
Lemma. Complete-MDP convolutional codes are MDP
convolutional codes.

Theorem. If in a window of size(ν+L+1)n there are not more
than(L+1)(n−k) erasures and they are distributed in such a
way that between position1 and sn and between positions
(ν+L+1)n and(ν+L+1)n−s(n−k), for s= 1,2, . . . ,L+1,
there are not more than s(n−k) erasures then full correction of
all symbols in this interval will be possible.
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Conclusion
(1) Convolutional codes generalize linear block codes in a natural

way.

(2) Convolutional codes capable of decoding a large number of
errors per time interval require a large free distance and a
good distance profile.

(3) Very few constructions for codes with large distance are
known. We do not have a general construction for
complete MDP codes!.

(4) Typically convolutional codes are decoded via the Viterbi
decoding algorithm. The complexity of this algorithm grows
exponentially with the McMillan degree. New classes of
codes coming with more efficient decoding algorithms are
needed.
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