Some optimal codes related to graphs invariant under the alternating group A_{8}.

Bernardo Rodrigues

School of Mathematical Sciences
University of KwaZulu-Natal
Durban, South Africa
ALCOMA10 - Thurnau

Primitive Rank-3 groups on Symmetric Designs

- In a classification paper Dempwolff (2001) determined the symmetric designs that admit a group which has a non-abelian socle and is primitive rank-3 on points and blocks.
- As a by product, the existence and uniqueness of a symmetric $2-(35,17,8)$ design having the simple alternating group A_{8} as a non-abelian socle and acting primitively as rank-3 on points and blocks of the design was proved.
- This talk is about the structures related to to this design.

Preliminaries

- A result of Key and J Moori on designs, graphs and codes from primitive representation of a finite group outlines a construction of symmetric 1 -designs

Result (1)

Let G be a finite primitive permutation group acting on the set Ω of size n. Let $\alpha \in \Omega$, and let $\Delta \neq\{\alpha\}$ be an orbit of the stabilizer G_{α} of α. If $\mathcal{B}=\left\{\Delta^{g} \mid g \in G\right\}$ and, given $\delta \in \Delta, \mathcal{E}=\left\{\{\alpha, \delta\}^{g} \mid g \in G\right\}$, then $\mathcal{D}=(\Omega, \mathcal{B})$ forms a symmetric $1-(n,|\Delta|,|\Delta|)$ design. Further, if Δ is a self-paired orbit of G_{α} then $\Gamma=(\Omega, \mathcal{E})$ is a regular connected graph of valency $|\Delta|, \mathcal{D}$ is self-dual, and G acts as an automorphism group on each of these structures, primitive on vertices of the graph, and on points and blocks of the design.

$t-(v, k, \lambda)$ Designs

- An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ with point set \mathcal{P} and block set \mathcal{B} and incidence $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$ is a $t-(v, k, \lambda)$ design if
- $|\mathcal{P}|=v ;$
- every block $B \in \mathcal{B}$ is incident with precisely \mathbf{k} points;
- every \mathbf{t} distinct points are together incident with precisely λ blocks.
t, v, k and λ are non-negative integers;
$|\mathcal{B}|=b$ is the number of blocks;
$r=$ replication number $=$ number of blocks per point;
for $t=2$, the order of \mathcal{D} is $n=r-\lambda$.
An incidence matrix for \mathcal{D} is a $b \times v$ matrix $A=\left(a_{i j}\right)$ of 0 's and 1 's such that

$$
a_{i j}= \begin{cases}1 & \text { if }\left(p_{j}, B_{i}\right) \in \mathcal{I} \\ 0 & \text { if }\left(p_{j}, B_{i}\right) \notin \mathcal{I} .\end{cases}
$$

The group A_{8}

- We consider G to be the simple alternating group A_{8}.
- Notice that G is also the group of invertible 4×4 matrices whose determinant is 1 , over \mathbb{F}_{2}.

No.	Max. sub.	Degree	\#	length		
1	A_{7}	8	2	7		
2	$2^{3}: L_{3}(2)$	15	2	14		
3	$2^{3}: L_{3}(2)$	15	2	14		
4	S_{6}	28	3	12	15	
5	$2^{4}:\left(S_{3} \times S_{3}\right)$	35	3	16	18	
6	$\left(A_{5} \times 3\right): 2$	56	4	10	15	30

Table: Orbits of the point-stabilizer of A_{8}

Graphs, Designs and Codes from the repn of degree

 35- Observe from Table 1 that there is just one class of maximal subgroups of A_{8} of index 35.
- The stabilizer of a point is a maximal subgroup isomorphic to the group 2^{4} : $\left(S_{3} \times S_{3}\right)$. rank-3 primitive group on the cosets of $2^{4}:\left(S_{3} \times S_{3}\right)$ with orbits of lengths 1,16 , and 18 respectively.
- These orbits have been denoted $\{\mathcal{L}\}, \Psi$ and Φ
- We consider first the structures obtained from the union of the orbit of length 1 with that of length 18 , namely $\{\mathcal{L}\} \cup \Phi$, followed by structures constructed from the orbit of length 16, i.e, Ψ.

Graphs, Designs and Codes from the repn of degree 35

- Observe that by taking the image of the set $\{\mathcal{L}\} \cup \Phi$, under A_{8} we form the blocks of a 1-(35, 19, 19) design which we denote \mathcal{D}_{19}.
- Since A_{8} acts as a rank-3, it follows from Result 1 that the image of ψ under A_{8} defines a strongly regular graph with parameters (35, 16, 6, 8). Denote this graph Γ.
- Equivalently, one could consider the 1-($35,16,16$) design, which we denote \mathcal{D}_{16} obtained by orbiting the image of ψ under A_{8}.

Lemma

$\operatorname{Aut}\left(\mathcal{D}_{19}\right), \operatorname{Aut}\left(\mathcal{D}_{16}\right)$, and $\operatorname{Aut}(\Gamma)$ are isomorphic to S_{8}.

B G Rodrigues (UKZN)

The binary code of Γ

Lemma

(i) C_{19} is a $[35,7,15]_{2}$ code. Its dual $C_{19}{ }^{\perp}$ is an optimal self-orthogonal singly-even $[35,28,4]_{2}$ code with 840 words of weight 4 , and $\mathbf{1} \in C_{19}$.
(ii) C_{Γ} is a $[35,6,16]_{2}$ self-orthogonal doubly-even code with 35 words of minimum-weight. Moreover $C_{\Gamma} \subseteq C_{19}$ is a projective two-weight code, and C_{19} is a decomposable \mathbb{F}_{2}-module.
(iii) C_{Γ}^{\perp} is a $[35,29,3]_{2}$ code with 105 words of weight 3 , and C_{Γ} and $C_{\lceil }^{\perp}$ are optimal codes.
(iv) $\operatorname{Aut}\left(C_{19}\right)=\operatorname{Aut}\left(C_{\Gamma}\right) \cong S_{8}$.
(v) S_{8} acts irreducibly on C_{Γ} as an \mathbb{F}_{2}-module.

Geometry in the codes

- The statements on the parameters of the codes are easily verified.
- Since \mathcal{D}_{19} is the complement of \mathcal{D}_{16}, the difference of any two codewords in C_{16} is in C_{19}.
- As these differences span a subcode of dimension 6 in C_{19}, this subcode must be C_{16}.
- The weight enumerator of C_{19} is as follows

$$
W_{C_{19}}(x)=1+28 x^{15}+35 x^{16}+35 x^{19}+28 x^{20}+x^{35}
$$

and that of C_{16} is given below, denoted $W_{C_{\Gamma}}(x)$.

- Notice from the weight distribution that C_{Γ} is the subcode of C_{19} span by words of weight divisible by four.

Geometry in the codes

- Since \mathcal{D}_{19} is the complement of \mathcal{D}_{16}, the inclusion follows as C_{19} is C_{16} adjoined by the $\mathbf{1}$ vector. So $C_{19}=\left\langle C_{16}, \mathbf{1}\right\rangle=C_{16} \oplus\langle\mathbf{1}\rangle$
- Since Γ is a graph that appears in a partition of the symplectic graph $\mathcal{S}_{6}(2)$, it follows from Peeters [9, Theorem 5.3] that Γ possesses the triangle property and as such it is uniquely determined by its parameters and by the minimality of its 2-rank, which is 6 . Thus the dimension of C_{Γ} is 6 .
- The minimum-weight 16 of C_{Γ} can be deduced using results from Haemers, Peeters and Van Rijkevorsel [7, Section 4.4]. We note that all codewords of C_{Γ} are linear combinations of at most two rows of the adjacency matrix of Γ.

Geometry in the codes

- Since there are exactly 35 codewords of minimum weight in C_{Γ} and these correspond to the rows of the adjacency matrix of Γ, these span the code. Now the spanning vectors, have weight 16, so C_{Γ} is doubly-even and hence self-orthogonal.
- In addition C_{Γ} is a two-weight code, with weight distribution

$$
W_{C_{\Gamma}}(x)=1+35 x^{16}+28 x^{20}
$$

Since $C_{\Gamma}{ }^{\perp}$ has minimum weight 3 it follows from Calderbank and Kantor [2] that C_{Γ} is a projective code.

- Optimality of C_{Γ} and $C_{\Gamma}{ }^{\perp}$ follows by Magma [1]and also from the online tables of Grassl [6].
- Note that the 2-modular character table of S_{8} is completely known (Atlas of Brauer Characters) (see [8, 11]) and follows from it that the irreducible 6-dimensional \mathbb{F}_{2}-representation is unique.

Strongly regular graphs from the codewords of Γ

- A two-weight code is a code which has only two non-zero weights w_{1} and w_{2}.
- Let w_{1} and w_{2} (where $w_{1}<w_{2}$) be the weights of a q-ary two-weight code C of length n and dimension k.
- To C we associate a graph $\Lambda(C)$ on q^{k} vertices as follows: the vertices of the graph are identified with the codewords and two vertices corresponding to the codewords x and y are adjacent if and only if $d(x, y)=w_{1}$.
- Then $\Lambda(C)$ is a strongly regular graph with parameters (v, k, λ, μ).
- Following the above, from C_{Γ} we obtain a strongly regular graph which we denote $\Lambda\left(C_{\Gamma}\right)$ with parameters $(64,35,18,20)$ and its complement, a strongly regular $(64,28,12,12)$ graph $\overline{\Lambda\left(C_{\Gamma}\right)}$.

Geometric interpretations

- The words of weight 16 have a geometrical significance: they are the rows of the adjacency matrix of Γ or equivalently the incidence vectors of the blocks of \mathcal{D}_{16}.
- It follows from Atlas [3] that the objects permuted by the automorphism group are the duads and bisections.
- Moreover, from Atlas [3] it can also be deduced that the words of weight 16 represent the duads, while those of weight 20 , represent the bisections. The stabilizer of a duad is a group isomorphic to $\left(S_{4} \times S_{4}\right): 2$ while that of a bisection is a group isomorphic to $S_{6} \times 2$. Note that these are all maximal subgroups of A_{8} and thus A_{8} acts primitively on the set of duads and on the set of bisections.

Geometric interpretations

- Viewing A_{8} as $L_{4}(2)$ (the isomorphism could be found in Dickson and Taylor [5, 10]) it follows from Atlas [3] that the objects permuted by the automorphism group are copies of $S_{4}(2)$ and lines. The codewords of weight 16 represent copies of $S_{4}(2)$ thereby explaining the connection found in the proof with the symplectic graph $\mathcal{S}_{6}(2)$.
- The codewords of weight 20 represent lines of $L_{4}(2)$ in this way we can observe the connection established in Dempwolff [4]. The stabilizer of a copy of $S_{4}(2)$ is a group isomorphic to $\left(S_{4} \times S_{4}\right)$:2, while that of a line is a group isomorphic to $S_{6} \times 2$. Note that these are all maximal subgroups of A_{8} and thus A_{8} acts primitively on the set of conjugates of $S_{4}(2)$ and on the lines.

Geometric interpretations

- The dimension 6 of C_{Γ} provides a nice illustration of the isomorphism between A_{8} and $\Omega^{+}(6,2)$. Therefore using $A_{8} \cong \Omega^{+}(6,2)$ we can regard the non-zero codewords of C_{Γ} as both the non-isotropic and the isotropic points. This in turn indicates that the objects being permuted are the non-isotropic and the isotropic points respectively.
- Finally, the stabilizer of a non-isotropic point under the action of the automorphism group is a maximal subgroup isomorphic with $S_{6} \times 2$ while that of an isotropic point is again a maximal subgroup isomorphic to $\left(S_{4} \times S_{4}\right)$:2.

The ternary code of a 2-(35, 18, 9) design $\bar{\Gamma}$

- We now look at the orbit of length 18 , namely Φ. As before, since A_{8} acts as a rank-3, it follows from Result 2.1 that the image of Φ under A_{8} defines a strongly regular graph with parameters $(35,18,9,9)$. We denote this graph by $\bar{\Gamma}$ where the symbol - is standard for denoting the complement of Γ.
- Notice that $\bar{\Gamma}$ is $2-(35,18,9)$ design
- Since the order of $\bar{\Gamma}$ is 9 the only codes of interest are ternary.
- We examine the codes obtained from the ternary row span of the adjacency matrix of $\bar{\Gamma}$.

Lemma

(i) $C_{\bar{\Gamma}}$ is a $[35,13,12]_{3}$ code, $C_{\bar{\Gamma}}{ }^{\perp}$ is a $[35,22,5]_{3}$ with 112 words of weight 5 , and $\mathbf{1} \in \mathbf{C}_{-}^{-}$
(ii) $\operatorname{Aut}(\bar{\Gamma})=\operatorname{Aut}\left(C_{\bar{\Gamma}}\right) \cong S_{8}$.

A self-dual $[72,36,8]_{2}$ code from $\bar{\Gamma}$

- Let A be the incidence matrix of $\bar{\Gamma}$, and $A^{+}=\left(\begin{array}{cc}A & 1^{t} \\ 1 & 0\end{array}\right)$ where 1 is the all one vector of length 35.
- A generator matrix of a double-even self-dual code of length 72 can be obtained as $\left(\begin{array}{ll}A^{+} & I_{36}\end{array}\right)$.
We used this method to construct a $[72,36,8]_{2}$ formally self-dual code denoted \mathcal{T}, from the incidence matrix of $\bar{\Gamma}$.

A self-dual $[72,36,8]_{2}$ code from $\bar{\Gamma}$

Corolary

The binary code \mathcal{T} of $\left(A^{+} \quad I_{36}\right)$ is a self-dual doubly even $[72,36,8]_{2}$ code, with automorphism group isomorphic to $2^{15}: S_{6}(2)$.

- The weight enumerator of \mathcal{T} is as follows:

$$
\begin{aligned}
W_{\mathcal{T}}(x) & =1+945 x^{8}+30576 x^{12}+535932 x^{16}+17267040 x^{20} \\
& +455965020 x^{24}+4438423440 x^{28}+16506508662 x^{32} \\
& +25882013504 x^{36}+16506508662 x^{40} \\
& +4438423440 x^{44}+455965020 x^{48}+17267040 x^{52} \\
& +535932 x^{56}+30576 x^{60}+945 x^{64}+x^{72} .
\end{aligned}
$$

W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, November 1994, http://magma.maths.usyd.edu.au/magma.
固 R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986), 97-122.
回 J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
U. Dempwolff, Primitive rank-3 groups on symmetric designs, Des. Codes and Cryptogr. 22 (2001), 191-207.
E. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Dover Publications, New York, 1958, With an introduction by Wilhelm Magnus.

- Markus Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.d 2007, Accessed on 22-09-2009.
W. H. Haemers, R. Peeters, and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr. 17 (1999), 187-209.
R. Jansen, K. Lux, R. Parker, and R. Wilson., An Atlas of Brauer Characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press Oxford University Press, New York, 1995, Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications.
(R. Peeters, Uniqueness of strongly regular graphs having minimal p-rank, Linear Algebra Appl. 226/228 (1995), 9-31.
D. E. Taylor, The Geometry of the Classical Groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992.

R R. A. Wilson, R. A. Parker, and J. N. Bray, Atlas of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/alt/A8/.

