Erdős-Ko-Rado Theorems for dual polar spaces

Valentina Pepe

Ghent University

Joint work with Leo Storme and Frédéric Vanhove

April 12 2010
The first Erdős-Ko-Rado Theorem

E.K.R. [1961]

If Ω is a set with n elements and S is a family of subsets of size k of Ω, with $n \geq 2k$, such that the elements of S are pairwise intersecting, then $|S| \leq \binom{n-1}{k-1}$.

Characterization of the families of maximum size

If $|S| = \binom{n-1}{k-1}$, then:

- $2k < n$ and S is the family of subsets of size k containing a fixed element of Ω.
- $2k = n$ and S is either the family of subsets of size k containing a fixed element of Ω or it consists of the representatives of all the complementary pairs.
Several different variants of this theorem have been proved.

B.M.I. Rands [1982]

The largest set of blocks of a $t - (v, k, \lambda)$ design pairwise intersecting has size equal to the number of blocks through a point and the blocks through a point is the only set of blocks meeting the bound, provided $v \geq f(k, t)$.
If V is a n–dimensional vector space over \mathbb{F}_q and S is a family of k–dimensional subspaces of V pairwise intersecting non–trivially, with $n \geq 2k$, then $|S| \leq \left\lfloor \frac{n-1}{k-1} \right\rfloor_q$. If $|S| = \left\lfloor \frac{n-1}{k-1} \right\rfloor_q$, then:

- $2k < n$ and S is the set of k–dimensional subspaces containing a fixed non–zero vector of V.
- $2k = n$ and S is either the set of k–dimensional subspaces containing a fixed non–zero vector of V or it is the set of k–dimensional subspaces of V contained in a hyperplane.
Graph theoretic approach

Ω: set of vertices for the graph Γ (k–subsets, k–subspaces...).
Two vertices are adjacent iff their intersection is trivial.
A EKR set is a coclique of Γ.
If Γ is a ν–regular graph with least eigenvalue τ and S is a coclique of Γ, then

\[|S| \leq \frac{|\Omega|}{1 - \frac{\nu}{\tau}} \]

and if |S| meets the bound, then its characteristic vector \(\chi_S \) is such that

\[\chi_S = \frac{|S|}{|\Omega|} \mathbf{1} + u, \]

where \(u \) is an eigenvector with eigenvalue τ.
Classical finite polar spaces

Classical finite polar spaces are incidence structures consisting of the lattices of subspaces of a finite projective space totally isotropic with respect to a certain non-degenerate sesquilinear form.

- the parabolic quadric $Q(2n, q)$: $(n - 1)$-dimensional generators,
- the hyperbolic quadric $Q^+(2n + 1, q)$: n-dimensional generators,
- the elliptic quadric $Q^-(2n + 1, q)$: $(n - 1)$-dimensional generators,
- the symplectic space $W(2n + 1, q)$: n-dimensional generators,
- the hermitian variety $H(2n, q^2)$: $(n - 1)$-dimensional generators,
- the hermitian variety $H(2n + 1, q^2)$: n-dimensional generators.
The analogue problem in this setting is finding the largest size for a set of pairwise intersecting subspaces of a polar space and characterizing the sets meeting the bound. We deal with the case of generators of polar spaces, when their dimension is at least two.
The bounds

| Stanton [1980]: | upper bound for $|S|$ | Example of set meeting the bound |
|----------------|------------------------|----------------------------------|
| Polar space | | |
| $Q(2n, q)$ | $\prod_{i=1}^{n-1} (q^i + 1)$ | generators through a point |
| $Q^+(2n+1, q)$, n odd | $\prod_{i=0}^{n-1} (q^i + 1)$ | generators through a point |
| $Q^+(2n+1, q)$, n even | $\prod_{i=1}^{n} (q^i + 1)$ | generators of one family |
| $Q^-(2n+1, q)$ | $\prod_{i=2}^{n} (q^i + 1)$ | generators through a point |
| $W(2n+1, q)$ | $\prod_{i=1}^{n} (q^i + 1)$ | generators through a point |
| $H(2n, q^2)$ | $\prod_{i=1}^{n-1} (q^{2i+1} + 1)$ | generators through a point |
| $H(2n+1, q^2)$, n odd | $\prod_{i=0}^{n-1} (q^{2i+1} + 1)$ | generators through a point |
| $H(2n+1, q^2)$, n even | $\prod_{i=0, i \neq n/2}^{n} (q^{2i+1} + 1)$ | No examples known |
Our goal is to characterize the sets meeting the bounds.

- Is the point pencil the only possible construction for most of the polar spaces?
- For $Q^+(2n + 1, q)$, n even, are the generators of one family the only possible construction?
- What can we say about $H(2n + 1, q^2)$, n even?
A *d*-class *association scheme* on a finite set Ω is a pair (Ω, \mathcal{R}) with \mathcal{R} a set of symmetric relations $\{R_0, R_1, \ldots, R_d\}$ on Ω such that the following axioms hold:

(i) R_0 is the identity relation,
(ii) \mathcal{R} is a partition of Ω^2,
(iii) there are *intersection numbers* p_{ij}^k such that for $(x, y) \in R_k$, the number of elements z in Ω for which $(x, z) \in R_i$ and $(z, y) \in R_j$ equals p_{ij}^k.

All the relations R_i are symmetric regular relations with valency p_{ii}^0, and hence define regular graphs on Ω.
Let Ω be the set of generators of the polar space \mathcal{P}. Two generators π and π' are adjacent iff they have empty intersection.

An EKR set of maximum size corresponds to a coclique of the graph of size $\frac{|\Omega|}{1-\frac{k}{r}}$.

If the dimension of a generator is n, then on Ω we can define a set of n relations Γ_i, $i = 0, \cdots, n+1$ such that two generators are adjacent with respect to Γ_i iff they intersect in a space of codimension i. These relations give rise to an association scheme.
Lemma

If S is a subset of Ω such that its characteristic vector $\chi_S = h1 + u$, where u is an eigenvector with eigenvalue λ for the adjacency matrix A_i of the relation Γ_i, then we have:

- every $p \in S$ has $\frac{|S|}{|\Omega|}(k - \lambda) + \lambda$ neighbors in S w.r.t. Γ_i;
- every $p \notin S$ has $\frac{|S|}{|\Omega|}(k - \lambda)$ neighbors in S w.r.t Γ_i;

where k is the valency of the graph Γ_i.

The number of neighbors of p depends only on the size of S.
Most of the cases

For the following polar spaces:

- $Q(2n, q)$, n even
- $Q^-(2n + 1, q)$
- $W(2n + 1, q)$, n odd
- $H(2n, q^2)$ and $H(2n + 1, q^2)$, n odd

If u is an eigenvector for the relation Γ_{n+1}, then it is an eigenvector for $\Gamma_i, i = 0, \cdots, n$.
Most of the cases

For every *EKR* set *S* of maximum size, we know how many elements of *S* intersect a fixed generator *π* in a space of codimension *i*, *i* = 1, ..., *n*: this number is a constant and it does not depend on the geometric structure of the set *S*.

Known example of EKR in these polar spaces:

The generators through a fixed point.

For every *π* ∈ *S*, the number of elements of *S* intersecting *π* in a space of codimension *i* is the same as the point pencil construction.

We focus on a fixed a generator of *S* and we get:

Theorem

For the polar spaces *Q*(2*n*, *q*), *n* even, *Q¬*(2*n* + 1, *q*), *W*(2*n* + 1, *q*), *n* odd, *H*(2*n*, *q*²) and *H*(2*n* + 1, *q*²), *n* odd, the largest *EKR* set of generators is the set of generators through a fixed point.
In $Q^+(2n + 1, q)$ there are two system of generators, Ω_1 and Ω_2 of the same size, such that two generators π_1 and π_2 are in the same system iff $\dim \pi_1 \cap \pi_2$ has the same parity as n.

Even n

The generators of Ω_i pairwise intersect in a non–empty space. The size of Ω_i meets the Stanton bound. It is the only possible EKR set meeting the bound.

Odd n

If S is a maximum EKR set, then $S = S_1 \cup S_2$, where $S_i = S \cap \Omega_i$, $|S_1| = |S_2|$. If we find a EKR set S_i in Ω_i, $i = 1, 2$ and $|S_i| = \lfloor \frac{|S|}{2} \rfloor$, then $S_1 \cup S_2$ is a maximum EKR set in Ω.
Q(2n + 1, q), n odd

We can focus on only one system of generators \(\Omega_i \).

Theorem

If \(n > 3 \) is odd, then \(S_i \) is the set of elements of \(\Omega_i \) through a point. If \(n = 3 \), then \(S_i \) is either the set of elements of \(\Omega_i \) through a point or it is the set of elements of \(\Omega_i \) meeting a fixed element of \(\Omega_j \) in a plane.

All generators: \(n > 3 \)

We have two possibilities

- \(S \) is the set of all the generators through a point \(P \)
- \(S \) is the set of all the generators of one system through \(P_1 \) and the set of all the generators of the other system through \(P_2 \)
EKR Theorems for polar spaces
Overview of the results

\(Q^+(7, q) \)

We have four possibilities

- \(S \) is the set of all the solids through a point \(P \)
- \(S \) is the set of all the solids of one system through \(P_1 \) and the set of all the solids of the other system through \(P_2 \)
- \(S \) is the set of all solids of one system through \(P \) and all solids of the other system meeting \(\Sigma \) in a plane
- \(S \) is the set of all solids of one system meeting \(\Sigma_1 \) in a plane and all the generators meeting \(\Sigma_2 \) in a plane
Parabolic quadric $Q(2n, q), n$ odd

Embed $Q(2n, q), n$ odd, as a hyperplane section in a $Q^+(2n + 1, q)$: every generator of $Q(2n, q)$ is contained in a unique generator of a fixed system Ω_i of $Q^+(2n + 1, q)$.

An EKR set S of maximum size of $Q(2n, q)$ gives rise to EKR set S' of maximum size of Ω_i.

Theorem

Let $Q(2n, q) = H \cap Q^+(2n + 1, q)$.
If $n > 3$, then S' is a point pencil and we have two possibilities:

- $P \in H$, so S is also a point pencil
- $P \notin H$, S is the set of generators of one system of a $Q^+(2n - 1, q)$ embedded in $Q(2n, q)$.

If $n = 3$, then S' can be a point pencil or the generators meeting a fixed one in a plane, so we have a third possibility:

- S consists of the plane π and all the planes meeting π in a line
If q is even, then:
\[W(2n + 1, q) \cong Q(2n + 2, q) \]

There is a $Q^+(2n + 1, q)$ inducing the symplectic polarity

Theorem

An EKR set of maximum size S is

- a point pencil
- the set of generators of one system of a $Q^+(2n + 1, q)$
- $n = 2$ and it consists of the plane π and the planes meeting π in a line
$W(2n + 1, q)$, n even and q odd

Let $v_{\pi,S}$ be the vector of length n such that $(v_{\pi,S})_i$ is the number of elements of S meeting π in a space of codimension i, then:

$$v = hv_1 + (1 - h)v_2$$

where v_1 arises from the point pencil construction and v_2 from the construction of the elements of one system of a hyperbolic quadric. Further investigation on the related association scheme and with more geometric arguments, we get:

Theorem

- S is a point pencil or
- $n = 2$ and S consists of the plane π and the planes meeting π in a line.
EKR set $|S| < \frac{|\Omega|}{1 - \frac{k}{\tau}} = \frac{|\Omega|}{q^{2n+1}+1}$ (more than point-pencil).

The algebraic combinatorial techniques cannot be used.

Theorem for planes in $H(5, q^2)$

- maximum size: $1 + q + q^3 + q^5 < \frac{|\Omega|}{q^3+1} = (q + 1)(q^5 + 1)$,
- only construction: a fixed plane and all the those meeting it in line.

If S is a point pencil, then $|S| = (q + 1)(q^3 + 1) < 1 + q + q^3 + q^5$.
<table>
<thead>
<tr>
<th>Polar space</th>
<th>EKR set of maximum size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q(4n, q)$</td>
<td>point pencil</td>
</tr>
<tr>
<td>$Q(4n + 2, q) \ n \neq 2$</td>
<td>point pencil, generators of one system in a $Q^+(4n + 1, q)$</td>
</tr>
<tr>
<td>$Q(6, q)$</td>
<td>point pencil, generators of one system in a $Q^+(5, q)$ a fixed plane and the planes meeting it in a line</td>
</tr>
<tr>
<td>$Q^+(4n + 3, q), n \neq 1$ a fixed system</td>
<td>point pencil</td>
</tr>
<tr>
<td>$Q^+(7, q)$ a fixed system</td>
<td>point pencil solids meeting a fixed one of the other system in a plane</td>
</tr>
<tr>
<td>$Q^+(4n + 1, q)$</td>
<td>generators of one system</td>
</tr>
<tr>
<td>$Q^-(2n + 1, q)$</td>
<td>point pencil</td>
</tr>
<tr>
<td>$W(4n + 3, q)$</td>
<td>point pencil</td>
</tr>
<tr>
<td>$W(4n + 1, q) \ n \neq 1$</td>
<td>point pencil, generators of one system in $Q^+(4n + 1, q)$ q even</td>
</tr>
<tr>
<td>$W(5, q)$</td>
<td>point pencil, a fixed plane and the planes meeting it in a line generators of one system in $Q^+(5, q)$ q even</td>
</tr>
<tr>
<td>$\mathcal{H}(2n, q^2), \mathcal{H}(4n + 3, q^2)$</td>
<td>point pencil</td>
</tr>
<tr>
<td>$\mathcal{H}(5, q^2)$</td>
<td>a fixed plane and the planes meeting it in a line</td>
</tr>
<tr>
<td>$\mathcal{H}(4n + 1, q^2) \ n > 1$</td>
<td>?</td>
</tr>
</tbody>
</table>