Erdős-Ko-Rado Theorems for dual polar spaces

Valentina Pepe

Ghent University

Joint work with Leo Storme and Frédéric Vanhove

April 12 2010

The first Erdős-Ko-Rado Theorem

E.K.R. [1961]

If Ω is a set with *n* elements and *S* is a family of subsets of size *k* of Ω , with $n \ge 2k$, such that the elements of *S* are pairwise intersecting, then $|S| \le {n-1 \choose k-1}$.

Characterization of the families of maximum size

If
$$|S| = \binom{n-1}{k-1}$$
, then:

- 2k < n and S is the family of subsets of size k containing a fixed element of Ω.
- 2k = n and S is either the family of subsets of size k containing a fixed element of Ω or it consists of the representatives of all the complementary pairs.

Analogue results

Several different variants of this theorem have been proved.

B.M.I. Rands [1982]

The largest set of blocks of a $t - (v, k, \lambda)$ design pairwise intersecting has size equal to the number of blocks through a point and the blocks through a point is the only set of blocks meeting the bound, provided $v \ge f(k, t)$.

Analogue results

P.Frankl and R.M.Wilson [1986]/ C.D.Godsil and Newman [2006]

If V is a *n*-dimensional vector space over \mathbb{F}_q and S is a family of *k*-dimensional subspaces of V pairwise intersecting non-trivially, with $n \ge 2k$, then $|S| \le {n-1 \choose k-1}_q$. If $|S| = {n-1 \choose k-1}_q$, then:

- 2k < n and S is the set of k-dimensional subspaces containing a fixed non-zero vector of V.
- 2k = n and S is either the set of k-dimensional subspaces containing a fixed non-zero vector of V or it is the set of k-dimensional subspaces of V contained in a hyperplane.

Graph theoretic approach

Ω: set of vertices for the graph Γ (*k*-subsets, *k*-subspaces...). Two vertices are adjacent iff their intersection is trivial. A EKR set is a coclique of Γ.

If Γ is a *v*-regular graph with least eigenvalue τ and *S* is a coclique of Γ , then

$$|S| \leq rac{|\Omega|}{1 - rac{v}{ au}}$$

and if |S| meets the bound, then its characteristic vector χ_S is such that $\chi_S = \frac{|S|}{|\Omega|} \mathbf{1} + u$, where u is an eigenvector with eigenvalue τ .

Classical finite polar spaces

Classical finite polar spaces are incidence structures consisting of the lattices of subspaces of a finite projective space totally isotropic with respect to a certain non-degenerate sesquilinear form.

- the parabolic quadric Q(2n, q): (n 1)-dimensional generators,
- the hyperbolic quadric $Q^+(2n+1,q)$: *n*-dimensional generators,
- the elliptic quadric $\mathcal{Q}^-(2n+1,q)$: (n-1)-dimensional generators,
- the symplectic space W(2n + 1, q): *n*-dimensional generators,
- the hermitian variety $\mathcal{H}(2n,q^2)$: (n-1)-dimensional generators,
- the hermitian variety $\mathcal{H}(2n+1,q^2)$: *n*-dimensional generators.

The analogue problem in this setting is finding the largest size for a set of pairwise intersecting subspaces of a polar space and characterizing the sets meeting the bound. We deal with the case of generators of polar spaces, when their dimension is at least two.

The bounds

Stanton [1980]:		
Polar space	upper bound for <i>S</i>	Example of set meeting the bound
$\mathcal{Q}(2n,q)$	$\prod_{i=1}^{n-1}(q^i+1)$	generators through a point
$\mathcal{Q}^+(2n+1,q), n ext{ odd}$	$\prod_{i=0}^{n-1}(q^i+1)$	generators through a point
$\mathcal{Q}^+(2n+1,q), n$ even	$\prod_{i=1}^n (q^i+1)$	generators of one family
$\mathcal{Q}^{-}(2n+1,q)$	$\prod_{i=2}^n (q^i+1)$	generators through a point
W(2n+1,q)	$\prod_{i=1}^n (q^i+1)$	generators through a point
$\mathcal{H}(2n,q^2)$	$\prod_{i=1}^{n-1}(q^{2i+1}+1)$	generators through a point
$\mathcal{H}(2n+1,q^2),$ n odd $\mathcal{H}(2n+1,q^2),$ n even	$\prod_{i=0,i eq rac{n}{2}}^{n-1}(q^{2i+1}+1) \prod_{i=0,i eq rac{n}{2}}^{n}(q^{2i+1}+1)$	generators through a point No examples known

Characterization of the sets meeting the bound

Our goal is to characterize the sets meeting the bounds.

- Is the point pencil the only possible construction for most of the polar spaces?
- For $Q^+(2n+1,q)$, *n* even, are the generators of one family the only possible construction?
- What can we say about $\mathcal{H}(2n+1,q^2)$, *n* even?

Association schemes

A *d*-class association scheme on a finite set Ω is a pair (Ω, \mathcal{R}) with \mathcal{R} a set of symmetric relations $\{R_0, R_1, \ldots, R_d\}$ on Ω such that the following axioms hold:

- (i) R_0 is the identity relation,
- (ii) \mathcal{R} is a partition of Ω^2 ,
- (iii) there are *intersection numbers* p_{ij}^k such that for $(x, y) \in R_k$, the number of elements z in Ω for which $(x, z) \in R_i$ and $(z, y) \in R_j$ equals p_{ij}^k .

All the relations R_i are symmetric regular relations with valency p_{ii}^0 , and hence define regular graphs on Ω .

Association scheme on generators

Let Ω be the set of generators of the polar space \mathcal{P} .

Two generators π and π' are adjacent iff they have empty intersection.

An EKR set of maximum size corresponds to a coclique of the graph of size $\frac{|\Omega|}{1-\frac{k}{2}}.$

If the dimension of a generator is n, then on Ω we can define a set of n relations Γ_i , $i = 0, \dots, n+1$ such that two generators are adjacent with respect to Γ_i iff they intersect in a space of codimension i. These relations give rise to an association scheme.

Fundamental results

Lemma

If S is a subset of Ω such that its characteristic vector $\chi_S = h\mathbf{1} + u$, where u is an eigenvector with eigenvalue λ for the adjacency matrix A_i of the relation Γ_i , then we have: • every $p \in S$ has $\frac{|S|}{|\Omega|}(k - \lambda) + \lambda$ neighbors in S w.r.t. Γ_i • every $p \notin S$ has $\frac{|S|}{|\Omega|}(k - \lambda)$ neighbors in S w.r.t Γ_i where k is the valency of the graph Γ_i .

The number of neighbors of p depends only on the size of S

Most of the cases

For the following polar spaces:

- $\mathcal{Q}(2n,q)$, *n* even
- $Q^{-}(2n+1,q)$
- W(2n+1, q), *n* odd
- $\mathcal{H}(2n,q^2)$ and $\mathcal{H}(2n+1,q^2)$, n odd

if *u* is an eigenvector for the relation Γ_{n+1} , then it is a an eigenvector for Γ_i , $i = 0, \dots, n$.

Most of the cases

For every *EKR* set *S* of maximum size, we know how many elements of *S* intersect a fixed generator π in a space of codimension *i*, *i* = 1,..., *n*: this number is a constant and it does not depend on the geometric structure of the set *S*. Known example of EKR in these polar spaces:

The generators through a fixed point.

For every $\pi \in S$, the number of elements of S intersecting π in a space of codimension i is the same as the point pencil construction. We focus on a fixed a generator of S and we get:

Theorem

For the polar spaces Q(2n, q), *n* even, $Q^{-}(2n + 1, q)$, W(2n + 1, q), *n* odd, $\mathcal{H}(2n, q^2)$ and $\mathcal{H}(2n + 1, q^2)$, *n* odd, the largest *EKR* set of generators is the set of generators through a fixed point.

Hyperbolic quadric $Q^+(2n+1,q)$

In $\mathcal{Q}^+(2n+1,q)$ there are two system of generators, Ω_1 and Ω_2 of the same size, such that two generators π_1 and π_2 are in the same system iff dim $\pi_1 \cap \pi_2$ has the same parity as n.

Even n

The generators of Ω_i pairwise intersect in a non-empty space. The size of Ω_i meets the Stanton bound.

It is the only possible EKR set meeting the bound.

Odd n

If S is a maximum EKR set, then $S = S_1 \cup S_2$, where $S_i = S \cap \Omega_i$, $|S_1| = |S_2|$. If we find a EKR set S_i in Ω_i , i = 1, 2 and $|S_i| = \frac{|S|}{2}$, then $S_1 \cup S_2$ is a maximum EKR set in Ω .

$\mathcal{Q}^+(2n+1,q)$, *n* odd

We can focus on only one system of generators Ω_i .

Theorem

If n > 3 is odd, then S_i is the set of elements of Ω_i through a point. If n = 3, then S_i is either the set of elements of Ω_i through a point or it is the set of elements of Ω_i meeting a fixed element of Ω_j in a plane.

All generators: n > 3

We have two possibilities

- S is the set of all the generators through a point P
- S is the set of all the generators of one system through P_1 and the set of all the generators of the other system through P_2

$\mathcal{Q}^+(7,q)$

We have four possibilities

- S is the set of all the solids through a point P
- S is the set of all the solids of one system through P_1 and the set of all the solids of the other system through P_2
- S is the set of all solids of one system through P and all solids of the other system meeting Σ in a plane
- S is the set of all solids of one system meeting Σ₁ in a plane and all the generators meeting Σ₂ in a plane

Parabolic quadric Q(2n, q), *n* odd

Embed $\mathcal{Q}(2n,q)$, *n* odd, as a hyperplane section in a $\mathcal{Q}^+(2n+1,q)$: every generator of $\mathcal{Q}(2n,q)$ is contained in a unique generator of a fixed system Ω_i of $\mathcal{Q}^+(2n+1,q)$.

An *EKR* set *S* of maximum size of Q(2n, q) gives rise to *EKR* set *S'* of maximum size of Ω_{i} .

Theorem

Let $\mathcal{Q}(2n,q) = H \cap \mathcal{Q}^+(2n+1,q).$

If n > 3, then S' is a point pencil and we have two possibilities:

- $P \in H$, so S is also a point pencil
- $P \notin H$, S is the set of generators of one system of a $Q^+(2n-1,q)$ embedded in Q(2n,q).

If n = 3, then S' can be a point pencil or the generators meeting a fixed one in a plane, so we have a third possibility:

• S consists of the plane π and all the planes meeting π in a line

W(2n+1,q), n and q even

If q is even, then: $W(2n+1,q) \cong Q(2n+2,q)$ There is a $Q^+(2n+1,q)$ inducing the symplectic polarity

Theorem

An EKR set of maximum size S is

- a point pencil
- the set of generators of one system of a $\mathcal{Q}^+(2n+1,q)$
- n = 2 and it consists of the plane π and the planes meeting π in a line

W(2n+1,q), *n* even and *q* odd

Let $v_{\pi,S}$ be the vector of length *n* such that $(v_{\pi,S})_i$ is the number of elements of *S* meeting π in a space of codimension *i*, then:

$$v = hv_1 + (1-h)v_2$$

where v_1 arises from the point pencil construction and v_2 from the construction of the elements of one system of a hyperbolic quadric. Further investigation on the related association scheme and with more geometric arguments, we get:

Theorem

- S is a point pencil or
- n = 2 and S consists of the plane π and the planes meeting π in a line.

$$\mathcal{H}(4n+1,q^2)$$

Theorem

EKR set
$$|S| < \frac{|\Omega|}{1-\frac{k}{\tau}} = \frac{|\Omega|}{q^{2n+1}+1}$$
 (more than point-pencil).

The algebraic combinatorial techniques cannot be used.

Theorem for planes in $\mathcal{H}(5, q^2)$

- maximum size: $1 + q + q^3 + q^5 < rac{|\Omega|}{q^3 + 1} = (q + 1)(q^5 + 1)$,
- only construction: a fixed plane and all the those meeting it in line.

If S is a point pencil, then $|S| = (q+1)(q^3+1) < 1 + q + q^3 + q^5$.

Polar space	EKR set of maximum size	
$\mathcal{Q}(4n,q)$	point pencil	
$\mathcal{Q}(4n+2,q)n \neq 2$	point pencil, generators of one system in a $\mathcal{Q}^+(4n+1,q)$	
$\mathcal{Q}(6,q)$	point pencil, generators of one system in a $\mathcal{Q}^+(5,q)$	
	a fixed plane and the planes meeting it in a line	
$\mathcal{Q}^+(4n+3,q),$	point pencil	
n eq 1 a fixed system		
$Q^+(7,q)$ a fixed system	point pencil	
	solids meeting a fixed one of the other system in a plane	
$\mathcal{Q}^+(4n+1,q)$	generators of one system	
$\mathcal{Q}^{-}(2n+1,q)$	point pencil	
W(4n+3,q)	point pencil	
$W(4n+1,q)n \neq 1$	point pencil, generators of one system in $\mathcal{Q}^+(4n+1,q)$ q even	
W(5,q)	point pencil, a fixed plane and the planes meeting it in a line	
	generators of one system in $\mathcal{Q}^+(5,q)~q$ even	
$\mathcal{H}(2n,q^2), \mathcal{H}(4n+3,q^2)$	point pencil	
$\mathcal{H}(5,q^2)$	a fixed plane and the planes meeting it in a line	
$\mathcal{H}(4n+1,q^2)n > 1$?	