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Dear organizers,
thank you very much for the invitation!
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Dear organizers,
thank you very much for the invitation!

This talk emerged unter the influence of my colleagues to whom I owe
big thanks and want to mention in particular

• my close collaborators from the University of Zagreb, Croatia:

– Vedran Krčadinac

– Ivica Martinjak

– Anamari Nakić

• as well as the colleagues from the University of Bayreuth,
Germany:

– Reinhard Laue

– Axel Kohnert

– Alfred Wassermann
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Definition.

A t-(v, k, λ) design D is a pair (P ,B), consisting of a v-element set of
points P and a collection B of its k-element subsets called blocks, such
that each t-element subset of P is contained in exactly λ blocks.
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Definition.

A t-(v, k, λ) design D is a pair (P ,B), consisting of a v-element set of
points P and a collection B of its k-element subsets called blocks, such
that each t-element subset of P is contained in exactly λ blocks.

Every t-design is also an s-design, for all 0 ≤ s ≤ t, with parameters

vs = v, ks = k, λs = λ ·
(

v−s
t−s

)(
k−s
t−s

)
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Definition.

A t-(v, k, λ) design D is a pair (P ,B), consisting of a v-element set of
points P and a collection B of its k-element subsets called blocks, such
that each t-element subset of P is contained in exactly λ blocks.

Every t-design is also an s-design, for all 0 ≤ s ≤ t, with parameters

vs = v, ks = k, λs = λ ·
(

v−s
t−s

)(
k−s
t−s

)
In particular, each point is contained in

r = λ1 = λ ·
(

v−1
t−1

)(
k−1
t−1

)
blocks and since the empty set is contained in every block, the number
of blocks equals to

b = λ0 = λ ·
(

v
t

)(
k
t

) .
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Examples.

2-(7, 3, 1) design

P = {0, 1, 2, 3, 4, 5, 6}
B = {{1, 2, 3}, {0, 1, 4}, {0, 2, 5}, {0, 3, 6},

{1, 5, 6}, {2, 4, 6}, {3, 4, 5}}
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Examples.

2-(7, 3, 1) design

P = {0, 1, 2, 3, 4, 5, 6}
B = {{1, 2, 3}, {0, 1, 4}, {0, 2, 5}, {0, 3, 6},

{1, 5, 6}, {2, 4, 6}, {3, 4, 5}}
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3-(8, 4, 1) design

P = {0, 1, 2, 3, 4, 5, 6, 7}
B = {{1, 2, 3, 7}, {0, 1, 4, 7}, {0, 2, 5, 7}, {0, 3, 6, 7},

{1, 5, 6, 7}, {2, 4, 6, 7}, {3, 4, 5, 7},
{0, 4, 5, 6}, {2, 3, 5, 6}, {1, 3, 4, 6}, {1, 2, 4, 5},

{0, 2, 3, 4}, {0, 1, 3, 5}, {0, 1, 2, 6}}
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3-(8, 4, 1) design

P = {0, 1, 2, 3, 4, 5, 6, 7}
B = {{1, 2, 3, 7}, {0, 1, 4, 7}, {0, 2, 5, 7}, {0, 3, 6, 7},

{1, 5, 6, 7}, {2, 4, 6, 7}, {3, 4, 5, 7},
{0, 4, 5, 6}, {2, 3, 5, 6}, {1, 3, 4, 6}, {1, 2, 4, 5},

{0, 2, 3, 4}, {0, 1, 3, 5}, {0, 1, 2, 6}}
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Besides as a list of blocks, a t-design can be represented by a 0-1
matrix M = [mij] called incidence matrix.

If we denote the points of D by P = {p1, p2, . . . , pv} and the blocks
of D by B = {B1, B2, . . . , Bv}, then the entries of the incidence matrix
are defined by

mij =

{
1 , if pi ∈ Bj

0 , otherwise
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Besides as a list of blocks, a t-design can be represented by a 0-1
matrix M = [mij] called incidence matrix.

If we denote the points of D by P = {p1, p2, . . . , pv} and the blocks
of D by B = {B1, B2, . . . , Bv}, then the entries of the incidence matrix
are defined by

mij =

{
1 , if pi ∈ Bj

0 , otherwise

M =



0 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0
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0 1 1 1 0 0 0 1 0 0 0 1 1 1
1 1 0 0 1 0 0 0 0 1 1 0 1 1
1 0 1 0 0 1 0 0 1 0 1 1 0 1
1 0 0 1 0 0 1 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1 1 0 0
0 0 1 0 1 0 1 1 1 0 1 0 1 0
0 0 0 1 1 1 0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0
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For the sake of simplicity, rename the vertices of the cube:



1 0 1 0 0 1 1 0 1 0 0 1 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1 0 0 1 0
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Goal:

construct t-(v, k, λ) designs effectively



ALCOMA

2010

Thurnau

Univ.

Bayreuth

9/37

J
I

Back

FullScr

Goal:

construct t-(v, k, λ) designs effectively

Reasons:

• existence question (hard)

• enumeration problem (hard)

• get an example with given parameters quickly (not so hard)
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Goal:

construct t-(v, k, λ) designs effectively

Reasons:

• existence question (hard)

• enumeration problem (hard)

• get an example with given parameters quickly (not so hard)

We use the deterministic approach (generating all, classification),
adding some constraints.
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Goal:

construct t-(v, k, λ) designs effectively

Reasons:

• existence question (hard)

• enumeration problem (hard)

• get an example with given parameters quickly (not so hard)

We use the deterministic approach (generating all, classification),
adding some constraints.

In this way, the constructed structures will be even more regular.
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Goal:

construct t-(v, k, λ) designs effectively

Reasons:

• existence question (hard)

• enumeration problem (hard)

• get an example with given parameters quickly (not so hard)

We use the deterministic approach (generating all, classification),
adding some constraints.

In this way, the constructed structures will be even more regular.

We shall consider two (similar) types of constraints:

• tactical decompositions

• automorphisms
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What is a tactical decomposition?
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What is a tactical decomposition?

M =



0 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0
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What is a tactical decomposition?

M =



0 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0


Suppose that there is a partition

P = P1 t P2 t · · · t Pm and B = B1 t B2 t · · · t Bn,

so that every submatrix Mij of M , consisting of rows of Pi and columns
of Bj (i = 1, . . . ,m; j = 1, . . . , n) has a constant number of 1’s in each
row and column. We shall call such a decomposition of the incidence
matrix a tactical decomposition.
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Two tactical decompositions are trivial in case of a t-(v, k, λ) design:

• the whole M itself (m = n = 1)

• m = v and n = b (each entry alone)

So, we look for non-trivial tactical decompositions!
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Two tactical decompositions are trivial in case of a t-(v, k, λ) design:

• the whole M itself (m = n = 1)

• m = v and n = b (each entry alone)

So, we look for non-trivial tactical decompositions!

Denote by

ρij = the number of 1’s in each row of Mij

κij = the number of 1’s in each column of Mij.

Further denote by

〈p〉 = {B ∈ B | p ∈ B}, for any p ∈ P and

〈B〉 = {p ∈ P | p ∈ B}, for any B ∈ B,

then we can formulate the coefficients ρij and κij as

ρij = |〈p〉 ∩ Bj|, p ∈ Pi

κij = |〈B〉 ∩ Pi|, B ∈ Bj.
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In one of our previous examples



1 0 1 0 0 1 1 0 1 0 0 1 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1 0 0 1 0
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In one of our previous examples



1 0 1 0 0 1 1 0 1 0 0 1 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1 0 0 1 0


these coefficients are:

[ρij] =

[
1 0 2 1 2 1
0 1 2 1 2 1

]
[κij] =

[
4 0 2 2 2 2
0 4 2 2 2 2

]
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Find necessary conditions which a TD of a t-(v, k, λ) has to fulfil!

1 0 1 0 0 1 1 0 1 0 0 1 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1 0 0 1 0

Count the total number of 1’s in Mij in two ways.
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Find necessary conditions which a TD of a t-(v, k, λ) has to fulfil!

1 0 1 0 0 1 1 0 1 0 0 1 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1 0 0 1 0

Count the total number of 1’s in Mij in two ways.

You get:
|Pi| · ρij = |Bj| · κij . (1)
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Find necessary conditions which a TD of a t-(v, k, λ) has to fulfil!

1 0 1 0 0 1 1 0 1 0 0 1 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1 0 0 1 0

Count the total number of 1’s in Mij in two ways.

You get:
|Pi| · ρij = |Bj| · κij . (1)

Interprete it as a double counting of

{(p, B) | p ∈ Pi, B ∈ Bj, p ∈ B}.
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Take any point p ∈ Pi. Look at the following set of triples:

{(p, q, B) | q ∈ Pl, p ∈ B, q ∈ B}
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Take any point p ∈ Pi. Look at the following set of triples:

{(p, q, B) | q ∈ Pl, p ∈ B, q ∈ B}

1 0 1 0 0 1 1 0 1 0 0 1 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1 0 0 1 0
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Take any point p ∈ Pi. Look at the following set of triples:

{(p, q, B) | q ∈ Pl, p ∈ B, q ∈ B}

1 0 1 0 0 1 1 0 1 0 0 1 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 1 0 0 1 0

A double counting gives here the following equation:

n∑
j=1

ρijκlj =
∑
q∈Pl

|〈p〉 ∩ 〈q〉| = I know that!



ALCOMA

2010

Thurnau

Univ.

Bayreuth

15/37

J
I

Back

FullScr

The generalized version of this formula is

n∑
j=1

ρijκl1jκl2j · · ·κlsj =

∑
q1∈Pl1

∑
q2∈Pl2

· · ·
∑
qs∈Pls

|〈p〉 ∩ 〈q1〉 ∩ 〈q2〉 ∩ · · · ∩ 〈qs〉|, (2)

which one gets by taking a fixed point p ∈ Pi and counting the set

{(p, q1, q2, . . . , qs, B) | q1 ∈ Pl1, . . . , qs ∈ Pls,

p ∈ B, q1 ∈ B, . . . , qs ∈ B}
in two different ways, for any appropriate integer s.
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The generalized version of this formula is

n∑
j=1

ρijκl1jκl2j · · ·κlsj =

∑
q1∈Pl1

∑
q2∈Pl2

· · ·
∑
qs∈Pls

|〈p〉 ∩ 〈q1〉 ∩ 〈q2〉 ∩ · · · ∩ 〈qs〉|, (2)

which one gets by taking a fixed point p ∈ Pi and counting the set

{(p, q1, q2, . . . , qs, B) | q1 ∈ Pl1, . . . , qs ∈ Pls,

p ∈ B, q1 ∈ B, . . . , qs ∈ B}
in two different ways, for any appropriate integer s.

Good news:
The right-hand side of (2) can be easily calculated

in case of a t-design, for all s ≤ t.
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Are these equations all that I know about ρij and κij?
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Are these equations all that I know about ρij and κij?

Add the trivial conditions
n∑

j=1

ρij = r, ∀i, and
m∑

i=1

κij = k, ∀j. (3)
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Are these equations all that I know about ρij and κij?

Add the trivial conditions
n∑

j=1

ρij = r, ∀i, and
m∑

i=1

κij = k, ∀j. (3)

Together with (2), which can be rewritten via (1) only in terms of ρij,
that’s it!

|Pi| · ρij = |Bj| · κij

n∑
j=1

ρijκl1jκl2j · · ·κlsj =

∑
q1∈Pl1

∑
q2∈Pl2

· · ·
∑
qs∈Pls

|〈p〉 ∩ 〈q1〉 ∩ 〈q2〉 ∩ · · · ∩ 〈qs〉|
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Another example of a tactical decomposition of a 3-(8, 4, 1) design:


0 1 1 1 0 0 0 1 0 0 0 1 1 1
1 1 0 0 1 0 0 0 0 1 1 0 1 1
1 0 1 0 0 1 0 0 1 0 1 1 0 1
1 0 0 1 0 0 1 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1 1 0 0
0 0 1 0 1 0 1 1 1 0 1 0 1 0
0 0 0 1 1 1 0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0




0 1 1 1 0 0 0 1 0 0 0 1 1 1
1 1 0 0 1 0 0 0 0 1 1 0 1 1
1 0 1 0 0 1 0 0 1 0 1 1 0 1
1 0 0 1 0 0 1 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1 1 0 0
0 0 1 0 1 0 1 1 1 0 1 0 1 0
0 0 0 1 1 1 0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0
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What is an automorphism of a design?
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What is an automorphism of a design?
A well-known notion:

a permutation of points which preserves the blocks.

ϕ = (0, 1, 2, 3)(4, 5, 6, 7)

is an automorphism. 〈ϕ〉 is an automorphism group, a subgroup of
the full automorphism group AutD.

Point orbits P = {0, 1, 2, 3} t {4, 5, 6, 7} partition P
Block orbits B = {{0, 1, 2, 3}} t {{4, 5, 6, 7}} t other 4 sides t

{{0, 2, 4, 6}, {1, 3, 5, 7}} t other 4 diag. par. edges

t 2 indep. sets partition B
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Proposition Rows and columns of an incidence matrix M of a t-
(v, k, λ) design D corresponding to the point and block orbits obtained
under an action of an automorphism group G ≤ AutD form a tactical
decomposition.
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Proposition Rows and columns of an incidence matrix M of a t-
(v, k, λ) design D corresponding to the point and block orbits obtained
under an action of an automorphism group G ≤ AutD form a tactical
decomposition.

Remark Not every tactical decomposition of a t-(v, k, λ) design comes
from an action of an automorphism group of it! Our next constructions
shall prove it.
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Proposition Rows and columns of an incidence matrix M of a t-
(v, k, λ) design D corresponding to the point and block orbits obtained
under an action of an automorphism group G ≤ AutD form a tactical
decomposition.

Remark Not every tactical decomposition of a t-(v, k, λ) design comes
from an action of an automorphism group of it! Our next constructions
shall prove it.

There are (at least) two known different approaches how to construct
designs with the additional constraint that an automorphism group acts
on it:

• Finding all candidates for tactical decomposition matrices [ρij] and
blowing them up to incidence matrices.
(in addition: using this method, find designs with tactical decompo-
sitions which are not orbits)

• Finding the Kramer-Mesner matrix and solving the linear system of
equations.
(in addition: improve the method by implementing the knowledge
coming from the tactical decomposition matrices)
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Blowing up TDM’s and getting designs
without any automorphisms
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Blowing up TDM’s and getting designs
without any automorphisms

General construction procedure

1. Prescribe a group G.

2. Prescribe its action on points and blocks.

3. Classify all tactical decomposition matrix candidates, e.g. matrices
[ρij] fulfilling the equations (1)− (3).

4. Try to construct incidence matrices of the designs, consistent with
achieved TD matrices, by forgetting the group action at this stage,
expanding each entry of the TD-matrix to its full size in an incidence
matrix.
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Blowing up TDM’s and getting designs
without any automorphisms

General construction procedure

1. Prescribe a group G.

2. Prescribe its action on points and blocks.

3. Classify all tactical decomposition matrix candidates, e.g. matrices
[ρij] fulfilling the equations (1)− (3).

4. Try to construct incidence matrices of the designs, consistent with
achieved TD matrices, by forgetting the group action at this stage,
expanding each entry of the TD-matrix to its full size in an incidence
matrix.

Since there is a computer program, written by V. Krčadinac, which
solves the step 3 above quite general (for any t-design) we shall con-
centrate on step 4 - changing the coefficient ρij by a 0− 1 matrix with
ρij 1’s in each row and κij 1’s in each column.
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Assume now that a cyclic group of order p, p prime, acts on a design.
Then

|Pi|, |Bj| ∈ {1, p}
The only interesting (non-unique) case for step 4 is

|Pi| = |Bj| = p.
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Assume now that a cyclic group of order p, p prime, acts on a design.
Then

|Pi|, |Bj| ∈ {1, p}
The only interesting (non-unique) case for step 4 is

|Pi| = |Bj| = p.

Note that Alltop’s lemma gives immediately

ρij = κij.

Hence, the problem in to replace the coefficient ρij by a p × p matrix
Mij posessing ρij 1’s in each row and each column, taking care of the
design properties.
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Assume now that a cyclic group of order p, p prime, acts on a design.
Then

|Pi|, |Bj| ∈ {1, p}
The only interesting (non-unique) case for step 4 is

|Pi| = |Bj| = p.

Note that Alltop’s lemma gives immediately

ρij = κij.

Hence, the problem in to replace the coefficient ρij by a p × p matrix
Mij posessing ρij 1’s in each row and each column, taking care of the
design properties.

If you take Mij to be cyclic, you preserve the group action, and have
exactly (

p

ρij

)
possibilities.
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If you want to forget the cyclic action, the number of possibilities
becomes quite large very soon.
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If you want to forget the cyclic action, the number of possibilities
becomes quite large very soon.

Throw a look at the table:

p ρij Cycij Allij
2 1 2 2
3 1 3 6

2 3 6
5 1 5 120

2 10 2040
3 10 2040
4 5 120

7 1 7 5040
2 21 3110940
3 35 68938800
4 35 68938800
5 21 3110940
6 7 5040
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• In case p = 2: can’t avoid the cyclic action!
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• In case p = 2: can’t avoid the cyclic action!

• In case p ≥ 5: the number of possibilities is quite large for an
exhaustive search and comparison with the cyclic case.



ALCOMA

2010

Thurnau

Univ.

Bayreuth

23/37

J
I

Back

FullScr

• In case p = 2: can’t avoid the cyclic action!

• In case p ≥ 5: the number of possibilities is quite large for an
exhaustive search and comparison with the cyclic case.

• So, the convenient and interesting case is p = 3. Here, the number
of possibilites in non-unique cases have doubled, and we can speak
of the cyclic and anti-cyclic matrices of order 3 as replacements for
ρij, if ρij ∈ {1, 2}, e.g. if ρij = 1, then

– cyclic possibilities: 1 0 0
0 1 0
0 0 1

 ,

 0 1 0
0 0 1
1 0 0

 ,

 0 0 1
1 0 0
0 1 0


– anti-cyclic possibilities: 1 0 0

0 0 1
0 1 0

 ,

 0 1 0
1 0 0
0 0 1

 ,

 0 0 1
0 1 0
1 0 0
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Results for symmetric (36, 15, 6) designs

The number of fixed points (and blocks) F ∈ {0, 3, 6, 9}.

F TDM’s
9 2
6 14
3 334
0 814



ALCOMA

2010

Thurnau

Univ.

Bayreuth

24/37

J
I

Back

FullScr

Results for symmetric (36, 15, 6) designs

The number of fixed points (and blocks) F ∈ {0, 3, 6, 9}.

F TDM’s
9 2
6 14
3 334
0 814

An exhaustive search of step 4 in the cyclic case gives

F TDM’s niso
9 2 909
6 14 2368
3 334 79662
0 814 58720
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Theorem There are exactly 141061 symmetric designs with parameters
(36, 15, 6) admitting an action of an automorphism of order 3.
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Theorem There are exactly 141061 symmetric designs with parameters
(36, 15, 6) admitting an action of an automorphism of order 3.

Here is a complete list of the automorphism group orders and their
frequencies among all constructed designs.

|Aut(D)| 3 6 9 12 18 21 24 27 30
niso 136733 3064 629 275 173 2 45 25 2

|Aut(D)| 36 42 48 54 72 81 96 108 144
niso 33 1 10 21 8 1 2 5 5

|Aut(D)| 162 216 240 243 324 360 384 432 486
niso 6 2 1 1 3 2 2 2 1

|Aut(D)| 648 1152 1944 3888 12096 51840
niso 2 1 1 1 1 1
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A (not quite exhaustive) search of step 4 in the cyclic + anti-cyclic
case gives

F niso Cyc niso All
9 909 8176
6 2368 10885
3 79662 138149
0 58720 ≥ 509836

all 141061 ≥ 665187

This search was not exhaustive in case F = 0; the number of structures
is quite large and we had to stop it.

Altogether, the following statement concludes this search:

Proposition There are at least 675363 symmetric designs with pa-
rameters (36, 15, 6) and 513692 of them don’t admit any non-trivial
automorphisms.
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Results for symmetric (41, 16, 6) designs

The number of fixed points (and blocks) F ∈ {5, 11}.
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Results for symmetric (41, 16, 6) designs

The number of fixed points (and blocks) F ∈ {5, 11}.

Outcome of step 3:

F TDM’s
11 1
5 1834
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Results for symmetric (41, 16, 6) designs

The number of fixed points (and blocks) F ∈ {5, 11}.

Outcome of step 3:

F TDM’s
11 1
5 1834

An exhaustive search of step 4 in the cyclic case gives

F TDM’s niso
11 1 3076
5 1834 342508
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Results for symmetric (41, 16, 6) designs

The number of fixed points (and blocks) F ∈ {5, 11}.

Outcome of step 3:

F TDM’s
11 1
5 1834

An exhaustive search of step 4 in the cyclic case gives

F TDM’s niso
11 1 3076
5 1834 342508

Theorem There are exactly 345584 symmetric designs with parameters
(41, 16, 6) admitting an action of an automorphism of order 3.
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The following table gives a concise overview of the described results
for the cyclic case.

|Aut(D)| F = 11 F = 5 all
3 2976 342241 345217
6 94 225 319
9 − 42 42

15 4 − 4
30 2 − 2∑

3076 342508 345584
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The following table gives a concise overview of the described results
for the cyclic case.

|Aut(D)| F = 11 F = 5 all
3 2976 342241 345217
6 94 225 319
9 − 42 42

15 4 − 4
30 2 − 2∑

3076 342508 345584

An exhaustive search in step 4 in the cyclic + anti-cyclic case gives

F niso Cyc niso All
11 3076 9808
5 342508 431276

all 345584 441048
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Altogether, the following statement concludes this search:

Proposition There are at least 441048 symmetric designs with para-
meters (41, 16, 6) and 95119 of them don’t admit any non-trivial auto-
morphisms.
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Altogether, the following statement concludes this search:

Proposition There are at least 441048 symmetric designs with para-
meters (41, 16, 6) and 95119 of them don’t admit any non-trivial auto-
morphisms.

We conclude this search with an informative table on the number of
non-isomorphic (41, 16, 6) designs admitting only a tactical decomposi-
tion with partition sizes 1 and 3 and their automorphism group orders.

|Aut(D)| F = 11 F = 5 all
1 6714 88423 95119
2 345 345
3 2994 342241 345217
6 94 225 319
9 42 42

15 4 4
30 2 2∑

9808 431276 441048
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Kramer-Mesner approach
improved by TDM knowledge
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Kramer-Mesner approach
improved by TDM knowledge

G = group of permutations of {1, 2, . . . , v}
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Kramer-Mesner approach
improved by TDM knowledge

G = group of permutations of {1, 2, . . . , v}

T1, T2, . . . , Tm orbits on t-subsets of {1, . . . , v}

K1, K2, . . . , Kn orbits on k-subsets of {1, . . . , v}
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Kramer-Mesner approach
improved by TDM knowledge

G = group of permutations of {1, 2, . . . , v}

T1, T2, . . . , Tm orbits on t-subsets of {1, . . . , v}

K1, K2, . . . , Kn orbits on k-subsets of {1, . . . , v}

aij = |{K ∈ Kj | T ⊆ K }| , T ∈ Ti (does not depend on choice!)

AG
tk = [aij] Kramer-Mesner matrix
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Kramer-Mesner approach
improved by TDM knowledge

G = group of permutations of {1, 2, . . . , v}

T1, T2, . . . , Tm orbits on t-subsets of {1, . . . , v}

K1, K2, . . . , Kn orbits on k-subsets of {1, . . . , v}

aij = |{K ∈ Kj | T ⊆ K }| , T ∈ Ti (does not depend on choice!)

AG
tk = [aij] Kramer-Mesner matrix

Theorem. A simple t-(v, k, λ) design with G as a group of auto-
morphisms exists if and only if the system of linear equations
AG

tk · x = λj has a {0, 1}-solution.

The main problem when applying: the size of this linear system!
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Main idea: Incorporate the knowledge that gives you the tactical de-
composition matrix when building the Kramer-Mesner matrix, to reduce
the number of columns!
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Main idea: Incorporate the knowledge that gives you the tactical de-
composition matrix when building the Kramer-Mesner matrix, to reduce
the number of columns!
Example Have a look at the parameters 2-(7, 3, 1)

Define the point set to be P = {0, 1, 2, 3, 4, 5, 6}

If we assume G to be trivial, its all orbits are of cardinality 1.

Therefore, there are
(7

2

)
orbits on the 2-element subsets of P and

(7
3

)
orbits on the 3-element subsets of P .

We need to solve the system

A23 · x = λj .

KM-attempt: solve this 21× 35 system!
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Main idea: Incorporate the knowledge that gives you the tactical de-
composition matrix when building the Kramer-Mesner matrix, to reduce
the number of columns!
Example Have a look at the parameters 2-(7, 3, 1)

Define the point set to be P = {0, 1, 2, 3, 4, 5, 6}

If we assume G to be trivial, its all orbits are of cardinality 1.

Therefore, there are
(7

2

)
orbits on the 2-element subsets of P and

(7
3

)
orbits on the 3-element subsets of P .

We need to solve the system

A23 · x = λj .

KM-attempt: solve this 21× 35 system!
Assume now

G = 〈(0)(1, 2, 3)(4, 5, 6)〉
Now, AG

23 becomes a 7× 13 matrix.

KM-attempt: solve this 7× 13 system!
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What improvement gives our idea?



ALCOMA

2010

Thurnau

Univ.

Bayreuth

32/37

J
I

Back

FullScr

What improvement gives our idea?

1 3 3

1
3
3

 0 3 0
1 1 1
0 1 2


AG

13 : 1 1 3 3 3 3 3 3 3 3 3 3 3

1
3
3

 0 0 3 3 3 3 3 0 0 0 0 0 0
1 0 2 0 1 1 1 2 2 2 1 1 1
0 1 0 2 1 1 1 1 1 1 2 2 2
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What improvement gives our idea?

1 3 3

1
3
3

 0 3 0
1 1 1
0 1 2


AG

13 : 1 1 3 3 3 3 3 3 3 3 3 3 3

1
3
3

 0 0 3 3 3 3 3 0 0 0 0 0 0
1 0 2 0 1 1 1 2 2 2 1 1 1
0 1 0 2 1 1 1 1 1 1 2 2 2


Note: only those k-orbits with columns in AG

1k identical to a column of
a TDM can be taken into further consideration - we have an additional
necessary condition! Hence, eliminate the other k-orbits.

Plain KM AG
23

7× 13

KM + TD AG
23

7× 7 + 3 extra equations
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Example Parameters 3-(8, 4, 1)

P = {0, 1, 2, 3, 4, 5, 6, 7}

G = 〈(0, 1, 2, 3)(4, 5, 6, 7)}
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Example Parameters 3-(8, 4, 1)

P = {0, 1, 2, 3, 4, 5, 6, 7}

G = 〈(0, 1, 2, 3)(4, 5, 6, 7)}

Plain KM: a 14× 20 linear system.
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Example Parameters 3-(8, 4, 1)

P = {0, 1, 2, 3, 4, 5, 6, 7}

G = 〈(0, 1, 2, 3)(4, 5, 6, 7)}
Plain KM: a 14× 20 linear system.

KM + TD: the action of G on blocks is not given, hence you have to
check all possibilities. Only two lead to TD matrices:

• Block orbits [2, 4, 4, 4]
The system of size 14× 18 + 4 additional equations
Solution exists! (Which one is that?)

• Block orbits [1, 1, 2, 2, 4, 4]
The system of size 14× 12 + 4 additional equations
Solution exists!
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Example Parameters 2-(28, 4, 1)

P = {0, 1, 2, . . . , 27}
G = 〈ρ = (0, 1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12, 13)

(14, 15, 16, 17, 18, 19, 20)(21, 22, 23, 24, 25, 26, 27),

σ = (1, 6)(2, 5)(3, 4)(8, 13)(9, 12)(10, 11)

(15, 20)(16, 19)(17, 18)(22, 27)(23, 26)(24, 25)

So, I have chosen the dihedral group of order 14 to act on points in
[7, 7, 7, 7].
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Example Parameters 2-(28, 4, 1)

P = {0, 1, 2, . . . , 27}
G = 〈ρ = (0, 1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12, 13)

(14, 15, 16, 17, 18, 19, 20)(21, 22, 23, 24, 25, 26, 27),

σ = (1, 6)(2, 5)(3, 4)(8, 13)(9, 12)(10, 11)

(15, 20)(16, 19)(17, 18)(22, 27)(23, 26)(24, 25)

So, I have chosen the dihedral group of order 14 to act on points in
[7, 7, 7, 7].

Plain KM: a 36× 1533 linear system.
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Example Parameters 2-(28, 4, 1)

P = {0, 1, 2, . . . , 27}
G = 〈ρ = (0, 1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12, 13)

(14, 15, 16, 17, 18, 19, 20)(21, 22, 23, 24, 25, 26, 27),

σ = (1, 6)(2, 5)(3, 4)(8, 13)(9, 12)(10, 11)

(15, 20)(16, 19)(17, 18)(22, 27)(23, 26)(24, 25)

So, I have chosen the dihedral group of order 14 to act on points in
[7, 7, 7, 7].

Plain KM: a 36× 1533 linear system.

KM + TD: the action of G on blocks can be different, but only in
orbits of sizes 7 and 14 – TD matrices exist only in 3 cases:

• Block orbits: [7, 7, 7, 7, 7, 14, 14]
Number of TDM’s: 1
The system contradictory
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• Block orbits: [7, 7, 7, 7, 7, 7, 7, 14]
Number of TDM’s: 6
System sizes: ∅, ∅, ∅, ∅, ∅, 44× 97
Solution exists!

• Block orbits: [7, 7, 7, 7, 7, 7, 7, 7, 7]
Number of TDM’s: 7
System sizes: ∅, ∅, ∅, 45× 36, 44× 34, 45× 36, 43× 37
Solution exists for TDM’s no. 5 and 7!
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• Block orbits: [7, 7, 7, 7, 7, 7, 7, 14]
Number of TDM’s: 6
System sizes: ∅, ∅, ∅, ∅, ∅, 44× 97
Solution exists!

• Block orbits: [7, 7, 7, 7, 7, 7, 7, 7, 7]
Number of TDM’s: 7
System sizes: ∅, ∅, ∅, 45× 36, 44× 34, 45× 36, 43× 37
Solution exists for TDM’s no. 5 and 7!

Comparison:

Plain KM: 1 linear system of size 36× 1533.
KM + TD: 5 linear systems of sizes: 44× 97,

45× 36,
44× 34,
45× 36,
43× 37.
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Example Parameters 2-(65, 5, 1)

Choice of an automorphism group: the non-abelian group of order 39,
acting on points in orbits of length [13, 13, 13, 13, 13].
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Example Parameters 2-(65, 5, 1)

Choice of an automorphism group: the non-abelian group of order 39,
acting on points in orbits of length [13, 13, 13, 13, 13].

Plain KM: I couldn’t compute the KM-matrix in reasonable time!
(Probably my fault, as it usually is the case...)
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Example Parameters 2-(65, 5, 1)

Choice of an automorphism group: the non-abelian group of order 39,
acting on points in orbits of length [13, 13, 13, 13, 13].

Plain KM: I couldn’t compute the KM-matrix in reasonable time!
(Probably my fault, as it usually is the case...)

KM + TD: the action of G on blocks can be different, but only in
orbits of sizes 13 and 39. Here we shall take the usually hardest case -
as many ”long orbits” as possible.
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Example Parameters 2-(65, 5, 1)

Choice of an automorphism group: the non-abelian group of order 39,
acting on points in orbits of length [13, 13, 13, 13, 13].

Plain KM: I couldn’t compute the KM-matrix in reasonable time!
(Probably my fault, as it usually is the case...)

KM + TD: the action of G on blocks can be different, but only in
orbits of sizes 13 and 39. Here we shall take the usually hardest case -
as many ”long orbits” as possible.

Take the block orbits to be [13, 39, 39, 39, 39, 39].
Number of TDM’s: 1
System size: 66× 351. (How doable!?!)
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Example Parameters 2-(65, 5, 1)

Choice of an automorphism group: the non-abelian group of order 39,
acting on points in orbits of length [13, 13, 13, 13, 13].

Plain KM: I couldn’t compute the KM-matrix in reasonable time!
(Probably my fault, as it usually is the case...)

KM + TD: the action of G on blocks can be different, but only in
orbits of sizes 13 and 39. Here we shall take the usually hardest case -
as many ”long orbits” as possible.

Take the block orbits to be [13, 39, 39, 39, 39, 39].
Number of TDM’s: 1
System size: 66× 351. (How doable!?!)
Solutions exist.
There are 10482 solution vectors as outcomes of the linear system solver.
Only 263 designs are non-isomorphic.
For 262 the group G of order 39 is the full automorphism group and in
one case |AutD| = 780.
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Final comments

We use GAP as the background for all the computations. Hence, we
have to add the limitations of GAP to our own limitations.
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Final comments

We use GAP as the background for all the computations. Hence, we
have to add the limitations of GAP to our own limitations.

Even with limitations, I hope to be able to run something for you, if you
give me a limited problem, at any time of this conference, or after it.
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Final comments

We use GAP as the background for all the computations. Hence, we
have to add the limitations of GAP to our own limitations.

Even with limitations, I hope to be able to run something for you, if you
give me a limited problem, at any time of this conference, or after it.

Thank you very much

for you attention!


