Contemporary Computer-Aided
 Construction, Counting, Classification, AND CHARACTERIZATION
 of Combinatorial Configurations

Patric R. J. Östergård
Department of Communications and Networking
Aalto University
P.O. Box 13000, 00076 Aalto, Finland

E-mail: patric.ostergard@tkk.fi
Joint work with Alexander Hulpke, Petteri Kaski,
Veli Mäkinen, Kevin Phelps, and Olli Pottonen.
The research was supported in part by the Academy of
Finland.

Outline of Talk

1. Construction and Characterization, via switching.
2. Classification, via exhaustive search.
3. Counting, via dynamic programming.

Switching

Switching is a local transformation that leaves the main (basic as well as regularity) parameters of a combinatorial object unchanged.

Example. 2-switch of a graph.

History of Switching

Norton (1939) and Fisher (1940) Latin squares and Steiner triple systems $[\mathrm{F}, \mathrm{N}]$.
Vasil'ev (1962) (Perfect) codes [V].
Van Lint and Seidel (1966) : Graphs (Seidel switching) [LS].
[F] R. A. Fisher, An examination of the different possible solutions of a problem in incomplete blocks, Ann. Eugenics 10 (1940), 52-75.
[N] H. W. Norton, The 7×7 squares, Ann. Eugenics 9 (1939), 269307.
[V] Ju. L. Vasil'ev, On nongroup close-packed codes, (in Russian), Problemy Kibernet. 8 (1962), 337-339.
[LS] J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, Indag. Math. 28 (1966), 335-348.

Why Switch?

There are many reasons for switching, including the following:

1. As a part of a mathematical proof.
2. To define neighbors in a local search algorithm.
3. To try to find new combinatorial objects from old ones.
4. In order to gain understanding in why there are so many equivalence/isomorphism classes of objects with certain parameters.

Switching Unrestricted Codes

All codes in the sequel are binary.
Example. Code with minimum distance 3.

0000000011111111
0111010010001101
0001111000111001
0011001110010011
0010110101010101
0110101001001011
0101100100100111

Switching Unrestricted Codes

All codes in the sequel are binary.
Example. Code with minimum distance 3.

0000000011111111
0111010010001101
0001111000111001
0011001110010011
0010110101010101
0110101001001011
0101100100100111

Switching Unrestricted Codes

All codes in the sequel are binary.
Example. Code with minimum distance 3.

0000010011111111
0111010010001101
0001111000111001
0011001110010011
0010110101010101
0110101001001011
0101100100100111

Switching Unrestricted Codes

All codes in the sequel are binary.
Example. Code with minimum distance 3.

0000010011111111
0111010010001101
0001111000111001
0011001110010011
0010110101010101
0110101001001011
0101100100100111

Switching Unrestricted Codes

All codes in the sequel are binary.
Example. Code with minimum distance 3.

0000010011100011
0111010010001101
0001111000111001
0011001110010011
0010110101010101
0110101001001011
0101100100100111

Switching Unrestricted Codes

All codes in the sequel are binary.
Example. Code with minimum distance 3.

> 0000010011100011 0111010010001101 0001111000111001 0011001110010011 0010110101010101 0110101001001011 0101100100100111

Switching Unrestricted Codes

All codes in the sequel are binary.
Example. Code with minimum distance 3.

> 0100011111100011
> 0111010010001101
> 0001111000111001
> 0011001110010011
> 0010110101010101
> 0110101001001011
> 0101100100100111

Switching Unrestricted Codes

All codes in the sequel are binary.
Example. Code with minimum distance 3.

> 0100011111100011
> 0111010010001101
> 0001111000111001
> 0011001110010011
> 0010110101010101
> 0110101001001011
> 0101100100100111

Switching Unrestricted Codes

All codes in the sequel are binary.
Example. Code with minimum distance 3.

> 0100011111100001
> 0111010010001101
> 0001111000111001 0011001110010011 0010110101010101
> 0110101001001011
> 0101100100100111

Switching via an Auxiliary Graph

1. Consider a particular coordinate i.
2. Construct a graph G with one vertex for each codeword and an edge between two vertices that differ in the i th coordinate and whose mutual distance equals the minimum distance of the code.
3. Complement the ith coordinate in a connected component of the graph G.

Example: Auxiliary Graph

For the previous example we get the following auxiliary graph with respect to the first coordinate:

Switching Graph and Switching Classes

Switching graph: A graph with one vertex for each equivalence class of codes and with an edge if there is a switch taking a code from one class to the other.

Switching class: A connected component of the switching graph, in other words, a complete set of (equivalence classes of) codes connected via a sequence of switches.

Example: Switching Error-Correcting Codes

n	d	$A(n, d)$	N	Sizes of switching classes
6	3	8	1	1
7	3	16	1	1
8	3	20	5	3,2
9	3	40	1	1
10	3	72	562	$165,134,110,89,26,15,14,9$
11	3	144	7398	7013,385

Switching Constant Weight Codes

The aforementioned switch changes the weight of codewords.
\Rightarrow
If we consider codes with constant Hamming weight, then we need to apply a switch in a different way.

How?

Modification to Basic Switch

> 0000111
> 1100100
> 0110001
> 0011100
> 0101010
> 1010010
> 1001001

Modification to Basic Switch

0000111
1100100
0110001
0011100
0101010
1010010
1001001

Modification to Basic Switch

> 1000111
> 0100100
> 0110001
> 0011100
> 0101010
> 1010010
> 1001001

Modification to Basic Switch

> 1000111
> 0100100
> 0110001
> 0011100
> 0101010
> 1010010
> 1001001

Modification to Basic Switch

1000100
0100111
0110001
0011100
0101010
1010010
1001001

Modification to Basic Switch

1000100
0100111
0110001
0011100
0101010
1010010
1001001

Modification to Basic Switch

1100100
0000111
0110001
0011100
0101010
1010010
1001001

Switching Designs

What we just saw is the well-known Pasch switch for designs!
General approach for Steiner systems:

1. Consider two points i and j.
2. Construct a graph G with a vertex for each block that contains exactly one of the points i, j and with edges between blocks whose intersection contains neither i nor j and that are "at minimum distance".
3. Permute the points i and j in a connected component of G (actually: complement).

A switch is a particular trade!

Example: Switching Steiner Systems

The switching graph of the 11084874829 isomorphism classes of Steiner triple systems of order 19 is connected.

In fact, even the switching graph of the labeled 1348410350618155344199680000 designs is connected.

This work was computationally rather challenging (required a lot of memory).

The 1054163 isomorphism classes of Steiner quadruple systems of order 16 belong to switching classes of size $1043486,1853,951$, 920, 676, 584, 495, 427,...,1.
[KMO] P. Kaski, V. Mäkinen, and P. R. J. Ö., The cycle switching graph of the Steiner triple systems order 19 is connected, submitted for publication.

Switching Covering Codes

A covering code has the property that all words in the ambient space are within Hamming distance R from some codeword.

How to switch a covering code with codewords $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ in some coordinate s ?

Criterion for edges in auxiliary graph:

$$
\begin{equation*}
d_{H}\left(\mathbf{c}, \mathbf{c}^{\prime}\right) \leq 2 R+1, \quad d_{H}\left(\mathbf{c}, \mathbf{c}^{\prime}\right) \text { odd }, \quad c_{s} \neq c_{s}^{\prime} \tag{1}
\end{equation*}
$$

Switching Covering Codes: Outline of Proof

It suffices to consider a word \mathbf{b} that is at distance R from a codeword a that is altered and the case when $a_{s}=b_{s}$.

Consider the word \mathbf{c}, which coincides with \mathbf{b}, except that $a_{s}=b_{s} \neq c_{s}$; and also consider the word \mathbf{e} that covers \mathbf{c}. We get three cases:

1) $e_{s}=b_{s}: \Rightarrow d_{H}(\mathbf{b}, \mathbf{e}) \leq R-1$.
2) $e_{s} \neq b_{s}$ and $d_{H}(\mathbf{c}, \mathbf{e}) \leq R-1: \ldots$
3) $e_{s} \neq b_{s}$ and $d_{H}(\mathbf{c}, \mathbf{e})=R: \Rightarrow d_{H}(\mathbf{a}, \mathbf{e})$ is odd and smaller than or equal to $R+1+R=2 R+1 \Rightarrow$ the conditions of (1) are fulfilled.

Example: Switching Covering Codes

n	R	$K(n, R)$	N	Sizes of switching classes
5	1	7	1	1
6	1	12	2	2
7	1	16	1	1
8	1	32	10	$5,3,2$

The two known codes attaining $K(9,1)=62$ belong to one switching class.

1-Perfect Codes

The 1-perfect codes are error-correcting codes with minimum distance 3 and covering codes with covering radius 1 . They exist for all lengths $n=2^{i}-1$. We consider $n=15$; then there are $2^{11}=2048$ codewords.

Fact. The codewords at distance 3 from a codeword of a 1-perfect code form a Steiner triple system. The codewords at distance 4 from a codeword of an extended 1-perfect code form a Steiner quadruple system.

Classifying the 1-Perfect Codes of Length 15

1. Consider the objects obtained by puncturing the 1054163 Steiner quadruple systems of order 16 [KOP].
2. For any such seed and the all-zero word (141 words in total), exhaustively search for the remaining $2048-141=1907$ codewords (instances of exact cover).
3. Extend the solutions to length 16.
4. Carry out isomorph rejection.
[KOP] P. Kaski, P. R. J. Ö., and O. Pottonen, The Steiner quadruple systems of order 16, J. Combin. Theory Ser. A 113 (2006), 17641770.

Classification Result

There are 5983 inequivalent binary 1-perfect codes of length 15; these have 2165 inequivalent extensions [OP].
The sizes of the switching classes have been determined in [OPP]: $5819,153,3,2,2,1,1,1$, and 1.
[OP] P. R. J. Ö. and O. Pottonen, The perfect binary one-error-correcting codes of length 15: Part I-Classification, IEEE Trans. Inform. Theory 55 (2009), 4657-4660, 2009. Codes at arXiv:0806.2513v3.
[OPP] P. R. J. Ö., O. Pottonen, and K. T. Phelps, The perfect binary one-error-correcting codes of length 15: Part II-Properties, IEEE Trans. Inform. Theory, to appear.

Shortened Perfect Codes

Theorem A. (Best \& Brouwer, 1977) When 1-perfect codes are shortened once, twice, or three times, one gets optimal one-error-correcting codes.
Theorem B. (Blackmore, 1999) The inverse of Theorem A holds for codes with the parameters of 1-perfect codes shortened once. Theorem C. (Ö. \& Pottonen [OP]) The inverse of Theorem A does not always hold for codes with the parameters of 1-perfect codes shortened twice.

Proof. Switching the codes obtained by shortening the 1-perfect codes of length 15 twice gives two new codes.
[OP] P. R. J. Ö. and O. Pottonen, Two optimal one-error-correcting codes of length 13 that are not doubly shortened perfect codes, Des. Codes Cryptogr., to appear.

Counting with the Orbit-Stabilizer Theorem

The Orbit-Stabilizer Theorem can sometimes be used to count the number of isomorphism classes faster than they can be generated:

$$
|\Omega|=|\Gamma| \sum_{i} \frac{N_{i}}{i}
$$

「 a finite group
Ω a finite set on which Γ acts
N_{i} the number of orbits on Ω whose elements have stabilizer subgroups of order i in Γ.

From $|\Omega|$ and N_{2}, N_{3}, \ldots, we can easily calculate N_{1} and thereby obtain $N=\sum_{i} N_{i}$.

Counting Latin Squares

The following technique for counting the number of Latin squares of side n, that is, $|\Omega|$, is well known [MW].

- Approach the problem via 1-factorizations of $K_{n, n}$.
- A set of $k 1$-factorizations of $K_{n, n}$ can be obtained as a union of $k-1$ 1-factorizations with one more 1-factorization \Rightarrow dynamic programming possible.
- A set of $k 1$-factorizations of $K_{n, n}$ form a k-regular bipartite graphs. It suffices to maintain counts for (isomorphism class representatives of) such regular graphs.
[MW] B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Comb. 9 (2005), 335-344.

Counting Latin squares of side 11

For $n=11$, we know $|\Omega|, N_{3}, N_{4}, \ldots$, that is, everything but N_{1} and N_{2}.

Idea. Count N_{2} in a way that is analogous the aforemention technique for obtaining $|\Omega|$.

This idea, which is straightforward on a principal level, but involves MANY details and subcases, was implemented in [HKO].
[HKO] A. Hulpke, P. Kaski, and P. R. J. Ö, The number of Latin squares of order 11, Math. Comp., to appear.

The Counts

There are

- 2036029552582883134196099 main classes of Latin squares of order 11;
- 6108088657705958932053657 isomorphism classes of one-factorizations of $K_{11,11}$;
- 12216177315369229261482540 isotopy classes of Latin squares of order 11;
- 1478157455158044452849321016 isomorphism classes of loops of order 11; and
- 19464657391668924966791023043937578299025 isomorphism classes of quasigroups of order 11.

A Final Comment

The main contribution here is not the numbers but the algorithms.
Example. (Work in progress) The number of Hamilton cycles of a graph can be counted via dynamic programming. If this count is greater than 0 , then the graph is Hamiltonian. NP-complete problem!

