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Permutations

Definition: Permutation

A permutation of degree n is a bijection of the set Ω of cardinality
n onto itself. (Usually, Ω = {1, 2, . . . , n}.)
A permutation can be represented either by an n-tuple, or by a
permutation matrix, or in cyclic form.

Definition: Hamming distance of permutations

Let x , y permutations of degree n. Then, d(x , y) = |{i | ix 6= iy}|.

Example: x = [2 3 1 4 5], y = [5 3 4 2 1].
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Definition: Permutation

A permutation of degree n is a bijection of the set Ω of cardinality
n onto itself. (Usually, Ω = {1, 2, . . . , n}.)
A permutation can be represented either by an n-tuple, or by a
permutation matrix, or in cyclic form.

Definition: Hamming distance of permutations

Let x , y permutations of degree n. Then, d(x , y) = |{i | ix 6= iy}|.

Example: x = [2 3 1 4 5], y = [5 3 4 2 1]. d(x , y) = 4.
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Permutations

Definition: Permutation

A permutation of degree n is a bijection of the set Ω of cardinality
n onto itself. (Usually, Ω = {1, 2, . . . , n}.)
A permutation can be represented either by an n-tuple, or by a
permutation matrix, or in cyclic form.

Definition: Hamming distance of permutations

Let x , y permutations of degree n. Then, d(x , y) = |{i | ix 6= iy}|.

Example: x =

 0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

, y =

 0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0

 .
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Permutations

Definition: Permutation

A permutation of degree n is a bijection of the set Ω of cardinality
n onto itself. (Usually, Ω = {1, 2, . . . , n}.)
A permutation can be represented either by an n-tuple, or by a
permutation matrix, or in cyclic form.

Definition: Hamming distance of permutations

Let x , y permutations of degree n. Then, d(x , y) = |{i | ix 6= iy}|.

Example: x =

 0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

, y =

 0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0

 . d = 4
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Permutations

Definition: Permutation

A permutation of degree n is a bijection of the set Ω of cardinality
n onto itself. (Usually, Ω = {1, 2, . . . , n}.)
A permutation can be represented either by an n-tuple, or by a
permutation matrix, or in cyclic form.

Definition: Hamming distance of permutations

Let x , y permutations of degree n. Then, d(x , y) = |{i | ix 6= iy}|.

Example: x = (123), y = (234)(15).
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Permutations

Definition: Permutation

A permutation of degree n is a bijection of the set Ω of cardinality
n onto itself. (Usually, Ω = {1, 2, . . . , n}.)
A permutation can be represented either by an n-tuple, or by a
permutation matrix, or in cyclic form.

Definition: Hamming distance of permutations

Let x , y permutations of degree n. Then, d(x , y) = |{i | ix 6= iy}|.

Example: x = (123), y = (234)(15). xy−1 = (1435), d = 4.
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Permutation codes and Latin squares

Definition: Permutation codes (or arrays)

A permutation code (or array) of length n and distance d is a set
T of permutations from some fixed set of n symbols such that the
Hamming distance between each distinct x , y ∈ T is at least d .

An example with n = 3 and d = 2 in matrix form:

 1 1 2 2 3 3
2 3 1 3 1 2
3 2 3 1 2 1

.

Proposition (folklore)

|T | ≤ d(d + 1) · · · n.

Proof. Put t = n − d + 1 and look at the first t rows. Then, all
columns give different arrangement of length t; |T | ≤ n!

(n−t)! .
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Permutation codes and sharply multiply transitive sets

Definition: Sharply t-transitive sets of permutations

The set S of permutations of degree n is sharply t-transitive, if for
any t-tuples (i1, . . . , it), (j1, . . . , jt) there is a unique element s ∈ S
such that i sk = jk for all k. (1 ≤ ik , jk ≤ n.)

Notice that for a sharply t-transitive set S , we have
d(x , y) ≥ n − t + 1 for all x , y ∈ S .

Thus, sharply t-transitive sets are precisely the permutation
codes of maximal size with parameter d = n − t + 1.

If S is a sharply t-transitive set of degree n, then it is a
sharply 1-transitive set on

Ω = {(i1, . . . , it) | ik 6= i` if k 6= `}.
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Sharply 1 and 2-transitive sets

Sharply 1-transitive sets of permutations
are Latin squares.


1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

 .

Let F be a field and consider the set

S = {x 7→ ax + b | a ∈ F∗, b ∈ F}

of F→ F maps. Then, S is a sharply 2-transitive set of
permutations.

It is well known that a sharply 2-transitive set of degree n
corresponds to an affine plane of order n. [Witt, 1938]

MAIN PROBLEM: Construct 2-transitive sets of not prime
power degree!!!
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Finite 2-transitive permutation groups

Program from the 1970’s (Lorimer, O’Nan, Grundhöfer, Müller)

Show for classes of 2-transitive finite groups that they don’t
contain sharply 2-transitive sets.

The classification of finite 2-transitive permutation groups uses the
CTFSG.

1 Groups of affine type. Such groups are vector spaces + matrix
groups over a finite field. The degree is prime power.

2 Almost simple groups. Groups with deep combinatorial and
finite geometric structure.

3 “No structure” at all: An, Sn.

Hard nuts: Mathieu and other sporadic groups, PSp(2n, 2).

Still open: An, Sn, M24.
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Methods

Existing methods, used for some specific permutation action of
2-transitive permutation groups:

Enumeration methods by Lorimer (1973) deals with the
groups of Ree type, PU(3, q2) and the Suzuki groups.

O’Nan’s contradicting subgroup method (1985) was used to
exclude the groups PΓL(m, q) (m ≥ 3 or q ≥ 5), and the
Higman-Sims sporadic simple group.

The character theoretical method by Grundhöfer and P. Müller
(2008) deals with PSp(2d , 2) and the Conway group Co3.

Computational methods using Österg̊ard’s CLIQUER and
Soicher’s GRAPE programs.
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The main lemma

Main Lemma

Let G be a permutation group on a finite set Ω. Assume that
there are subsets B, C of Ω and a prime p such that p - |B||C | and
p | |B ∩ C g | for all g ∈ G . Then G contains no sharply transitive
set of permutations.

Proof. Assume S ⊆ G is a sharply transitive set. By double
counting the set

{(b, c , s) | b ∈ B, c ∈ C , s ∈ S , cs = b},

we obtain |B||C | =
∑

s∈S |B ∩ C s | ≡ 0 (mod p).
Contradiction.
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1st application: Sharply 1-transitive sets in M22

Theorem 1

In its natural permutation representation of degree 22, the Mathieu
group M22 does not contain a sharply transitive set of
permutations.

Proof.

Let Ω′ = {1, . . . , 23}, Ω = {1, . . . , 22} and G = M22 be the
stabilizer of 23 ∈ Ω′.

Let B ⊂ Ω be a block of the Witt design W23, and,
C = Ω \ B.

Then, |B| = 7, |C | = 15 and for all g ∈ G ,
|B ∩ C g | = 0, 4 or 6.

The Main Lemma implies the result with p = 2.
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2nd application: Sharply 1-transitive sets in Sp(2n, 2m)

Theorem 2

Let n, m be positive integers, n ≥ 2, q = 2m. Let G = Sp(2n, q)
be the permutation group in its natural permutation actions on
Ω = F2n

q \ {0}. Then, G does not contain a sharply transitive set
of permutations.

Proof.

Let E be an elliptic quadric of PG (2n − 1, q) whose quadratic
equation polarizes to the invariant symplectic form 〈., .〉 of G .

Let ` be a line of PG (2n − 1, q) which is nonsingular with
respect to 〈., .〉.
Then for any g ∈ G , `g is nonsingular and |E ∩ `g | = 0 or 2.

Furthermore, both |E| and |`| are odd for n ≥ 2. We apply the
Main Lemma with B = E , C = ` and p = 2.
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3rd applitation: Sharply 2-transitive sets in An

Theorem 3

If n ≡ 2, 3 (mod 4) then the alternating group An does not
contain a sharply 2-transitive set of permutations.

Proof.

Put B = {(i , j) | i < j}, C = {(i , j) | i > j}.
By the assumption on n, |B| = |C | = n(n − 1)/2 is odd.

For any permutation g ∈ Sn, we have

|{(i , j) | i < j , ig > jg}| ≡ sgn(g) (mod 2).

This implies |B ∩ C g | ≡ 0 (mod 2) for all g ∈ An.

Corollary

The Mathieu group M23 does not contain a sharply 2-transitive set.
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A combinatorial proof of O’Nan’s theorem

Theorem (Lorimer, 1973)

If k ≥ 2 and q ≥ 5, then G = PΓL(k , q) does not contain a
sharply 2-transitive set of permutations.

Theorem (O’Nan, 1985)

G = PΓL(k, q) does not contain a sharply 2-transitive set of
permutations unless k = 2 and q = 2, 3, 4.

Proof. Uses character theory. � Sharp.

Theorem (Peter Müller, GN, 2009)

The automorphism group G of a nontrivial symmetric design D
does not contain a sharply 2-transitive set of permutations.

Proof. Combinatorial. � Put D = PG (k − 1, q) for k ≥ 3.
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