Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Extremal maximal isotropic codes of Type I-IV

Annika Meyer

RWTH Aachen University

16.04.2010, Thurnau

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Overview

1 Introduction

- 2 Extremal self-dual codes of Type I-IV
 - The classical Types I-IV
 - Extremality and a uniqueness result
- 3 Maximal self-orthogonal codes
 - Extremality for maximal self-orthogonal codes
 - A uniqueness result
 - Examples

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Let \mathbb{F} be a finite field, $N \in \mathbb{N}$. A *code* of length N is a subspace $C \leq \mathbb{F}^N$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Let \mathbb{F} be a finite field, $N \in \mathbb{N}$. A *code* of length N is a subspace $C \leq \mathbb{F}^N$.

Let α be an automorphism of \mathbb{F} , of order 1 or 2. The *dual* of *C* is

$$\mathcal{C}^{\perp} := \{ \mathbf{v} \in \mathbb{F}^{\mathcal{N}} \mid \sum_{i=1}^{\mathcal{N}} \mathbf{v}_i \cdot \alpha(\mathbf{c}_i) = 0 \text{ for all } \mathbf{c} \in \mathbf{C} \},$$

which is, again, a code.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 00000 Maximal self-orthogonal codes

Let \mathbb{F} be a finite field, $N \in \mathbb{N}$. A *code* of length N is a subspace $C \leq \mathbb{F}^N$.

Let α be an automorphism of \mathbb{F} , of order 1 or 2. The *dual* of *C* is

$$\mathcal{C}^{\perp} := \{ \mathbf{v} \in \mathbb{F}^{N} \mid \sum_{i=1}^{N} \mathbf{v}_{i} \cdot \alpha(\mathbf{c}_{i}) = 0 \text{ for all } \mathbf{c} \in \mathbf{C} \},$$

which is, again, a code. If $C \subseteq C^{\perp}$ then *C* is called *self-orthogonal*.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 00000 Maximal self-orthogonal codes

Let \mathbb{F} be a finite field, $N \in \mathbb{N}$. A *code* of length N is a subspace $C \leq \mathbb{F}^N$.

Let α be an automorphism of \mathbb{F} , of order 1 or 2. The *dual* of *C* is

$$\mathcal{C}^{\perp} := \{ \mathbf{v} \in \mathbb{F}^{\mathcal{N}} \mid \sum_{i=1}^{\mathcal{N}} \mathbf{v}_i \cdot \alpha(\mathbf{c}_i) = 0 \text{ for all } \mathbf{c} \in \mathbf{C} \},$$

which is, again, a code. If $C \subseteq C^{\perp}$ then *C* is called *self-orthogonal*. If $C = C^{\perp}$ then *C* is called *self-dual*.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

The *(Hamming)* weight of $v \in \mathbb{F}^N$ is the number of nonzero entries in v, denoted by wt(v).

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

The *(Hamming)* weight of $v \in \mathbb{F}^N$ is the number of nonzero entries in v, denoted by wt(v).

The *minimum weight* of a code $C \leq \mathbb{F}^N$ is

$$d(C) := \min_{0 \neq c \in C} \operatorname{wt}(c).$$

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

The *(Hamming)* weight of $v \in \mathbb{F}^N$ is the number of nonzero entries in v, denoted by wt(v).

The *minimum weight* of a code $C \leq \mathbb{F}^N$ is

$$d(C) := \min_{0 \neq c \in C} \operatorname{wt}(c).$$

Due to the linearity of *C*,

$$d(C) = \min_{c \neq c' \in C} |\{i \in \{1, \dots, N\} \mid c_i \neq c'_i\}|.$$

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

The *(Hamming)* weight of $v \in \mathbb{F}^N$ is the number of nonzero entries in v, denoted by wt(v).

The *minimum weight* of a code $C \leq \mathbb{F}^N$ is

$$d(C) := \min_{0 \neq c \in C} \operatorname{wt}(c).$$

Due to the linearity of *C*,

$$d(C) = \min_{c \neq c' \in C} |\{i \in \{1, \ldots, N\} \mid c_i \neq c'_i\}|.$$

Using C, one can

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

The *(Hamming)* weight of $v \in \mathbb{F}^N$ is the number of nonzero entries in v, denoted by wt(v).

The *minimum weight* of a code $C \leq \mathbb{F}^N$ is

$$d(C) := \min_{0 \neq c \in C} \operatorname{wt}(c).$$

Due to the linearity of C,

$$d(C) = \min_{c \neq c' \in C} |\{i \in \{1, \dots, N\} \mid c_i \neq c'_i\}|.$$

Using *C*, one can

• detect up to d(C) - 1 errors,

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

The *(Hamming)* weight of $v \in \mathbb{F}^N$ is the number of nonzero entries in v, denoted by wt(v).

The *minimum weight* of a code $C \leq \mathbb{F}^N$ is

$$d(C) := \min_{0 \neq c \in C} \operatorname{wt}(c).$$

Due to the linearity of C,

$$d(\mathcal{C}) = \min_{c \neq c' \in \mathcal{C}} |\{i \in \{1, \ldots, N\} \mid c_i \neq c'_i\}|.$$

Using *C*, one can

• detect up to d(C) - 1 errors,

• correct up to
$$\lfloor \frac{d(C)-1}{2} \rfloor$$
 errors.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

The classical Types I-IV

Theorem (Gleason, Pierce 1967)

Let $C = C^{\perp} \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $wt(c) \in m\mathbb{Z}$ for all $c \in C$. Then one of the following holds.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

The classical Types I-IV

Theorem (Gleason, Pierce 1967) Let $C = C^{\perp} \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $wt(c) \in m\mathbb{Z}$ for all $c \in C$. Then one of the following holds. (I) q = 2 and m = 2 (self-dual binary codes)

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

The classical Types I-IV

Theorem (Gleason, Pierce 1967)

Let $C = C^{\perp} \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $wt(c) \in m\mathbb{Z}$ for all $c \in C$. Then one of the following holds.

(I) q = 2 and m = 2 (self-dual binary codes),

(II) q = 2 and m = 4 (doubly-even self-dual binary codes)

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

The classical Types I-IV

Theorem (Gleason, Pierce 1967) Let $C = C^{\perp} \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $wt(c) \in m\mathbb{Z}$ for all $c \in C$. Then one of the following holds. (I) q = 2 and m = 2 (self-dual binary codes), (II) q = 2 and m = 4 (doubly-even self-dual binary codes), (III) q = 3 and m = 3 (self-dual ternary codes)

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

The classical Types I-IV

Theorem (Gleason, Pierce 1967) Let $C = C^{\perp} \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that wt $(c) \in m\mathbb{Z}$ for all $c \in C$. Then one of the following holds. (I) q = 2 and m = 2 (self-dual binary codes), (II) q = 2 and m = 4 (doubly-even self-dual binary codes), (III) q = 3 and m = 3 (self-dual ternary codes), (IV) q = 4 and m = 2 (quaternary Hermitian self-dual codes)

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

The classical Types I-IV

Theorem (Gleason, Pierce 1967) Let $C = C^{\perp} \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $wt(c) \in m\mathbb{Z}$ for all $c \in C$. Then one of the following holds. (I) q = 2 and m = 2 (self-dual binary codes), (II) q = 2 and m = 4 (doubly-even self-dual binary codes), (III) q = 3 and m = 3 (self-dual ternary codes), (IV) q = 4 and m = 2 (quaternary Hermitian self-dual codes), (o) q = 4 and m = 2 (certain Euclidean self-dual codes)

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

The classical Types I-IV

Theorem (Gleason, Pierce 1967) Let $C = C^{\perp} \leq \mathbb{F}_{a}^{N}$ and let $m \in \mathbb{N}$ such that wt(c) $\in m\mathbb{Z}$ for all $c \in C$. Then one of the following holds. (1) q = 2 and m = 2 (self-dual binary codes). (II) q = 2 and m = 4 (doubly-even self-dual binary codes), (III) q = 3 and m = 3 (self-dual ternary codes), (IV) q = 4 and m = 2 (quaternary Hermitian self-dual codes), (o) q = 4 and m = 2 (certain Euclidean self-dual codes). (d) m = 2 and $C \cong \perp^{N/2} (1, a)$, where either q is even and a = 1 or $q \equiv 1 \pmod{4}$ and $a^2 = -1$ or α has order 2 and $\mathbf{a} \cdot \alpha(\mathbf{a}) = -\mathbf{1}.$

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV $^{\circ}_{\bullet\circ\circ\circ\circ}$

Maximal self-orthogonal codes

Extremality and a uniqueness result

The first four Types in the previous theorem are named I-IV.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV o • 0000 Maximal self-orthogonal codes

Extremality and a uniqueness result

The first four Types in the previous theorem are named I-IV.

Theorem Let $T \in \{I, ..., IV\}$ and let C be a self-dual Type T code of length N. Then $d(C) \le \delta(T, N)$, where

$$\delta(T, N) := \begin{cases} 2 + 2\lfloor \frac{N}{8} \rfloor, & T = \mathsf{I} \\ 4 + 4\lfloor \frac{N}{24} \rfloor, & T = \mathsf{II} \\ 3 + 3\lfloor \frac{N}{12} \rfloor, & T = \mathsf{III} \\ 2 + 2\lfloor \frac{N}{6} \rfloor, & T = \mathsf{IV}. \end{cases}$$

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV o • 0000 Maximal self-orthogonal codes

Extremality and a uniqueness result

The first four Types in the previous theorem are named I-IV. Theorem

Let $T \in \{I, ..., IV\}$ and let C be a self-dual Type T code of length N. Then $d(C) \leq \delta(T, N)$, where

$$\delta(T, N) := \begin{cases} 2 + 2\lfloor \frac{N}{8} \rfloor, & T = \mathsf{I} \\ 4 + 4\lfloor \frac{N}{24} \rfloor, & T = \mathsf{II} \\ 3 + 3\lfloor \frac{N}{12} \rfloor, & T = \mathsf{III} \\ 2 + 2\lfloor \frac{N}{6} \rfloor, & T = \mathsf{IV} \,. \end{cases}$$

If d(C) reaches the above bound then C is called *extremal*.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV o o o o Maximal self-orthogonal codes

Extremality and a uniqueness result

We can read off d(C) from the (Hamming) weight enumerator

$$\mathsf{we}(\mathcal{C}) := \sum_{c \in \mathcal{C}} y^{\mathsf{wt}(c)} x^{N-\mathsf{wt}(c)} \in \mathbb{C}[x, y],$$

a homgeneous complex polynomial of degree *N* which counts the codewords of each Hamming weight.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV o o o o Maximal self-orthogonal codes

Extremality and a uniqueness result

We can read off d(C) from the (Hamming) weight enumerator

$$\mathsf{we}(\mathcal{C}) := \sum_{c \in \mathcal{C}} y^{\mathsf{wt}(c)} x^{N-\mathsf{wt}(c)} \in \mathbb{C}[x, y],$$

a homgeneous complex polynomial of degree *N* which counts the codewords of each Hamming weight.

If C has minimum weight d then we(C) is of the form

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV o o o o Maximal self-orthogonal codes

Extremality and a uniqueness result

We can read off d(C) from the (Hamming) weight enumerator

$$\mathsf{we}(\mathcal{C}) := \sum_{c \in \mathcal{C}} y^{\mathsf{wt}(c)} x^{N-\mathsf{wt}(c)} \in \mathbb{C}[x, y],$$

a homgeneous complex polynomial of degree *N* which counts the codewords of each Hamming weight.

If C has minimum weight d then we(C) is of the form

x^N

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV o o o o Maximal self-orthogonal codes

Extremality and a uniqueness result

We can read off d(C) from the (Hamming) weight enumerator

$$\mathsf{we}(\mathcal{C}) := \sum_{c \in \mathcal{C}} y^{\mathsf{wt}(c)} x^{N-\mathsf{wt}(c)} \in \mathbb{C}[x, y],$$

a homgeneous complex polynomial of degree *N* which counts the codewords of each Hamming weight.

If C has minimum weight d then we(C) is of the form

$$x^{N} + a_{d}y^{d}x^{N-d}$$

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV o o o o Maximal self-orthogonal codes

Extremality and a uniqueness result

We can read off d(C) from the (Hamming) weight enumerator

$$\mathsf{we}(\mathcal{C}) := \sum_{c \in \mathcal{C}} y^{\mathsf{wt}(c)} x^{N-\mathsf{wt}(c)} \in \mathbb{C}[x, y],$$

a homgeneous complex polynomial of degree *N* which counts the codewords of each Hamming weight.

If C has minimum weight d then we(C) is of the form

$$x^N + a_d y^d x^{N-d} + \ldots + a_N y^N.$$

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

Extremality and a uniqueness result

Theorem If *C* is a self-dual Code of Type I, II, III or IV then $we(C) \in \mathbb{C}[f_T, g_T]$ according to the table below.

Т	f _T	gт
I	$\frac{x^2 + y^2}{i_2}$	$x^2y^2(x^2-y^2)^2$ Hamming code e_8
II	$x^8 + 14x^4y^4 + y^8$ Hamming code e_8	$x^4y^4(x^4-y^4)^4$ binary Golay code g_{24}
111	$x^4 + 8xy^3$ tetracode t_4	$y^3(x^3 - y^3)^3$ ternary Golay code g_{12}
IV	$\begin{array}{c} x^2 + 3y^2 \\ i_2 \otimes \mathbb{F}_4 \end{array}$	$y^2(x^2 - y^2)^2$ hexacode h_6

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV $^{\circ}_{\circ\circ\circ\circ\bullet}$

Maximal self-orthogonal codes

Extremality and a uniqueness result

Fix an integer N and a Type $T \in \{I, ..., IV\}$ and let $\delta := \delta(T, N)$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV $^{\circ}_{\circ\circ\circ\circ\bullet}$

Maximal self-orthogonal codes

Extremality and a uniqueness result

Fix an integer *N* and a Type $T \in \{I, ..., IV\}$ and let $\delta := \delta(T, N)$. There exists a *unique* element in $\mathbb{C}[f_T, g_T]$ of the form

$$x^{N} + a_{\delta} y^{\delta} x^{N-\delta} + \cdots + a_{N} y^{N},$$

where $a_i \in \mathbb{Q}$ for $i = 1, \ldots, N$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV $^{\circ}_{\circ\circ\circ\circ\bullet}$

Maximal self-orthogonal codes

Extremality and a uniqueness result

Fix an integer *N* and a Type $T \in \{I, ..., IV\}$ and let $\delta := \delta(T, N)$. There exists a *unique* element in $\mathbb{C}[f_T, g_T]$ of the form

$$x^{N}+a_{\delta}y^{\delta}x^{N-\delta}+\cdots+a_{N}y^{N},$$

where $a_i \in \mathbb{Q}$ for i = 1, ..., N. Using the Bürmann-Lagrange formula, one computes that $a_{\delta} \neq 0$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV $^{\circ}_{\circ\circ\circ\circ\bullet}$

Maximal self-orthogonal codes

Extremality and a uniqueness result

Fix an integer *N* and a Type $T \in \{I, ..., IV\}$ and let $\delta := \delta(T, N)$. There exists a *unique* element in $\mathbb{C}[f_T, g_T]$ of the form

$$x^{N}+a_{\delta}y^{\delta}x^{N-\delta}+\cdots+a_{N}y^{N},$$

where $a_i \in \mathbb{Q}$ for i = 1, ..., N. Using the Bürmann-Lagrange formula, one computes that $a_{\delta} \neq 0$.

Corollary The weight enumerator of an extremal self-dual code of Type I-IV is unique.

Annika Meyer

RWTH Aachen University

The length of a self-dual Type T code, $T \in \{I, \dots, IV\}$, is always a multiple of

 $o_T := \deg(f_T) = \min(\{\deg(f_T), \deg(g_T)\}).$

Annika Meyer

RWTH Aachen University

The length of a self-dual Type T code, $\mathit{T} \in \{\mathsf{I}, \ldots, \mathsf{IV}\},$ is always a multiple of

 $o_T := \deg(f_T) = \min(\{\deg(f_T), \deg(g_T)\}).$

T	I II			IV	
o _T	2	8	4	2	

Annika Meyer

RWTH Aachen University

The length of a self-dual Type T code, $T \in \{I, \dots, IV\}$, is always a multiple of

$$o_T := \deg(f_T) = \min(\{\deg(f_T), \deg(g_T)\}).$$

Т	Ι			IV	
o _T	2	8	4	2	

Now assume that *N* is no multiple of o_T .

Annika Meyer

RWTH Aachen University

The length of a self-dual Type T code, $\mathit{T} \in \{\mathsf{I}, \ldots, \mathsf{IV}\},$ is always a multiple of

$$o_T := \deg(f_T) = \min(\{\deg(f_T), \deg(g_T)\}).$$

Т	Ι	II		IV	
o _T	2	8	4	2	

Now assume that *N* is no multiple of o_T .

Consider *maximal self-orthogonal* (m. s.-o.) codes, i.e. $C \subseteq C^{\perp}$ and if $C \subseteq D$ for a code $D \subseteq D^{\perp}$, then C = D.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Theorem Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^{\perp}) \leq 3 + 4\lfloor \frac{N+1}{24} \rfloor$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 00000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Theorem Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^{\perp}) \leq 3 + 4\lfloor \frac{N+1}{24} \rfloor$.

Proof.

Assume that $d(C^{\perp}) \ge 4 + 4\lfloor \frac{N+1}{24} \rfloor$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Theorem Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^{\perp}) \leq 3 + 4\lfloor \frac{N+1}{24} \rfloor$.

Proof.

Assume that $d(C^{\perp}) \ge 4 + 4\lfloor \frac{N+1}{24} \rfloor$. From the theory of Witt groups, $C^{\perp} = \langle C, v \rangle$, where wt(v) $\equiv_4 3$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 00000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Theorem Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^{\perp}) \leq 3 + 4\lfloor \frac{N+1}{24} \rfloor$.

Proof.

Assume that $d(C^{\perp}) \ge 4 + 4\lfloor \frac{N+1}{24} \rfloor$. From the theory of Witt groups, $C^{\perp} = \langle C, v \rangle$, where wt(v) $\equiv_4 3$.

Let $E = \begin{pmatrix} C & 0 \\ v & 1 \end{pmatrix} \leq \mathbb{F}_2^{N+1}$. Then $E = E^{\perp}$ is Type II, and

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Theorem Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^{\perp}) \leq 3 + 4\lfloor \frac{N+1}{24} \rfloor$.

Proof.

Assume that $d(C^{\perp}) \ge 4 + 4\lfloor \frac{N+1}{24} \rfloor$. From the theory of Witt groups, $C^{\perp} = \langle C, v \rangle$, where wt(v) $\equiv_4 3$.

Let
$$E = \begin{pmatrix} C & 0 \\ v & 1 \end{pmatrix} \leq \mathbb{F}_2^{N+1}$$
. Then $E = E^{\perp}$ is Type II, and

■ $d(E) \ge 4 + 4\lfloor \frac{N+1}{24} \rfloor$, hence *E* is extremal (i.e. equality holds). Thus the words in *E* of weight d(E) hold a design.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Theorem Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^{\perp}) \leq 3 + 4\lfloor \frac{N+1}{24} \rfloor$.

Proof.

Assume that $d(C^{\perp}) \ge 4 + 4\lfloor \frac{N+1}{24} \rfloor$. From the theory of Witt groups, $C^{\perp} = \langle C, v \rangle$, where wt(v) $\equiv_4 3$.

Let
$$E = \begin{pmatrix} C & 0 \\ v & 1 \end{pmatrix} \leq \mathbb{F}_2^{N+1}$$
. Then $E = E^{\perp}$ is Type II, and

■ $d(E) \ge 4 + 4\lfloor \frac{N+1}{24} \rfloor$, hence *E* is extremal (i.e. equality holds). Thus the words in *E* of weight d(E) hold a design.

■ {
$$e \in E$$
 | wt(e) = $d(E$)} = {($c \ 0$) | $c \in C^{\perp}$, wt(c) = $d(E$)}.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Theorem Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^{\perp}) \leq 3 + 4\lfloor \frac{N+1}{24} \rfloor$.

Proof.

Assume that $d(C^{\perp}) \ge 4 + 4\lfloor \frac{N+1}{24} \rfloor$. From the theory of Witt groups, $C^{\perp} = \langle C, v \rangle$, where wt(v) $\equiv_4 3$.

Let
$$E = \begin{pmatrix} C & 0 \\ v & 1 \end{pmatrix} \leq \mathbb{F}_2^{N+1}$$
. Then $E = E^{\perp}$ is Type II, and

■ $d(E) \ge 4 + 4\lfloor \frac{N+1}{24} \rfloor$, hence *E* is extremal (i.e. equality holds). Thus the words in *E* of weight d(E) hold a design.

■
$$\{e \in E \mid wt(e) = d(E)\} = \{(c \ 0) \mid c \in C^{\perp}, wt(c) = d(E)\}.$$

This is a contradiction, hence $d(C^{\perp}) \leq 3 + 4\lfloor \frac{N+1}{24} \rfloor$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Theorem Let $T \in \{I, ..., IV\}$ and let C be a maximal self-orthogonal Type T code of length N. Then $d(C^{\perp}) \leq \delta(T, N)$, where $\delta(T, N)$ is given in the table below.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Theorem Let $T \in \{I, ..., IV\}$ and let C be a maximal self-orthogonal Type T code of length N. Then $d(C^{\perp}) \leq \delta(T, N)$, where $\delta(T, N)$ is given in the table below.

Definition

A m. s.-o. code whose minimum distance reaches the above bound is called *dual extremal*.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Extremality for maximal self-orthogonal codes

Т	N	$\delta(T, N)$	Т	N	$\delta(T, N)$
I	<i>N</i> ≢ ₂₄ 23	$\delta(\mathbf{I}, \mathbf{N} + 1)$		20 (24)	<u>N+4</u>
	23 (24)	$3+4\lfloor \frac{N}{24} \rfloor$		21 (24)	$5+4\lfloor \frac{N}{24} \rfloor$
	1, 9 or 17 (24)	$1 + \lfloor \frac{N}{24} \rfloor + 3 \lfloor \frac{N+7}{24} \rfloor$		22 (24)	$6+4\lfloor \frac{N}{24} \rfloor$
	2 (24)	$\lfloor \frac{N+8}{6} \rfloor$		23 (24)	$7+4\lfloor \frac{N}{24} \rfloor$
	3,11 or 19 (24)	$1 + 2\lfloor \frac{N}{24} \rfloor + \lfloor \frac{N+5}{24} \rfloor + \lfloor \frac{N+13}{24} \rfloor$		1, 5 or 9 (12)	$3 + 3\lfloor \frac{N}{12} \rfloor$
	4 (24)	<u>N+8</u>		2 (12)	$1 + 3\lfloor \frac{N}{12} \rfloor$
Ш	5 (24)	$1 + 4\lfloor \frac{N}{24} \rfloor$	ш	3, 6 or 7 (12)	$2+3\lfloor \frac{N}{12} \rfloor$
	6 (24)	$2+4\lfloor \frac{N}{24} \rfloor$		10 (12)	$4 + 3\lfloor \frac{N}{12} \rfloor$
	7, 13, 14 or 15 (24)	$3+4\lfloor \frac{N}{24} \rfloor$		11 (12)	$5+3\lfloor \frac{N}{12} \rfloor$
	10 or 18 (24)	$1 + \lfloor \frac{N}{8} \rfloor + \lfloor \frac{N+8}{24} \rfloor$	IV/	1 or 3 (6)	$1+2\lfloor \frac{N}{6} \rfloor$
	12 (24)	<u>N</u> 6		5 (6)	$3+2\lfloor \frac{N}{6} \rfloor$

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?

Definition For $T \in \{I, ..., IV\}$ and $k \in \{1, ..., o_T - 1\}$, let $I_k^T := \langle we(C) | C m. s.-o. Type T code of length \equiv k(mod o_T) \rangle_{\mathbb{C}}.$

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?

Definition For $T \in \{1, ..., IV\}$ and $k \in \{1, ..., o_T - 1\}$, let $I_{\nu}^T := \langle we(C) | C m. s.-o. Type T code of length \equiv k(mod o_T) \rangle_{\mathbb{C}}.$

Let *C* be a m. s.-o. Type *T* code of length $\equiv k \pmod{o_T}$, and let *D* be a self-dual Type *T* code.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?

Definition For $T \in \{1, ..., IV\}$ and $k \in \{1, ..., o_T - 1\}$, let $I_k^T := \langle we(C) | C m. s.-o. Type T code of length \equiv k(mod o_T) \rangle_{\mathbb{C}}.$

Let *C* be a m. s.-o. Type *T* code of length $\equiv k \pmod{o_T}$, and let *D* be a self-dual Type *T* code.

Then $C \perp D$ is a m. s.-o. Type T code of length $\equiv k \pmod{o_T}$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?

Definition For $T \in \{1, ..., IV\}$ and $k \in \{1, ..., o_T - 1\}$, let $I_k^T := \langle we(C) | C m. s.-o. Type T code of length \equiv k(mod o_T) \rangle_{\mathbb{C}}.$

Let *C* be a m. s.-o. Type *T* code of length $\equiv k \pmod{o_T}$, and let *D* be a self-dual Type *T* code.

Then $C \perp D$ is a m. s.-o. Type T code of length $\equiv k \pmod{o_T}$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV o Maximal self-orthogonal codes ○●○ ○

A uniqueness result

Remark The space I_k^T is a module for $\mathbb{C}[f_T, g_T]$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Remark The space I_k^T is a module for $\mathbb{C}[f_T, g_T]$.

Theorem The $\mathbb{C}[f_T, g_T]$ -module I_k^T is free and finitely generated.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Remark The space I_k^T is a module for $\mathbb{C}[f_T, g_T]$.

Theorem The $\mathbb{C}[f_T, g_T]$ -module I_k^T is free and finitely generated. Bases for the $\mathbb{C}[f_T, g_T]$ -module I_k^T are given in the book "Self-dual codes and invariant theory" by Nebe, Rains and Sloane.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Remark The space I_k^T is a module for $\mathbb{C}[f_T, g_T]$.

Theorem

The $\mathbb{C}[f_T, g_T]$ -module I_k^T is free and finitely generated. Bases for the $\mathbb{C}[f_T, g_T]$ -module I_k^T are given in the book "Self-dual codes and invariant theory" by Nebe, Rains and Sloane. There exists a *triangular* basis p_0, \ldots, p_r of

 $(I_k^T)_N := \{ p \in I_k^T \mid p \text{ homogeneous of degree } N \},\$

for every integer $N \equiv k \pmod{o_T}$.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

 $p_i(1, y) = c_i^{(0)} y^0 + \ldots + c_i^{(N)} y^N$

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

A uniqueness result

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000 Maximal self-orthogonal codes

Examples

If $T \in \{II, III, IV\}$ and $N \equiv -1 \pmod{\sigma_T}$ then puncturing an extremal self-dual code of length N + 1 yields the dual of a dual extremal m. s.-o. code of length N.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000

Examples

If $T \in \{II, III, IV\}$ and $N \equiv -1 \pmod{\sigma_T}$ then puncturing an extremal self-dual code of length N + 1 yields the dual of a dual extremal m. s.-o. code of length N.

■ The dual of the binary [7, 4, 3] Hamming code is the unique dual extremal Type II code of length 7.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000

Examples

If $T \in \{II, III, IV\}$ and $N \equiv -1 \pmod{\sigma_T}$ then puncturing an extremal self-dual code of length N + 1 yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary [7, 4, 3] Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary [11, 6, 5] Golay code is the unique dual extremal Type III code of length 11.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000

Examples

If $T \in \{II, III, IV\}$ and $N \equiv -1 \pmod{o_T}$ then puncturing an extremal self-dual code of length N + 1 yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary [7, 4, 3] Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary [11,6,5] Golay code is the unique dual extremal Type III code of length 11.

This is false for T = I and N = 17, e.g. ($\delta(I, 18) = 4 = \delta(1, 17)$).

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000

Examples

If $T \in \{II, III, IV\}$ and $N \equiv -1 \pmod{o_T}$ then puncturing an extremal self-dual code of length N + 1 yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary [7, 4, 3] Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary [11,6,5] Golay code is the unique dual extremal Type III code of length 11.

This is false for T = I and N = 17, e.g. ($\delta(I, 18) = 4 = \delta(1, 17)$). Let *C*, *D* be the two extremal self-dual [18, 9, 4] codes.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000

Examples

If $T \in \{II, III, IV\}$ and $N \equiv -1 \pmod{\sigma_T}$ then puncturing an extremal self-dual code of length N + 1 yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary [7,4,3] Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary [11,6,5] Golay code is the unique dual extremal Type III code of length 11.

This is false for T = I and N = 17, e.g. ($\delta(I, 18) = 4 = \delta(1, 17)$). Let *C*, *D* be the two extremal self-dual [18, 9, 4] codes.

Puncturing C at a particular position yields the dual of a dual extremal [17,8] code.

Annika Meyer

RWTH Aachen University

Extremal self-dual codes of Type I-IV 0 0000

Examples

If $T \in \{II, III, IV\}$ and $N \equiv -1 \pmod{o_T}$ then puncturing an extremal self-dual code of length N + 1 yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary [7, 4, 3] Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary [11,6,5] Golay code is the unique dual extremal Type III code of length 11.

This is false for T = I and N = 17, e.g. ($\delta(I, 18) = 4 = \delta(1, 17)$). Let *C*, *D* be the two extremal self-dual [18, 9, 4] codes.

- Puncturing C at a particular position yields the dual of a dual extremal [17, 8] code.
- Puncturing D at any position yields codes of minimum weight 3.

Annika Meyer

RWTH Aachen University