Extremal maximal isotropic codes of Type I-IV

Annika Meyer

RWTH Aachen University

16.04.2010, Thurnau
Overview

1 Introduction

2 Extremal self-dual codes of Type I-IV
 - The classical Types I-IV
 - Extremality and a uniqueness result

3 Maximal self-orthogonal codes
 - Extremality for maximal self-orthogonal codes
 - A uniqueness result
 - Examples
Let F be a finite field, $N \in \mathbb{N}$. A code of length N is a subspace $C \leq F^N$.
Let \mathbb{F} be a finite field, $N \in \mathbb{N}$. A \textit{code} of length N is a subspace $C \leq \mathbb{F}^N$.

Let α be an automorphism of \mathbb{F}, of order 1 or 2. The \textit{dual} of C is

$$C^\perp := \{ v \in \mathbb{F}^N \mid \sum_{i=1}^{N} v_i \cdot \alpha(c_i) = 0 \text{ for all } c \in C \},$$

which is, again, a code.
Let \mathbb{F} be a finite field, $N \in \mathbb{N}$. A code of length N is a subspace $C \leq \mathbb{F}^N$.

Let α be an automorphism of \mathbb{F}, of order 1 or 2. The dual of C is

$$C^\perp := \{ v \in \mathbb{F}^N \mid \sum_{i=1}^{N} v_i \cdot \alpha(c_i) = 0 \text{ for all } c \in C \},$$

which is, again, a code.

If $C \subseteq C^\perp$ then C is called self-orthogonal.
Let \mathbb{F} be a finite field, $N \in \mathbb{N}$. A code of length N is a subspace $C \subseteq \mathbb{F}^N$.

Let α be an automorphism of \mathbb{F}, of order 1 or 2. The dual of C is

$$C^\perp := \{ v \in \mathbb{F}^N \mid \sum_{i=1}^{N} v_i \cdot \alpha(c_i) = 0 \text{ for all } c \in C \} ,$$

which is, again, a code.

If $C \subseteq C^\perp$ then C is called self-orthogonal.

If $C = C^\perp$ then C is called self-dual.
The (Hamming) weight of $v \in \mathbb{F}^N$ is the number of nonzero entries in v, denoted by $\text{wt}(v)$.
The (Hamming) weight of $v \in \mathbb{F}^N$ is the number of nonzero entries in v, denoted by $\text{wt}(v)$.

The minimum weight of a code $C \leq \mathbb{F}^N$ is

$$d(C) := \min_{0 \neq c \in C} \text{wt}(c).$$
The (Hamming) weight of \(\nu \in \mathbb{F}^N \) is the number of nonzero entries in \(\nu \), denoted by \(\text{wt}(\nu) \).

The minimum weight of a code \(C \leq \mathbb{F}^N \) is

\[
d(C) := \min_{0 \neq c \in C} \text{wt}(c).
\]

Due to the linearity of \(C \),

\[
d(C) = \min_{c \neq c' \in C} \left| \{ i \in \{1, \ldots, N\} \mid c_i \neq c'_i \} \right|.
\]
The \textit{(Hamming) weight} of \(v \in \mathbb{F}^N \) is the number of nonzero entries in \(v \), denoted by \(\text{wt}(v) \).

The \textit{minimum weight} of a code \(C \subseteq \mathbb{F}^N \) is

\[
d(C) := \min_{0 \neq c \in C} \text{wt}(c).
\]

Due to the linearity of \(C \),

\[
d(C) = \min_{c \neq c' \in C} \left| \{ i \in \{1, \ldots, N\} \mid c_i \neq c'_i \} \right|.
\]

Using \(C \), one can
The \((Hamming)\) weight of \(\nu \in \mathbb{F}^N\) is the number of nonzero entries in \(\nu\), denoted by \(\text{wt}(\nu)\).

The \textit{minimum weight} of a code \(C \leq \mathbb{F}^N\) is

\[
d(C) := \min_{0 \neq c \in C} \text{wt}(c).
\]

Due to the linearity of \(C\),

\[
d(C) = \min_{c \neq c' \in C} |\{i \in \{1, \ldots, N\} \mid c_i \neq c'_i\}|.
\]

Using \(C\), one can

- detect up to \(d(C) - 1\) errors,
The (Hamming) weight of \(v \in \mathbb{F}^N \) is the number of nonzero entries in \(v \), denoted by \(\text{wt}(v) \).

The minimum weight of a code \(C \leq \mathbb{F}^N \) is

\[
d(C) := \min_{0 \neq c \in C} \text{wt}(c).
\]

Due to the linearity of \(C \),

\[
d(C) = \min_{c \neq c' \in C} \left| \{ i \in \{1, \ldots, N\} \mid c_i \neq c_i' \} \right|.
\]

Using \(C \), one can

- detect up to \(d(C) - 1 \) errors,
- correct up to \(\left\lfloor \frac{d(C)-1}{2} \right\rfloor \) errors.
The classical Types I-IV

Theorem (Gleason, Pierce 1967)

Let $C = C^\perp \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $\text{wt}(c) \in m \mathbb{Z}$ for all $c \in C$. Then one of the following holds.
The classical Types I-IV

Theorem (Gleason, Pierce 1967)

Let $C = C^\perp \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $\text{wt}(c) \in m \mathbb{Z}$ for all $c \in C$. Then one of the following holds.

1. $q = 2$ and $m = 2$ (self-dual binary codes)
The classical Types I-IV

Theorem (Gleason, Pierce 1967)

Let $C = C^\perp \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $\text{wt}(c) \in m\mathbb{Z}$ for all $c \in C$. Then one of the following holds.

(I) $q = 2$ and $m = 2$ (self-dual binary codes),
(II) $q = 2$ and $m = 4$ (doubly-even self-dual binary codes)
Introduction

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

The classical Types I-IV

Theorem (Gleason, Pierce 1967)

Let $C = C^\perp \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $\text{wt}(c) \in m \mathbb{Z}$ for all $c \in C$. Then one of the following holds.

- (I) $q = 2$ and $m = 2$ (self-dual binary codes),
- (II) $q = 2$ and $m = 4$ (doubly-even self-dual binary codes),
- (III) $q = 3$ and $m = 3$ (self-dual ternary codes)
The classical Types I-IV

Theorem (Gleason, Pierce 1967)

Let $C = C^\perp \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $\text{wt}(c) \in m \mathbb{Z}$ for all $c \in C$. Then one of the following holds.

(I) $q = 2$ and $m = 2$ (self-dual binary codes),
(II) $q = 2$ and $m = 4$ (doubly-even self-dual binary codes),
(III) $q = 3$ and $m = 3$ (self-dual ternary codes),
(IV) $q = 4$ and $m = 2$ (quaternary Hermitian self-dual codes)
The classical Types I-IV

Theorem (Gleason, Pierce 1967)

Let $C = C^\perp \leq \mathbb{F}_q^N$ and let $m \in \mathbb{N}$ such that $\text{wt}(c) \in m \mathbb{Z}$ for all $c \in C$. Then one of the following holds.

(I) $q = 2$ and $m = 2$ (self-dual binary codes),
(II) $q = 2$ and $m = 4$ (doubly-even self-dual binary codes),
(III) $q = 3$ and $m = 3$ (self-dual ternary codes),
(IV) $q = 4$ and $m = 2$ (quaternary Hermitian self-dual codes),
(o) $q = 4$ and $m = 2$ (certain Euclidean self-dual codes)
The classical Types I-IV

Theorem (Gleason, Pierce 1967)

Let \(C = C^\perp \leq \mathbb{F}_q^N \) and let \(m \in \mathbb{N} \) such that \(\text{wt}(c) \in m \mathbb{Z} \) for all \(c \in C \). Then one of the following holds.

(I) \(q = 2 \) and \(m = 2 \) (self-dual binary codes),
(II) \(q = 2 \) and \(m = 4 \) (doubly-even self-dual binary codes),
(III) \(q = 3 \) and \(m = 3 \) (self-dual ternary codes),
(IV) \(q = 4 \) and \(m = 2 \) (quaternary Hermitian self-dual codes),
(o) \(q = 4 \) and \(m = 2 \) (certain Euclidean self-dual codes),
(d) \(m = 2 \) and \(C \cong \mathbb{F}^{N/2}_q \langle 1, a \rangle \), where either \(q \) is even and \(a = 1 \) or \(q \equiv 1 \pmod{4} \) and \(a^2 = -1 \) or \(\alpha \) has order 2 and \(a \cdot \alpha(a) = -1 \).
The first four Types in the previous theorem are named I-IV.
The first four Types in the previous theorem are named I-IV.

Theorem

\textit{Let } \(T \in \{I, \ldots, IV\} \text{ and let } C \text{ be a self-dual Type } T \text{ code of length } N. \text{ Then } d(C) \leq \delta(T, N), \text{ where }

\[\delta(T, N) := \begin{cases}
 2 + 2\lfloor \frac{N}{8} \rfloor, & T = I \\
 4 + 4\lfloor \frac{N}{24} \rfloor, & T = II \\
 3 + 3\lfloor \frac{N}{12} \rfloor, & T = III \\
 2 + 2\lfloor \frac{N}{6} \rfloor, & T = IV.
\end{cases} \]
Introduction

Extremal self-dual codes of Type I-IV

Maximal self-orthogonal codes

Extremality and a uniqueness result

The first four Types in the previous theorem are named I-IV.

Theorem

Let \(T \in \{I, \ldots, IV\} \) and let \(C \) be a self-dual Type \(T \) code of length \(N \). Then \(d(C) \leq \delta(T, N) \), where

\[
\delta(T, N) := \begin{cases}
2 + 2\lfloor \frac{N}{8} \rfloor, & T = I \\
4 + 4\lfloor \frac{N}{24} \rfloor, & T = II \\
3 + 3\lfloor \frac{N}{12} \rfloor, & T = III \\
2 + 2\lfloor \frac{N}{6} \rfloor, & T = IV.
\end{cases}
\]

If \(d(C) \) reaches the above bound then \(C \) is called extremal.
Extremality and a uniqueness result

We can read off $d(C)$ from the (Hamming) weight enumerator

$$\text{we}(C) := \sum_{c \in C} y^{\text{wt}(c)} x^{N - \text{wt}(c)} \in \mathbb{C}[x, y],$$

a homogeneous complex polynomial of degree N which counts the codewords of each Hamming weight.
We can read off $d(C)$ from the *(Hamming) weight enumerator*

$$\text{we}(C) := \sum_{c \in C} y^{\text{wt}(c)} x^{N-\text{wt}(c)} \in \mathbb{C}[x, y],$$

a homogeneous complex polynomial of degree N which counts the codewords of each Hamming weight.

If C has minimum weight d then $\text{we}(C)$ is of the form
We can read off $d(C)$ from the (Hamming) weight enumerator

$$\text{we}(C) := \sum_{c \in C} y^{\text{wt}(c)} x^{N-\text{wt}(c)} \in \mathbb{C}[x, y],$$

a homogeneous complex polynomial of degree N which counts the codewords of each Hamming weight.

If C has minimum weight d then $\text{we}(C)$ is of the form

$$x^N$$
We can read off \(d(C) \) from the (Hamming) weight enumerator

\[
\text{we}(C) := \sum_{c \in C} y^{\text{wt}(c)} x^{N-\text{wt}(c)} \in \mathbb{C}[x, y],
\]

a homogeneous complex polynomial of degree \(N \) which counts the codewords of each Hamming weight.

If \(C \) has minimum weight \(d \) then \(\text{we}(C) \) is of the form

\[
x^N + a_d y^d x^{N-d}
\]
We can read off \(d(C) \) from the \((\text{Hamming}) \) weight enumerator

\[
\text{we}(C) := \sum_{c \in C} y^{\text{wt}(c)} x^{N-\text{wt}(c)} \in \mathbb{C}[x, y],
\]

a homogeneous complex polynomial of degree \(N \) which counts the codewords of each Hamming weight.

If \(C \) has minimum weight \(d \) then \(\text{we}(C) \) is of the form

\[
x^N + a_d y^d x^{N-d} + \ldots + a_N y^N.
\]
Theorem

If C is a self-dual Code of Type I, II, III or IV then we \((C) \in \mathbb{C}[f_T, g_T] \) **according to the table below.**

<table>
<thead>
<tr>
<th></th>
<th>(f_T)</th>
<th>(g_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(x^2 + y^2)</td>
<td>(x^2 y^2 (x^2 - y^2)^2) Hamming code (e_8)</td>
</tr>
<tr>
<td></td>
<td>(i_2)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>(x^8 + 14x^4 y^4 + y^8) Hamming code (e_8)</td>
<td>(x^4 y^4 (x^4 - y^4)^4) binary Golay code (g_{24})</td>
</tr>
<tr>
<td>III</td>
<td>(x^4 + 8xy^3) tetracode (t_4)</td>
<td>(y^3(x^3 - y^3)^3) ternary Golay code (g_{12})</td>
</tr>
<tr>
<td>IV</td>
<td>(x^2 + 3y^2) (i_2 \otimes \mathbb{F}_4)</td>
<td>(y^2(x^2 - y^2)^2) hexacode (h_6)</td>
</tr>
</tbody>
</table>
Extremality and a uniqueness result

Fix an integer N and a Type $T \in \{I, \ldots, IV\}$ and let $\delta := \delta(T, N)$.
Fix an integer N and a Type $T \in \{I, \ldots, IV\}$ and let $\delta := \delta(T, N)$. There exists a unique element in $\mathbb{C}[f_T, g_T]$ of the form

$$x^N + a_\delta y^\delta x^{N-\delta} + \cdots + a_N y^N,$$

where $a_i \in \mathbb{Q}$ for $i = 1, \ldots, N$.
Fix an integer N and a Type $T \in \{I, \ldots, IV\}$ and let $\delta := \delta(T, N)$. There exists a *unique* element in $\mathbb{C}[f_T, g_T]$ of the form

$$x^N + a_\delta y^\delta x^{N-\delta} + \cdots + a_N y^N,$$

where $a_i \in \mathbb{Q}$ for $i = 1, \ldots, N$. Using the Bürmann-Lagrange formula, one computes that $a_\delta \neq 0$.

Annika Meyer

RWTH Aachen University
Fix an integer N and a Type $T \in \{I, \ldots, IV\}$ and let $\delta := \delta(T, N)$. There exists a unique element in $\mathbb{C}[f_T, g_T]$ of the form

$$x^N + a_\delta y^\delta x^{N-\delta} + \cdots + a_N y^N,$$

where $a_i \in \mathbb{Q}$ for $i = 1, \ldots, N$.

Using the Bürmann-Lagrange formula, one computes that $a_\delta \neq 0$.

Corollary

The weight enumerator of an extremal self-dual code of Type I-IV is unique.
The length of a self-dual Type T code, $T \in \{I, \ldots, IV\}$, is always a multiple of

$$o_T := \deg(f_T) = \min(\{\deg(f_T), \deg(g_T)\})$$.
The length of a self-dual Type T code, $T \in \{I, \ldots, IV\}$, is always a multiple of

$$o_T := \deg(f_T) = \min(\{\deg(f_T), \deg(g_T)\}).$$

<table>
<thead>
<tr>
<th>T</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_T</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
The length of a self-dual Type T code, $T \in \{I, \ldots, IV\}$, is always a multiple of

$$o_T := \deg(f_T) = \min(\{\deg(f_T), \deg(g_T)\}).$$

<table>
<thead>
<tr>
<th>T</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_T</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Now assume that N is no multiple of o_T.
The length of a self-dual Type T code, $T \in \{I, \ldots, IV\}$, is always a multiple of

$$o_T := \deg(f_T) = \min(\{\deg(f_T), \deg(g_T)\}).$$

<table>
<thead>
<tr>
<th>T</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_T</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Now assume that N is no multiple of o_T.

Consider maximal self-orthogonal (m. s.-o.) codes, i.e. $C \subseteq C^\perp$ and if $C \subseteq D$ for a code $D \subseteq D^\perp$, then $C = D$.
Theorem

Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^\perp) \leq 3 + 4\left\lfloor \frac{N+1}{24} \right\rfloor$.
Theorem

Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^\perp) \leq 3 + 4 \left\lfloor \frac{N+1}{24} \right\rfloor$.

Proof.

Assume that $d(C^\perp) \geq 4 + 4 \left\lfloor \frac{N+1}{24} \right\rfloor$.

Annika Meyer
RWTH Aachen University
Extremal self-dual codes of Type I-IV

Extremality for maximal self-orthogonal codes

Theorem

Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^\perp) \leq 3 + 4 \left\lfloor \frac{N+1}{24} \right\rfloor$.

Proof.

Assume that $d(C^\perp) \geq 4 + 4 \left\lfloor \frac{N+1}{24} \right\rfloor$. From the theory of Witt groups, $C^\perp = \langle C, v \rangle$, where $\text{wt}(v) \equiv 3 \pmod{4}$.

Annika Meyer

RWTH Aachen University
Theorem

Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^\perp) \leq 3 + 4\left\lfloor \frac{N+1}{24} \right\rfloor$.

Proof.

Assume that $d(C^\perp) \geq 4 + 4\left\lfloor \frac{N+1}{24} \right\rfloor$. From the theory of Witt groups, $C^\perp = \langle C, v \rangle$, where $\text{wt}(v) \equiv 4 \ 3$.

Let $E = \begin{pmatrix} C & 0 \\ v & 1 \end{pmatrix} \leq \mathbb{F}_2^{N+1}$. Then $E = E^\perp$ is Type II, and
Theorem

Let \(C \) be a m. s.-o. Type II code of length \(N \equiv 7 \pmod{8} \). Then \(d(C^\perp) \leq 3 + 4\left\lfloor \frac{N+1}{24} \right\rfloor \).

Proof.

Assume that \(d(C^\perp) \geq 4 + 4\left\lfloor \frac{N+1}{24} \right\rfloor \). From the theory of Witt groups, \(C^\perp = \langle C, v \rangle \), where \(\text{wt}(v) \equiv_4 3 \).

Let \(E = \left(\begin{array}{cc} C & 0 \\ v & 1 \end{array} \right) \leq \mathbb{F}_2^{N+1} \). Then \(E = E^\perp \) is Type II, and

\[d(E) \geq 4 + 4\left\lfloor \frac{N+1}{24} \right\rfloor, \]

hence \(E \) is extremal (i.e. equality holds). Thus the words in \(E \) of weight \(d(E) \) hold a design.
Theorem

Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^\perp) \leq 3 + 4\lfloor \frac{N+1}{24} \rfloor$.

Proof.

Assume that $d(C^\perp) \geq 4 + 4\lfloor \frac{N+1}{24} \rfloor$. From the theory of Witt groups, $C^\perp = \langle C, v \rangle$, where $\text{wt}(v) \equiv_4 3$.

Let $E = \begin{pmatrix} C & 0 \\ v & 1 \end{pmatrix} \leq \mathbb{F}_2^{N+1}$. Then $E = E^\perp$ is Type II, and

- $d(E) \geq 4 + 4\lfloor \frac{N+1}{24} \rfloor$, hence E is extremal (i.e. equality holds). Thus the words in E of weight $d(E)$ hold a design.
- $\{ e \in E \mid \text{wt}(e) = d(E) \} = \{(c 0) \mid c \in C^\perp, \text{wt}(c) = d(E)\}$.

Annika Meyer
RWTH Aachen University

Extremal maximal isotropic codes of Type I-IV
Theorem

Let C be a m. s.-o. Type II code of length $N \equiv 7 \pmod{8}$. Then $d(C^\perp) \leq 3 + 4\left\lfloor \frac{N+1}{24} \right\rfloor$.

Proof.

Assume that $d(C^\perp) \geq 4 + 4\left\lfloor \frac{N+1}{24} \right\rfloor$. From the theory of Witt groups, $C^\perp = \langle C, v \rangle$, where $\text{wt}(v) \equiv_4 3$.

Let $E = \begin{pmatrix} C & 0 \\ v & 1 \end{pmatrix} \leq \mathbb{F}_2^{N+1}$. Then $E = E^\perp$ is Type II, and

- $d(E) \geq 4 + 4\left\lfloor \frac{N+1}{24} \right\rfloor$, hence E is extremal (i.e. equality holds). Thus the words in E of weight $d(E)$ hold a design.
- $\{ e \in E \mid \text{wt}(e) = d(E) \} = \{(c \ 0) \mid c \in C^\perp, \text{wt}(c) = d(E)\}$.

This is a contradiction, hence $d(C^\perp) \leq 3 + 4\left\lfloor \frac{N+1}{24} \right\rfloor$. \qed
Theorem

Let $T \in \{I, \ldots, IV\}$ and let C be a maximal self-orthogonal Type T code of length N. Then $d(C^\perp) \leq \delta(T, N)$, where $\delta(T, N)$ is given in the table below.
Theorem

Let $T \in \{I, \ldots, IV\}$ and let C be a maximal self-orthogonal Type T code of length N. Then $d(C^\perp) \leq \delta(T, N)$, where $\delta(T, N)$ is given in the table below.

Definition

A m. s.-o. code whose minimum distance reaches the above bound is called dual extremal.
Extremal maximal isotropic codes of Type I-IV

Extremal self-dual codes of Type I-IV

<table>
<thead>
<tr>
<th>T</th>
<th>N</th>
<th>$\delta(T, N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$N \neq 24$ 23</td>
<td>$\delta(I, N + 1)$</td>
</tr>
<tr>
<td></td>
<td>23 (24)</td>
<td>$3 + 4 \lfloor \frac{N}{24} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>1, 9 or 17 (24)</td>
<td>$1 + \lfloor \frac{N}{24} \rfloor + 3 \lfloor \frac{N+7}{24} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>2 (24)</td>
<td>$\lfloor \frac{N+8}{6} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>3, 11 or 19 (24)</td>
<td>$1 + 2 \lfloor \frac{N}{24} \rfloor + \lfloor \frac{N+5}{24} \rfloor + \lfloor \frac{N+13}{24} \rfloor$</td>
</tr>
<tr>
<td>II</td>
<td>4 (24)</td>
<td>$\frac{N+8}{6}$</td>
</tr>
<tr>
<td></td>
<td>5 (24)</td>
<td>$1 + 4 \lfloor \frac{N}{24} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>6 (24)</td>
<td>$2 + 4 \lfloor \frac{N}{24} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>7, 13, 14 or 15 (24)</td>
<td>$3 + 4 \lfloor \frac{N}{24} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>10 or 18 (24)</td>
<td>$1 + \lfloor \frac{N}{8} \rfloor + \lfloor \frac{N+8}{24} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>12 (24)</td>
<td>$\frac{N}{6}$</td>
</tr>
</tbody>
</table>

Maximal self-orthogonal codes

<table>
<thead>
<tr>
<th>T</th>
<th>N</th>
<th>$\delta(T, N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 (24)</td>
<td>$\frac{N+4}{6}$</td>
</tr>
<tr>
<td></td>
<td>21 (24)</td>
<td>$5 + 4 \lfloor \frac{N}{24} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>22 (24)</td>
<td>$6 + 4 \lfloor \frac{N}{24} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>23 (24)</td>
<td>$7 + 4 \lfloor \frac{N}{24} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>1, 5 or 9 (12)</td>
<td>$3 + 3 \lfloor \frac{N}{12} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>2 (12)</td>
<td>$1 + 3 \lfloor \frac{N}{12} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>3, 6 or 7 (12)</td>
<td>$2 + 3 \lfloor \frac{N}{12} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>10 (12)</td>
<td>$4 + 3 \lfloor \frac{N}{12} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>11 (12)</td>
<td>$5 + 3 \lfloor \frac{N}{12} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>1 or 3 (6)</td>
<td>$1 + 2 \lfloor \frac{N}{6} \rfloor$</td>
</tr>
<tr>
<td></td>
<td>5 (6)</td>
<td>$3 + 2 \lfloor \frac{N}{6} \rfloor$</td>
</tr>
</tbody>
</table>
A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.
A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?
A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?

Definition

For $T \in \{I, \ldots, IV\}$ and $k \in \{1, \ldots, o_T - 1\}$, let

$$I^T_k := \langle \text{we}(C) \mid C \text{ m. s.-o. Type } T \text{ code of length } \equiv k(\text{mod } o_T) \rangle \subset \mathbb{C}.$$
A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?

Definition

For $T \in \{I, \ldots, IV\}$ and $k \in \{1, \ldots, o_T - 1\}$, let

$$I^T_k := \langle \text{we}(C) \mid C \text{ m. s.-o. Type } T \text{ code of length } \equiv k \text{ (mod } o_T) \rangle_C.$$

Let C be a m. s.-o. Type T code of length $\equiv k \pmod{o_T}$, and let D be a self-dual Type T code.
Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?

Definition
For $T \in \{I, \ldots, IV\}$ and $k \in \{1, \ldots, o_T - 1\}$, let

$$l^T_k := \langle \text{we}(C) \mid C \text{ m. s.-o. Type } T \text{ code of length } \equiv k \text{ (mod } o_T) \rangle \subset C.$$

Let C be a m. s.-o. Type T code of length $\equiv k \pmod{o_T}$, and let D be a self-dual Type T code.

Then $C \perp D$ is a m. s.-o. Type T code of length $\equiv k \pmod{o_T}$.
A uniqueness result

Theorem

The Hamming weight enumerator of a dual extremal m. s.-o. code of Type II, III or IV is uniquely determined.

What is the algebraic structure of the vector space generated by weight enumerators of m. s.-o. codes of Type I-IV?

Definition

For $T \in \{I, \ldots, IV\}$ and $k \in \{1, \ldots, o_T - 1\}$, let

$$I^T_k := \langle \text{we}(C) \mid C \text{ m. s.-o. Type } T \text{ code of length } \equiv k \text{ (mod } o_T) \rangle \mathbb{C}.$$

Let C be a m. s.-o. Type T code of length $\equiv k \text{ (mod } o_T)$, and let D be a self-dual Type T code.

Then $C \perp D$ is a m. s.-o. Type T code of length $\equiv k \text{ (mod } o_T)$.

Annika Meyer

Extremal maximal isotropic codes of Type I-IV
A uniqueness result

Remark

The space I_k^T is a module for $\mathbb{C}[f_T, g_T]$.

Annika Meyer
RWTH Aachen University
A uniqueness result

Remark

_The space \(l_k^T \) is a module for \(\mathbb{C}[f_T, g_T] \)._

Theorem

_The \(\mathbb{C}[f_T, g_T] \)-module \(l_k^T \) is free and finitely generated._
Remark

The space I_k^T is a module for $\mathbb{C}[f_T, g_T]$.

Theorem

The $\mathbb{C}[f_T, g_T]$-module I_k^T is free and finitely generated.

Bases for the $\mathbb{C}[f_T, g_T]$-module I_k^T are given in the book "Self-dual codes and invariant theory" by Nebe, Rains and Sloane.
Remark
The space I^T_k is a module for $\mathbb{C}[f_T, g_T]$.

Theorem
The $\mathbb{C}[f_T, g_T]$-module I^T_k is free and finitely generated.

Bases for the $\mathbb{C}[f_T, g_T]$-module I^T_k are given in the book "Self-dual codes and invariant theory" by Nebe, Rains and Sloane. There exists a triangular basis p_0, \ldots, p_r of

$$(I^T_k)_N := \{p \in I^T_k \mid p \text{ homogeneous of degree } N\},$$

for every integer $N \equiv k \pmod{o_T}$.

Annika Meyer
RWTH Aachen University
A uniqueness result

\[p_i(1, y) = c_i^{(0)} y^0 + \ldots + c_i^{(N)} y^N \]
A uniqueness result

\[p_i(1, y) = c_i^{(0)} y^0 + \ldots + c_i^{(N)} y^N \]

\[
\begin{array}{cccccccc}
y^0 & y^1 & \ldots & y^k & y^{k+1} & y^{k+2} & \ldots \\
p_0 & c_0^{(0)} & c_1^{(0)} & \ldots & c_k^{(0)} & 0 & c_{k+2}^{(0)} & \ldots \\
p_1 & 0 & c_1^{(1)} & \ldots & c_k^{(1)} & 0 & c_{k+2}^{(1)} & \ldots \\
p_k & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
p_{k+1} & 0 & \ldots & \ldots & 0 & c_{k+2}^{(k+2)} & \ldots \\
p_k & \vdots & \vdots & \ddots & \vdots & \vdots & 0 & \vdots \\
\end{array}
\]
If \(T \in \{\text{II, III, IV}\} \) and \(N \equiv -1 \pmod{o_T} \) then puncturing an extremal self-dual code of length \(N + 1 \) yields the dual of a dual extremal m. s.-o. code of length \(N \).
If $T \in \{\text{II}, \text{III}, \text{IV}\}$ and $N \equiv -1 \pmod{o_T}$ then puncturing an extremal self-dual code of length $N + 1$ yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary $[7, 4, 3]$ Hamming code is the unique dual extremal Type II code of length 7.
Examples

If $T \in \{\text{II, III, IV}\}$ and $N \equiv -1 \pmod{o_T}$ then puncturing an extremal self-dual code of length $N + 1$ yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary $[7, 4, 3]$ Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary $[11, 6, 5]$ Golay code is the unique dual extremal Type III code of length 11.
If $T \in \{\text{II, III, IV}\}$ and $N \equiv -1 \pmod{o_T}$ then puncturing an extremal self-dual code of length $N + 1$ yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary $[7, 4, 3]$ Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary $[11, 6, 5]$ Golay code is the unique dual extremal Type III code of length 11.

This is false for $T = I$ and $N = 17$, e.g. $(\delta(I, 18) = 4 = \delta(1, 17))$.

Annika Meyer

RWTH Aachen University

Extremal maximal isotropic codes of Type I-IV
If \(T \in \{II, III, IV\} \) and \(N \equiv -1 \pmod{\sigma_T} \) then puncturing an extremal self-dual code of length \(N + 1 \) yields the dual of a dual extremal m. s.-o. code of length \(N \).

- The dual of the binary \([7, 4, 3]\) Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary \([11, 6, 5]\) Golay code is the unique dual extremal Type III code of length 11.

This is false for \(T = I \) and \(N = 17 \), e.g. \(\delta(I, 18) = 4 = \delta(1, 17) \). Let \(C, D \) be the two extremal self-dual \([18, 9, 4]\) codes.
If $T \in \{\text{II, III, IV}\}$ and $N \equiv -1 \pmod{o_T}$ then puncturing an extremal self-dual code of length $N + 1$ yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary $[7, 4, 3]$ Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary $[11, 6, 5]$ Golay code is the unique dual extremal Type III code of length 11.

This is false for $T = \text{I}$ and $N = 17$, e.g. $(\delta(\text{I}, 18) = 4 = \delta(1, 17))$.

Let C, D be the two extremal self-dual $[18, 9, 4]$ codes.

- Puncturing C at a particular position yields the dual of a dual extremal $[17, 8]$ code.
If $T \in \{\text{II, III, IV}\}$ and $N \equiv -1 \pmod{o_T}$ then puncturing an extremal self-dual code of length $N + 1$ yields the dual of a dual extremal m. s.-o. code of length N.

- The dual of the binary $[7, 4, 3]$ Hamming code is the unique dual extremal Type II code of length 7.
- The dual of the ternary $[11, 6, 5]$ Golay code is the unique dual extremal Type III code of length 11.

This is false for $T = \text{I}$ and $N = 17$, e.g. $(\delta(\text{I}, 18) = 4 = \delta(1, 17))$.

Let C, D be the two extremal self-dual $[18, 9, 4]$ codes.

- Puncturing C at a particular position yields the dual of a dual extremal $[17, 8]$ code.
- Puncturing D at any position yields codes of minimum weight 3.