Performance of Extremal Codes

Anton Malevich

Otto-von-Guericke University Magdeburg, Germany

Algebraic Combinatorics and Applications

Thurnau, 16 April, 2010

joint work with Wolfgang Willems

Outline

- 1. What codes do perform better?
- 2. What codes are extremal?

- 3. How to study performance of extremal codes?
- 4. Concluding remarks

Introduction

▶ Linear [n, k, d] code C is used for data transmission

$$A(x,y) = \sum_{i=1}^{n} A_i x^{n-i} y^i,$$

 A_i is the number of codewords of C of weight i

- Symbol error probability is p
- Bounded distance decoding is used
- ▶ Up to $t \le \frac{d-1}{2}$ errors are corrected

What do we call "performance"?

Probability of erroneous decoding from the transmitter and receiver points of view:

$$P_{tr}(C, t, p) = P\left(Y \in \bigcup_{c \neq c' \in C} B_t(c') \mid X = c\right),$$

$$\mathsf{P}_{rv}(C,t,p)=\mathsf{P}\left(X\in C\setminus \{c\}\mid Y\in B_t(c)\right),$$

with the random variables

- ➤ X "the sent codeword",
- Y − "the received vector".

What codes perform better?

Theorem (FALDUM, LAFUENTE, OCHOA, WILLEMS, '06)

Let C and C' be [n, k, d] codes with weight enumerators A(x, y) and A'(x, y) respectively. If p is small enough, then the following conditions are equivalent:

- (a) $P_{tr}(C,t,p) \leq P_{tr}(C',t,p)$,
- (b) $P_{rv}(C, t, p) \leq P_{rv}(C', t, p)$,
- (c) $A(1, y) \leq A'(1, y)$, where " \leq " means lexicographical ordering.

Remark

```
"\prec" means A_d < A_d', or A_d = A_d' and A_{d+1} < A_{d+1}', or ...
```

Self-dual codes

- ▶ $C^{\perp} = \{u \mid u \cdot v = 0 \text{ for all } v \in C\}$ is the dual code
- ▶ If $C = C^{\perp}$ the code is self-dual (n = 2k)
- Two types of self-dual codes:

Type I (singly-even): all weights are even
Type II (doubly-even): all weights are a multiple of 4

Theorem (GLEASON '70)

Weight enumerator A(x, y) of a self-dual code is a polynomial in two invariants f and g, that are

► for Type I codes:
$$f = x^2 + y^2$$
,
 $g = x^2y^2(x^2 - y^2)^2$,

► for Type II codes:
$$f = x^8 + 14x^4y^4 + y^8$$
, $g = x^4y^4(x^4 - y^4)^4$.

Self-dual codes

- ▶ $C^{\perp} = \{u \mid u \cdot v = 0 \text{ for all } v \in C\}$ is the dual code
- ▶ If $C = C^{\perp}$ the code is self-dual (n = 2k)
- Two types of self-dual codes:
 Type I (singly-even): all weights are even
 Type II (doubly-even): all weights are a multiple of 4

Corollary

► for Type II codes:
$$f = x^8 + 14x^4y^4 + y^8$$
, $g = x^4y^4(x^4 - y^4)^4$.

Length of a Type II code is a multiple of 8

$$n = 24m + 8i$$
, $i = 0, 1 \text{ or } 2$

Extremal doubly-even codes

Corollary (MALLOWS, SLOANE '73)

for Type I codes
$$d \le 2 \left\lfloor \frac{n}{8} \right\rfloor + 2,$$
 for Type II codes $d \le 4 \left\lfloor \frac{n}{24} \right\rfloor + 4.$

- If "=" codes are called extremal Weight enumerator is unique
- ► ZHANG '99: no extremal Type II codes for *n* > 3952
- ▶ Extremal Type II codes are known only up to n = 136
- The bound for Type I codes is NOT tight

Shadows of self-dual codes

- C is a Type I [n, n/2, d]-code
 C₀ is a doubly-even subcode; C₂ := C \ C₀
- ▶ Shadow S = S(C) consists of all u, such that:

$$u \cdot v = 1$$
 for all $v \in C_0$
 $u \cdot v = 0$ for all $v \in C_2$

- ▶ S is a non-linear code with weight enumerator S(x, y)
- $S(x,y) = A\left(\frac{x+y}{\sqrt{2}}, i\frac{x-y}{\sqrt{2}}\right)$
- If 8 | n then all weights in S are divisible by 4

Extremal singly-even codes

- C is a Type I [n, n/2, d]-code
- ► MALLOWS, SLOANE '73: $d \le 2 \left\lfloor \frac{n}{8} \right\rfloor + 2$ (not tight)

Theorem (RAINS '98)

$$d \le 4 \left\lfloor \frac{n}{24} \right\rfloor + 4$$
, $n \not\equiv 22 \mod 24$, $d \le 4 \left\lfloor \frac{n}{24} \right\rfloor + 6$, $n \equiv 22 \mod 24$.

If n = 24m Type I codes do not reach the bound

▶ If $n \equiv 8$ or 16 mod 24, both Type I and Type II extremal codes have the same minimal distance

Comparing self-dual and non self-dual codes

- C is a self-dual extremal code of Type II
- C' is a non self-dual code with the same parameters

▶ $A'(x, y) \prec A(x, y)$ is conjectured, i.e. C' is expected to perform better than C

Counterexample (CHENG, SLOANE '89)

- ► C and C' are [32, 16, 8]-codes
- $A_d = 620 < 681 = A'_d$
- Conjecture is not correct

Comparing self-dual codes for small lengths

$$n = 24m + 8$$
 or $24m + 16$

n	d	A_d for Type II	A _d for Type I
32	8	620	364
40	8	285	$125 + 16\beta \ (\beta < 10, \ 10 \le \beta \le 26)$ (two known codes with $A_d = 285$)
56	12	8 190	≤ 4862
64	12	2976	$1312 + 16\beta \ (\beta < 104, 104 \le \beta \le 284)$
80	16	97 565	≤ 66 845
104	20	1 136 150	≤ 739 046

Type I codes with unique weight enumerator

- ► s minimum weight of the shadow S
- ▶ BACHOC, GABORIT '04: $2d + s \le \frac{n}{2} + 4$ If "=" the code is *s*-extremal A_d is known for *s*-extremal codes
- If s is smallest possible the code is with minimal shadow

```
If n = 24m + 8:

s = 4m for s-extremal codes

s = 4 for codes with minimal shadow
```

Best extremal codes of Type I

C is a code of Type I with shadow S s – minimum weight of the shadow

$$A^{(s)}(1,y) = 1 + A_d^{(s)}y^d + A_{d+2}^{(s)}y^{d+2} + \dots + y^n$$

$$A_d^{(4m)} < A_d^{(s)}$$
 for all $4 \le s < 4m$ (BOUYUKLIEVA)

Moreover, we can express $A_d^{(4)}$ through $A_d^{(4m)}$.

Comparing Type I and Type II extremal codes

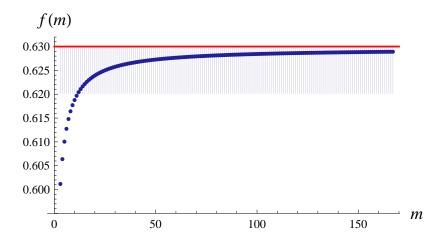
$$n = 24m + 8$$

- ► C Type II extremal code
- ► C' Type I extremal code with min shadow

$$f(m) = \frac{A_d'}{A_d} < 1$$

- C' performs better than C
- ⇒ s-extremal codes are better than Type II codes

Behaviour of f(m)



Concluding remarks

- n = 24m + 8
- A lot of different weight enumerators for Type I codes

► For the codes in the tail the problem is not solved

Thank you!