Resolvable Steiner 3-Designs

Reinhard Laue Universität Bayreuth, laue@uni-bayreuth.de

April 15, 2010

Kirkman: Resolvable 2-(15, 3, 1) Steiner design.

15 young ladies in a school walk out three abreast for 7 days in succession; it is required to arrange them daily, so that no two shall walk twice abreast.

 \exists resolvable *t*-designs for t > 2 large k [3], but $\lambda > 1$.

M. Sawa:

 \exists resolvable **Steiner** *t*-designs, i.e. $\lambda = 1$, for t > 2 large k? \rightarrow construction of infinite families of 3-designs [4].

Hartman and Ji,Zhu [1, 2]:

 \exists resolvable 3-(v, 4, 1) design

\iff

 $v \equiv 4, 8 \mod 12$

 $k>4: \quad 5\text{-}(12,6,1), \ 5\text{-}(24,8,1), \ 5\text{-}(48,6,1), \ \ldots?$

Theorem

Let q prime power:

 $\exists \ resolvable \ 3\text{-}(q^n+1,q+1,1) \ design$

Proof by help of good friends: groups $\exists 3 \cdot (q^n + 1, q + 1, 1) \text{ design } \mathcal{D},$ with group of automorphisms $G = PGL(2, q^n)$ $n \text{ even:} \Longrightarrow (q + 1) \not| (q^n + 1).$

n odd: Claim: this design \mathcal{D} is resolvable

 $G = PGL(2, q^n)$ is 3-homogeneous \Longrightarrow Any (q + 1)-orbit is a 3-design. $B = PG(1, \mathbb{F}_q) < PG(1, \mathbb{F}_{q^n})$ is (q + 1)-set, B^G block set of a 3-design \mathcal{D} . B orbit of $PGL(2, q) \leq G_B < PGL(2, q^n)$

$$\frac{(q^n+1)q^n(q^n-1)}{(q+1)q(q-1)}\lambda = |B^G| = \frac{|G|}{|G_B|}$$

divides
$$\frac{|PGL(2,q^n)|}{|PGL(2,q)|} = \frac{(q^n+1)q^n(q^n-1)}{(q+1)q(q-1)}$$
$$\implies \lambda = 1, \ G_B = PGL(2,q)$$

Double cosets correspond to splitting of an orbit.

 $\infty^G / H \cong A \backslash G / H$ $B^G / A \cong H \backslash G / A.$ $\mathbf{A} \backslash \mathbf{G} / \mathbf{H} \longleftrightarrow \mathbf{H} \backslash \mathbf{G} / \mathbf{A}$

$$\mathbf{A} \backslash \mathbf{G} / \mathbf{H} \longleftrightarrow \mathbf{H} \backslash \mathbf{G} / \mathbf{A}$$
$$AgH \longleftrightarrow Hg^{-1}A$$
$$|AgH| = |Hg^{-1}A|$$

H fixed point freely on $X = PG(1, \mathbb{F}_{q^n}) \setminus B$:

orbits of H on $PG(1, \mathbb{F}_{q^n})$: 1 orbit B of size q + 1, s regular orbits of size (q + 1)q(q - 1). orbits of A on B^G :

 $der_{\infty}(\mathcal{D})$ containing $B, A_B = A \cap H$ s regular orbits of size $q^n(q^n - 1)$ on $res_{\infty}(\mathcal{D})$. B', T-orbit, $B' \neq B, B' \subseteq X'$ H-orbit

 $\implies B'^{H \cap A} = \text{ is a partition of } X'$

Choose T-orbit B_i within each H orbit on X.

 $P = (B, B_i^{H \cap A} | 1 \le i \le s)$ partition of $PG(1, \mathbb{F}_{q^n})$

$der_\infty \mathcal{D}$	$res_\infty \mathcal{D}$	P^A
q+1	s times (q+1)q(q-1)	
$\infty \in B$	P
	.	•
	•••	
	.	•
	. .	•
A-orbit	s A-orbits of H-orbits	

 P^A resolution of 3- $(q^n + 1, q + 1, 1)$ design \mathcal{D} :

Each block appears exactly once:

A has regular orbits on $res_{\infty}(\mathcal{D})$

$$\{id\} = A_{B'} < H \cap A < A$$
$$\Longrightarrow$$

 $B'^{H \cap A}$ block of imprimitivity for AWielandt $\Longrightarrow B'^A$ decomposes into disjoint blocks of imprimitivity. B_i orbit of T on H-orbit X_i .

 $B_i = B^{g_i}$ lies in the A-orbit $B^{g_i A}$ that corresponds to the double coset $Hg_i A$.

If
$$B_i^A = B_j^A$$
 and $i \neq j$ then $Hg_iA = Hg_jA$ and $Ag_j^{-1}H = Ag_i^{-1}H$.

Then $\infty^{g_j^{-1}H} = \infty^{g_i^{-1}H}$. But B_i and B_j were selected from different *H*-orbits. Thus, the orbits B_i^A are disjoint regular orbits of *A* on the block set of $res_{\infty}(\mathcal{D})$.

Since the number of blocks of the residual design is just $s \cdot |A|$, we have obtained a resolution.

65 young ladies in a school walk out five abreast for 336 days in succession; it is required to arrange them daily, so that no three shall walk twice abreast.

2198 young ladies in a school walk out 14 abreast for 30927 days, that is 84 years and several days, in succession; it is required to arrange them daily, so that no three shall walk twice abreast.

References

- [1] A. Hartman, The existence of resolvable Steiner quadruple systems, J. Combin. Theory Ser. A 44 (1987), 182–206.
- [2] L. Ji, L. Zhu, Resolvable Steiner quadruple systems for the last 23 order, SIAM J. Discrete Math. 19 (2005), 420–430
- [3] R. Laue, Resolvable t-designs, Des. Codes Cryptogr. 32 (2004), 277–301.
- [4] M. Jimbo, Y. Kunihara, M. Sawa, R. Laue, Unifying some known infinite families of combinatorial 3-designs, in preparation.