# Resolvable Steiner 3-Designs 

Reinhard Laue
Universität Bayreuth,
laue@uni-bayreuth.de
April 15, 2010

## Kirkman: Resolvable 2-(15, 3, 1) Steiner design.

15 young ladies in a school walk out three abreast for 7 days in succession; it is required to arrange them daily, so that no two shall walk twice abreast.
$\exists$ resolvable $t$-designs for $t>2$ large $k[3]$, but $\lambda>1$.
M. Sawa:
$\exists$ resolvable Steiner $t$-designs, i.e. $\lambda=1$, for $t>2$ large $k$ ?
$\rightarrow$ construction of infinite families of 3 -designs [4].
Hartman and Ji,Zhu [1, 2]:
$\exists$ resolvable 3 - $(v, 4,1)$ design
$\Longleftrightarrow$

$$
v \equiv 4,8 \bmod 12
$$

$k>4: \quad 5-(12,6,1), 5-(24,8,1), 5-(48,6,1), \ldots ?$

## Theorem

Let $q$ prime power:
$\exists$ resolvable $3-\left(q^{n}+1, q+1,1\right)$ design

$$
\begin{gathered}
\Longleftrightarrow \\
q+1 \mid q^{n}+1, \text { i.e. } n \text { odd }
\end{gathered}
$$

Proof by help of good friends: groups
$\exists 3-\left(q^{n}+1, q+1,1\right)$ design $\mathcal{D}$,
with group of automorphisms $G=P G L\left(2, q^{n}\right)$
$n$ even: $\Longrightarrow(q+1) \quad \not\left(q^{n}+1\right)$.
$n$ odd: Claim: this design $\mathcal{D}$ is resolvable
$G=P G L\left(2, q^{n}\right)$ is 3-homogeneous $\Longrightarrow$ Any $(q+1)$-orbit is a 3-design. $B=P G\left(1, \mathbb{F}_{q}\right)<P G\left(1, \mathbb{F}_{q^{n}}\right)$ is $(q+1)$-set, $B^{G}$ block set of a 3-design $\mathcal{D}$. $B$ orbit of $P G L(2, q) \leq G_{B}<P G L\left(2, q^{n}\right)$

$$
\begin{gathered}
\frac{\left(q^{n}+1\right) q^{n}\left(q^{n}-1\right)}{(q+1) q(q-1)} \lambda=\left|B^{G}\right|=\frac{|G|}{\left|G_{B}\right|} \\
\quad \begin{array}{c}
\text { divides } \\
|P G L(2, q)|
\end{array}=\frac{\left(q^{n}+1\right) q^{n}\left(q^{n}-1\right)}{(q+1) q(q-1)} \\
\Longrightarrow \lambda=1, G_{B}=P G L(2, q)
\end{gathered}
$$

$A=G_{\infty} \cong A G L\left(1, \mathbb{F}_{q^{n}}\right), \infty \in B, H=G_{B}$
$S$ Singer of $G, T=S \cap H$ Singer of $H$.
$B$ is $T$-orbit, $B^{S}$ partitions $P G\left(1, \mathbb{F}_{q^{n}}\right)$ into blocks.


Double cosets correspond to splitting of an orbit.

$$
\begin{aligned}
& \infty^{G} / H \cong A \backslash G / H \\
& B^{G} / A \cong H \backslash G / A
\end{aligned}
$$

## $\mathbf{A} \backslash \mathbf{G} / \mathbf{H} \longleftrightarrow \mathbf{H} \backslash \mathbf{G} / \mathbf{A}$

$\mathrm{AgH} \longleftrightarrow H g^{-1} A$
$|A g H|=\left|H g^{-1} A\right|$
$H$ fixed point freely on $X=P G\left(1, \mathbb{F}_{q^{n}}\right) \backslash B$ :
orbits of $H$ on $P G\left(1, \mathbb{F}_{q^{n}}\right)$ :
1 orbit $B$ of size $q+1$,
$s$ regular orbits of size $(q+1) q(q-1)$.
orbits of $A$ on $B^{G}$ :
$\operatorname{der}_{\infty}(\mathcal{D})$ containing $B, A_{B}=A \cap H$
$s$ regular orbits of size $q^{n}\left(q^{n}-1\right)$ on $\operatorname{res}_{\infty}(\mathcal{D})$.

$$
\begin{gathered}
B^{\prime}, T \text {-orbit, } B^{\prime} \neq B, B^{\prime} \subseteq X^{\prime} H \text {-orbit } \\
\Longrightarrow \\
B^{\prime H \cap A}=\text { is a partition of } X^{\prime}
\end{gathered}
$$

Choose $T$-orbit $B_{i}$ within each $H$ orbit on $X$.

$$
P=\left(B, B_{i}^{H \cap A} \mid 1 \leq i \leq s\right) \text { partition of } P G\left(1, \mathbb{F}_{q^{n}}\right)
$$

$P^{A}$ resolution of $3-\left(q^{n}+1, q+1,1\right)$ design $\mathcal{D}$ :


Each block appears exactly once:

$$
\begin{aligned}
& A \text { has regular orbits on } \operatorname{res}_{\infty}(\mathcal{D}) \\
& \qquad\{i d\}=A_{B^{\prime}}<H \cap A<A \\
& \Longrightarrow
\end{aligned}
$$

$$
B^{\prime H \cap A} \text { block of imprimitivity for } A
$$

Wielandt $\Longrightarrow B^{\prime A}$ decomposes into disjoint blocks of imprimitivity.
$B_{i}$ orbit of $T$ on $H$-orbit $X_{i}$.
$B_{i}=B^{g_{i}}$ lies in the $A$-orbit $B^{g_{i} A}$ that corresponds to the double coset $H g_{i} A$.
If $B_{i}^{A}=B_{j}^{A}$ and $i \neq j$ then $H g_{i} A=H g_{j} A$ and $A g_{j}^{-1} H=A g_{i}^{-1} H$.
Then $\infty^{g_{j}^{-1} H}=\infty^{g_{i}^{-1} H}$. But $B_{i}$ and $B_{j}$ were selected from different $H$-orbits.
Thus, the orbits $B_{i}^{A}$ are disjoint regular orbits of $A$ on the block set of $\operatorname{res}_{\infty}(\mathcal{D})$.
Since the number of blocks of the residual design is just $s \cdot|A|$, we have obtained a resolution.

65 young ladies in a school walk out five abreast for 336 days in succession; it is required to arrange them daily, so that no three shall walk twice abreast.

2198 young ladies in a school walk out 14 abreast for 30927 days, that is 84 years and several days, in succession; it is required to arrange them daily, so that no three shall walk twice abreast.

## References

[1] A. Hartman, The existence of resolvable Steiner quadruple systems, J. Combin. Theory Ser. A 44 (1987), 182-206.
[2] L. Ji, L. Zhu, Resolvable Steiner quadruple systems for the last 23 order, SIAM J. Discrete Math. 19 (2005), 420-430
[3] R. Laue, Resolvable $t$-designs, Des. Codes Cryptogr. 32 (2004), 277-301.
[4] M. Jimbo, Y. Kunihara, M. Sawa, R. Laue, Unifying some known infinite families of combinatorial 3-designs, in preparation.

