On the structure of non-full-rank perfect codes

Denis Krotov, Sobolev Inst. of Math., Novosibirsk, Russia joint work with Olof Heden, KTH, Stockholm, Sweden

ALCOMA'10, Thurnau, Germany

Outline

- If a q-ary 1-perfect code has non-full rank (the dual space is not empty) then the code is the union of "components" which can be studied (constructed, characterized, enumerated, ...) independently.
- To improve the lower bound on the number of 1-perfect codes for odd *q*, we use switching starting from specially constructed nonlinear code. The linear Hamming code is not the best starting point to obtain a large number of 1-perfect codes by switching. This is illustrated using *n*-ary quasigroups (latin hypercubes).

1-Perfect codes

- A set of vertices of a discrete metric space is called a 1-perfect code if the radius-1 balls centered in the code vertices partition the space.
- Space: the Hamming space F_q^n (*n*-dimensional vector space over GF(*q*) with a Hamming metric)
- 1-Perfect codes in F_q^n exist $\Leftrightarrow n = \frac{q^m 1}{q 1}$ for some natural *m*.
- A linear 1-perfect code (Hamming code) is unique up to monomial transformations of the space. A check $m \times n$ matrix consists of complete set of mutually independent columns of height m.

1-Perfect codes

- A set of vertices of a discrete metric space is called a 1-perfect code if the radius-1 balls centered in the code vertices partition the space.
- Space: the Hamming space Fⁿ_q (n-dimensional vector space over GF(q) with a Hamming metric)
- 1-Perfect codes in F_q^n exist $\Leftrightarrow n = \frac{q^m 1}{q 1}$ for some natural *m*.
- A linear 1-perfect code (Hamming code) is unique up to monomial transformations of the space. A check $m \times n$ matrix consists of complete set of mutually independent columns of height m.

1-Perfect codes

- A set of vertices of a discrete metric space is called a 1-perfect code if the radius-1 balls centered in the code vertices partition the space.
- Space: the Hamming space Fⁿ_q (n-dimensional vector space over GF(q) with a Hamming metric)
- 1-Perfect codes in F_q^n exist $\Leftrightarrow n = \frac{q^m 1}{q 1}$ for some natural *m*.
- A linear 1-perfect code (Hamming code) is unique up to monomial transformations of the space. A check $m \times n$ matrix consists of complete set of mutually independent columns of height m.

- A set of vertices of a discrete metric space is called a 1-perfect code if the radius-1 balls centered in the code vertices partition the space.
- Space: the Hamming space Fⁿ_q (n-dimensional vector space over GF(q) with a Hamming metric)
- 1-Perfect codes in F_q^n exist $\Leftrightarrow n = \frac{q^m 1}{q 1}$ for some natural *m*.
- A linear 1-perfect code (Hamming code) is unique up to monomial transformations of the space. A check m × n matrix consists of complete set of mutually independent columns of height m.

- The rank of a code C ⊂ Fⁿ_q is the dimension of the linear span of C.
- We say that C has rank $+\Delta$ if rank $C = \log_q |C| + \Delta$.
- A code C is called a full-rank code if rank(C) = n.
- If a code is not full rank then it has a nontrivial orthogonal space.

- Known: The weight-3 codewords of a binary 1-perfect code $C \ni \overline{0}$ form a Steiner triple system. Any dual vector of a STS(v) has weight (v 1)/2.
- [Doyen, Hubaut, Vandensavel, 1978] Any dual vector of a STS(v) has weight (v 1)/2.
- Proof: if x
 = (111111...10000...0) is a dual vector then the set of all blocks containing the first coordinate defines a bijection between the 0-s and 1-s of x
 excluding the first 1.

• Corollary: Any dual vector of a binary 1-perfect code of length n has weight (n-1)/2.

- Known: The weight-3 codewords of a binary 1-perfect code $C \ni \overline{0}$ form a Steiner triple system. Any dual vector of a STS(v) has weight (v 1)/2.
- [Doyen, Hubaut, Vandensavel, 1978] Any dual vector of a STS(v) has weight (v 1)/2.
- Proof: if x
 = (111111...10000...0) is a dual vector then the set of all blocks containing the first coordinate defines a bijection between the 0-s and 1-s of x
 excluding the first 1.

• Corollary: Any dual vector of a binary 1-perfect code of length n has weight (n-1)/2.

- Known: The weight-3 codewords of a binary 1-perfect code $C \ni \overline{0}$ form a Steiner triple system. Any dual vector of a STS(v) has weight (v 1)/2.
- [Doyen, Hubaut, Vandensavel, 1978] Any dual vector of a STS(v) has weight (v 1)/2.
- Proof: if x
 = (111111...10000...0) is a dual vector then the set of all blocks containing the first coordinate defines a bijection between the 0-s and 1-s of x
 excluding the first 1.

 Corollary: Any dual vector of a binary 1-perfect code of length n has weight (n - 1)/2.

- Known: The weight-3 codewords of a binary 1-perfect code $C \ni \overline{0}$ form a Steiner triple system. Any dual vector of a STS(v) has weight (v 1)/2.
- [Doyen, Hubaut, Vandensavel, 1978] Any dual vector of a STS(v) has weight (v 1)/2.
- Proof: if x
 = (111111...10000...0) is a dual vector then the set of all blocks containing the first coordinate defines a bijection between the 0-s and 1-s of x
 excluding the first 1.

• Corollary: Any dual vector of a binary 1-perfect code of length n has weight (n-1)/2.

The weight of a dual vector, general case

- The binary case can be easily generalized if we consider the generalized STS that formed by the weight-3 words of a *q*-ary 1-perfect code.
- Given a dual vector $\bar{x} = (\underbrace{111111...1}_{left} \underbrace{0000...0}_{right})$ and considering the weight-3 codewords with 1 in the first position and -1 in another left position we see that (q - 1) left positions correspond to one right position.

$1 \mid 1$	1	1	1	1	1	1	$1 \mid$			
1 2								1		
$1 \mid$	2							2		

• So we get that $wt(\bar{x}) - 1 = (q - 1)(n - wt(\bar{x}))$, i.e.,

$$wt(\bar{x}) = \frac{(q-1)n - 1}{q}$$

The weight of a dual vector, general case

- The binary case can be easily generalized if we consider the generalized STS that formed by the weight-3 words of a *q*-ary 1-perfect code.
- Given a dual vector $\bar{x} = (\underbrace{111111...1}_{left} \underbrace{0000...0}_{right})$ and considering the weight-3 codewords with 1 in the first position and -1 in another left position we see that (q - 1) left positions correspond to one right position.

$1 \mid 1$	1	1	1	1	1	1	1 0	0	0	0
1 2							1			
$1 \mid$	2						2			

• So we get that $wt(\bar{x}) - 1 = (q - 1)(n - wt(\bar{x}))$, i.e.,

$$wt(\bar{x}) = \frac{(q-1)n - 1}{q}$$

The weight of a dual vector, general case

- The binary case can be easily generalized if we consider the generalized STS that formed by the weight-3 words of a *q*-ary 1-perfect code.
- Given a dual vector $\bar{x} = (\underbrace{111111...1}_{left} \underbrace{0000...0}_{right})$ and considering the weight-3 codewords with 1 in the first position and -1 in another left position we see that (q - 1) left positions correspond to one right position.

$1 \mid 1$	1	1	1	1	1	1	1 0	0	0	0
1 2							1			
$1 \mid$	2						2			

• So we get that $wt(\bar{x}) - 1 = (q-1)(n - wt(\bar{x}))$, i.e.,

$$wt(ar{x}) = rac{(q-1)n-1}{q}$$

The structure of the orthogonal space

Lemma

Let D be any r-dimensional subspace orthogonal to a perfect code C of length $n = \frac{q^m - 1}{q - 1}$. Then, for some monomial transformation ψ , the space $\psi(D)$ has a generating matrix of the form

$$H = \begin{bmatrix} \begin{vmatrix} & & & & \\ \bar{\alpha}_1 & \cdots & \bar{\alpha}_1 \\ & & & \\ \end{vmatrix} \begin{vmatrix} & & & \\ \bar{\alpha}_2 & \cdots & \bar{\alpha}_2 \\ & & & \\ \end{vmatrix} \cdots \begin{vmatrix} & & & \\ \bar{\alpha}_t & \cdots & \bar{\alpha}_t \\ & & & \\ \end{vmatrix} \begin{vmatrix} & & & \\ \bar{\alpha}_t & \cdots & \bar{\alpha}_t \\ & & & \\ \end{vmatrix} \begin{vmatrix} & & & \\ \bar{0} & \cdots & \bar{0} \\ & & & \\ \end{vmatrix}$$

where

$$H^{\star} = \left[\begin{array}{ccc} | & | & | \\ \bar{\alpha}_1 & \bar{\alpha}_2 & \cdots & \bar{\alpha}_t \\ | & | & & | \end{array} \right]$$

is a check matrix of some Hamming code C^* of length $t = \frac{q^r - 1}{q - 1}$.

Parity-check law

Assume w.l.o.g. $\psi = \text{Id.}$ Define the generalized parity-check function $\bar{\sigma} : F_q^n \to F_q^t$ as

$$\bar{\sigma}(\bar{x}) = (\sigma_1(\bar{x}), \ldots, \sigma_t(\bar{x}))$$

where

$$\sigma_i = x_{(i-1)q^t+1} + \ldots + x_{iq^t}.$$

Then $\bar{\sigma}(\bar{c}) \in C^*$ for every $\bar{c} \in C$, i.e.,

$$C = \bigcup_{\bar{\mu} \in C^{\star}} K_{\bar{\mu}} \tag{1}$$

where $\bar{\sigma}(K_{\bar{\mu}}) = \bar{\mu}$.

Lemma (combining construction)

Let C^* be a Hamming code. If for every $\bar{\mu} \in C^*$ we have a distance-3 code $K_{\bar{\mu}}$ of "appropriate" cardinality that satisfies the parity-check law $\bar{\sigma}(K_{\bar{\mu}}) = \bar{\mu}$, then the code C defined by (1) is 1-perfect.

• The sets $K_{\bar{\mu}}$ will be referred to as $\bar{\mu}$ -components.

- Clearly, any $\bar{\mu}$ -component is a translation of some $\bar{0}$ -component.
- 0-components can be considered as 1-perfect codes in the metric subspace

$$\{\bar{x}\in F_q^n\mid \mathrm{wt}(\bar{\sigma}(\bar{x}))\leq 1\}$$

- $\bar{\mu}$ -components ($\bar{0}$ -components) can be considered for *any* length of $\bar{\mu}$, no need to restrict by only lengths of 1-perfect codes
- This approach is especially convenient for studying 1-perfect codes of rank not more than +Δ for fixed Δ. For example, for binary 1-perfect codes of rank +3 the size of group of coordinates for σ̄ is 8 and μ̄-components exist in lengths 15, 23, 31, 39, 47, 55, 63, 71, ...

- The sets $K_{\bar{\mu}}$ will be referred to as $\bar{\mu}$ -components.
- Clearly, any $\bar{\mu}$ -component is a translation of some $\bar{0}$ -component.
- 0-components can be considered as 1-perfect codes in the metric subspace

$$\{\bar{x}\in F_q^n\mid \mathrm{wt}(\bar{\sigma}(\bar{x}))\leq 1\}$$

- $\bar{\mu}$ -components ($\bar{0}$ -components) can be considered for *any* length of $\bar{\mu}$, no need to restrict by only lengths of 1-perfect codes
- This approach is especially convenient for studying 1-perfect codes of rank not more than +Δ for fixed Δ. For example, for binary 1-perfect codes of rank +3 the size of group of coordinates for σ̄ is 8 and μ̄-components exist in lengths 15, 23, 31, 39, 47, 55, 63, 71, ...

- The sets $K_{\bar{\mu}}$ will be referred to as $\bar{\mu}$ -components.
- Clearly, any $\bar{\mu}$ -component is a translation of some $\bar{0}$ -component.
- 0-components can be considered as 1-perfect codes in the metric subspace

$\{\bar{x}\in F_q^n\mid \mathrm{wt}(\bar{\sigma}(\bar{x}))\leq 1\}$

- $\bar{\mu}$ -components ($\bar{0}$ -components) can be considered for *any* length of $\bar{\mu}$, no need to restrict by only lengths of 1-perfect codes
- This approach is especially convenient for studying 1-perfect codes of rank not more than +Δ for fixed Δ. For example, for binary 1-perfect codes of rank +3 the size of group of coordinates for σ̄ is 8 and μ̄-components exist in lengths 15, 23, 31, 39, 47, 55, 63, 71, ...

- The sets $K_{\bar{\mu}}$ will be referred to as $\bar{\mu}$ -components.
- Clearly, any $\bar{\mu}$ -component is a translation of some $\bar{0}$ -component.
- 0-components can be considered as 1-perfect codes in the metric subspace

$$\{\bar{x}\in F_q^n\mid \mathrm{wt}(\bar{\sigma}(\bar{x}))\leq 1\}$$

- $\bar{\mu}$ -components ($\bar{0}$ -components) can be considered for *any* length of $\bar{\mu}$, no need to restrict by only lengths of 1-perfect codes
- This approach is especially convenient for studying 1-perfect codes of rank not more than +Δ for fixed Δ. For example, for binary 1-perfect codes of rank +3 the size of group of coordinates for σ̄ is 8 and μ̄-components exist in lengths 15, 23, 31, 39, 47, 55, 63, 71, ...

- The sets $K_{\bar{\mu}}$ will be referred to as $\bar{\mu}$ -components.
- Clearly, any $\bar{\mu}$ -component is a translation of some $\bar{0}$ -component.
- 0-components can be considered as 1-perfect codes in the metric subspace

$$\{\bar{x}\in F_q^n\mid \mathrm{wt}(\bar{\sigma}(\bar{x}))\leq 1\}$$

- $\bar{\mu}$ -components ($\bar{0}$ -components) can be considered for *any* length of $\bar{\mu}$, no need to restrict by only lengths of 1-perfect codes
- This approach is especially convenient for studying 1-perfect codes of rank not more than +Δ for fixed Δ. For example, for binary 1-perfect codes of rank +3 the size of group of coordinates for σ̄ is 8 and μ̄-components exist in lengths 15, 23, 31, 39, 47, 55, 63, 71, ...

 Case q = 2 rank ≤ +2: [Avgustinovich, Heden, Solov'eva, 2004] One-to-one correspondence between 0-components and (n − 3)/4-ary quasigroups of order 4. [K, Potapov, 2009] Characterization of multary quasigroups of

order 4.

- Case q = 4 rank ≤ +1: generalized concatenated construction [V.Zinoviev] results in binary 1-perfect codes of rank ≤ +2, so this case probably can be solved.
- Case q = 3 rank ≤ +1: probably not more complicate than for q = 4.

 Case q = 2 rank ≤ +2: [Avgustinovich, Heden, Solov'eva, 2004] One-to-one correspondence between 0̄-components and (n − 3)/4-ary quasigroups of order 4. [K, Potapov, 2009] Characterization of multary quasigroups of

order 4.

- Case q = 4 rank ≤ +1: generalized concatenated construction [V.Zinoviev] results in binary 1-perfect codes of rank ≤ +2, so this case probably can be solved.
- Case q = 3 rank ≤ +1: probably not more complicate than for q = 4.

 Case q = 2 rank ≤ +2: [Avgustinovich, Heden, Solov'eva, 2004] One-to-one correspondence between 0-components and (n − 3)/4-ary quasigroups of order 4. [K, Potapov, 2009] Characterization of multary quasigroups of

order 4.

- Case q = 4 rank ≤ +1: generalized concatenated construction [V.Zinoviev] results in binary 1-perfect codes of rank ≤ +2, so this case probably can be solved.
- Case q = 3 rank $\leq +1$: probably not more complicate than for q = 4.

Unsolved cases

- Case q = 5 rank ≤ +1: open problem (even characterization in terms of multary quasigroups of order 5).
- Case q = 2 rank ≤ +3: open problem. But the case n = 15 is solved using computer [Zinoviev, Zinoviev, 2006], [Östergård, Pottonen, 2009] (there are 1990 non-isomorphic extended 1-perfect codes). This gives some basic knowledge on the structure of "rank +3" components of larger lengths, similarly as knowledge of all latin squares when studying latin hypercubes.

Unsolved cases

- Case q = 5 rank ≤ +1: open problem (even characterization in terms of multary quasigroups of order 5).
- Case q = 2 rank ≤ +3: open problem. But the case n = 15 is solved using computer [Zinoviev, Zinoviev, 2006], [Östergård, Pottonen, 2009] (there are 1990 non-isomorphic extended 1-perfect codes). This gives some basic knowledge on the structure of "rank +3" components of larger lengths, similarly as knowledge of all latin squares when studying latin hypercubes.

$$2^{2^{lpha n+o(n)}}$$

- All lower bounds are obtained by switching approach.
- For binary case, $\alpha \geq \frac{1}{2}$ [Vasil'ev 1962], and $\alpha \leq 1$ (trivial).
- A generalization to nonbinary case: [Schönheim 1968] possibility to switch linear switching components.
- [Los' 2006]: in the case of nonprime q a linear component of the Hamming code is partitioned into exponential number of nonlinear switching components. This improves the lower bound on α.

$$2^{2^{lpha n+o(n)}}$$

- All lower bounds are obtained by switching approach.
- For binary case, $\alpha \geq \frac{1}{2}$ [Vasil'ev 1962], and $\alpha \leq 1$ (trivial).
- A generalization to nonbinary case: [Schönheim 1968] possibility to switch linear switching components.
- [Los' 2006]: in the case of nonprime q a linear component of the Hamming code is partitioned into exponential number of nonlinear switching components. This improves the lower bound on α.

$$2^{2^{lpha n+o(n)}}$$

- All lower bounds are obtained by switching approach.
- For binary case, $\alpha \geq \frac{1}{2}$ [Vasil'ev 1962], and $\alpha \leq 1$ (trivial).
- A generalization to nonbinary case: [Schönheim 1968] possibility to switch linear switching components.
- [Los' 2006]: in the case of nonprime q a linear component of the Hamming code is partitioned into exponential number of nonlinear switching components. This improves the lower bound on α.

$$2^{2^{lpha n+o(n)}}$$

- All lower bounds are obtained by switching approach.
- For binary case, $\alpha \geq \frac{1}{2}$ [Vasil'ev 1962], and $\alpha \leq 1$ (trivial).
- A generalization to nonbinary case: [Schönheim 1968] possibility to switch linear switching components.
- [Los' 2006]: in the case of nonprime q a linear component of the Hamming code is partitioned into exponential number of nonlinear switching components. This improves the lower bound on α.

$$2^{2^{lpha n+o(n)}}$$

- All lower bounds are obtained by switching approach.
- For binary case, $\alpha \geq \frac{1}{2}$ [Vasil'ev 1962], and $\alpha \leq 1$ (trivial).
- A generalization to nonbinary case: [Schönheim 1968] possibility to switch linear switching components.
- [Los' 2006]: in the case of nonprime q a linear component of the Hamming code is partitioned into exponential number of nonlinear switching components. This improves the lower bound on α .

For odd q, the Hamming code is not the best choice to start switching!

To show this, we use the [Phelps 1984] construction, which can be treated as a way to construct a $\bar{\mu}$ -component from a multary quasigroup.

 $\Sigma = \{0, 1, \dots, q-1\}$. Σ^n – the set of *n*-words over Σ . The set of *q* words in Σ^n that coincide in n-1 positions is called a line.

Definition

A function $f : \Sigma^n \to \Sigma$ is called an *n*-ary (multary) quasigroup, or a latin *n*-cube of order *q* if $f(L) = \Sigma$ for every line *L*.

$$n = 2: \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 1 & 0 \\ 3 & 2 & 0 & 1 \end{bmatrix}$$

n-Ary quasigroups \leftrightarrow (*n*+1,2) MDS codes

Well knowr

 $f: \Sigma^n \to \Sigma$ is an *n*-ary quasigroup if and only if $M = \{(x_0, x_1, ..., x_n) \mid x_0 = f(x_1, ..., x_n)\}$ is a distance-2 MDS code.

n-Ary quasigroups \leftrightarrow (*n*+1,2) MDS codes

Well known

 $f: \Sigma^n \to \Sigma$ is an *n*-ary quasigroup if and only if $M = \{(x_0, x_1, ..., x_n) \mid x_0 = f(x_1, ..., x_n)\}$ is a distance-2 MDS code.

Theorem ([K, Potapov, 2009])

Every n-ary quasigroup is a repetition-free composition of (one or more) multary quasigroups equivalent (isotopic) to multary quasigroups (latin hypercubes) of anti-sudoku type.

n = 3: g:

$$n = 2: h:$$
0 1 2 3
1 0 3 2
2 3 1 0
3 2 0 1

Example:

$$f(x_1, x_2, x_3, x_4) = h(x_2, g(x_1, x_3, x_4))$$

The number of *n*-ary quasigroups. LOWER bound

- How to obtain large number of multary quasigroups of fixed order *q*?
- Ill Switching
- Starting to switch from the linear multary quasigroups is not a good idea sometimes. For example,
 f(x₁, x₂, ..., x_n) = x₁ + x₂ + ... + x_n mod 7

The number of *n*-ary quasigroups. LOWER bound

- How to obtain large number of multary quasigroups of fixed order *q*?
- Ill Switching
- Starting to switch from the linear multary quasigroups is not a good idea sometimes. For example,
 f(x₁, x₂, ..., x_n) = x₁ + x₂ + ... + x_n mod 7

The number of *n*-ary quasigroups. LOWER bound

- How to obtain large number of multary quasigroups of fixed order *q*?
- Ill Switching
- Starting to switch from the linear multary quasigroups is not a good idea sometimes. For example,

 $f(x_1, x_2, ..., x_n) = x_1 + x_2 + ... + x_n \mod 7$

Lower bound on the number of *n*-ary quasigroups of order *q*: 2^T where T is the maximal number of independent switching components (trades) in an *n*-ary quasigroup. Since the minimal trade size is 2^n , $T \leq (q/2)^n$ which is tight for even *q*, but for odd *q* we have only $T \geq (\frac{q-3}{2})^n$ in the iterated *n*-ary quasigroup $\psi(x_1, \psi(x_2, \psi(x_3, \dots \psi(x_{n-1}, x_n)\dots)))$ [Potapov, K, subm.].

Returning to the codes, the *q*-ary Hamming code can be treated as obtained by the Phelps construction from the linear multary quasigroup of order *q*. Switching components in this code correspond to switching components in the multary quasigroup, which are not minimal possible. Replacing the linear multary quasigroup by a specially constructed nonlinear one, we can improve the constant α in the second floor of the lower bound for odd $q \geq 5$.

Thank you for your attention!

Thank organizers for the wonderful conference!