2-arcs of maximal size in projective and affine Hjelmslev planes over \mathbb{Z}_{25}

Michael Kiermaier

Institut für Mathematik
Universität Bayreuth

ALCOMA 2010, Thurnau
joint work with Matthias Koch, Sascha Kurz supported by DFG grant WA 1666/4-1

Outline

(9) Introduction
(2) Computations

- Approach 1: Via factor plane
- Approach 2: Via affine subplane
(3) Conclusion

Definition of a 2-arc

Given

- Some geometry \mathfrak{G} (consisting of points, lines, incidence relation).
- \mathfrak{k} a set of points in \mathfrak{G}.

Definition

- \mathfrak{k} is a $2-\operatorname{arc}$, if $\#(L \cap \mathfrak{k}) \leq 2$ for each line L in \mathfrak{G}.
- Maximum possible size of a 2-arc: $n_{2}(\mathfrak{G})$.

Goal

For interesting finite geometries \mathfrak{G}, determine $n_{2}(\mathfrak{G})$.

Definition of a 2-arc

Given

- Some geometry \mathfrak{G} (consisting of points, lines, incidence relation).
- \mathfrak{k} a set of points in \mathfrak{G}.

Definition

- \mathfrak{k} is a $2-\operatorname{arc}$, if $\#(L \cap \mathfrak{k}) \leq 2$ for each line L in \mathfrak{G}.
- Maximum possible size of a 2-arc: $n_{2}(\mathfrak{G})$.

Goal

For interesting finite geometries \mathfrak{G}, determine $n_{2}(\mathfrak{G})$.

Recall

Projective plane $\operatorname{PG}\left(2, \mathbb{F}_{q}\right)$ over the finite field \mathbb{F}_{q} :

- Points: one-dimensional linear subspaces of \mathbb{F}_{q}^{3}.
- Lines: two-dimensional linear subspaces of \mathbb{F}_{q}^{3}.
- Incidence given by subset relation.

Ovals and hyperovals

- If q odd: $n_{2}\left(P G\left(2, \mathbb{F}_{q}\right)\right)=q+1$
such arcs are called ovals.
- If q even: $n_{2}\left(P G\left(2, \mathbb{F}_{q}\right)\right)=q+2$,
such arcs are called hyperovals.
Connection to coding theory
Ovals and hyperovals give MDS-codes.

Recall

Projective plane $\mathrm{PG}\left(2, \mathbb{F}_{q}\right)$ over the finite field \mathbb{F}_{q} :

- Points: one-dimensional linear subspaces of \mathbb{F}_{q}^{3}.
- Lines: two-dimensional linear subspaces of \mathbb{F}_{q}^{3}.
- Incidence given by subset relation.

Ovals and hyperovals

- If q odd: $n_{2}\left(P G\left(2, \mathbb{F}_{q}\right)\right)=q+1$, such arcs are called ovals.
- If q even: $n_{2}\left(P G\left(2, \mathbb{F}_{q}\right)\right)=q+2$, such arcs are called hyperovals.

Connection to coding theory
Ovals and hyperovals give MDS-codes.

Example (The Fano plane $\mathrm{PG}\left(2, \mathbb{F}_{2}\right)$)

Example (The Fano plane PG(2, $\left.\mathbb{F}_{2}\right)$)

Example (The Fano plane PG(2, $\left.\mathbb{F}_{2}\right)$)

Characterization of finite fields

A finite field is a finite ring R with exactly 2 left ideals. Of course: These ideals are $\{0\}$ and R.

Generalization:

```
Definition
A finite ring R with exactly 3 left ideals is called
finite chain ring of composition length 2 (CR2).
```


Example

Properties of CR2-rings

- Left-ideals: $\{0\}<N<R$
- $N=\operatorname{rad}(R)$, so N both-sided ideal and $R / N \cong \mathbb{F}_{q}$.

Characterization of finite fields

A finite field is a finite ring R with exactly 2 left ideals. Of course: These ideals are $\{0\}$ and R.

Generalization:

Definition

A finite ring R with exactly 3 left ideals is called finite chain ring of composition length 2 (CR2).

Example

$\mathbb{Z}_{4}=\mathbb{Z} / 4 \mathbb{Z}$, left-ideals are $\{0\},\{0,2\}$ and $\{0,1,2,3\}$.
Properties of CR2-rings

- Left-ideals: $\{0\} \lesseqgtr N \lesseqgtr R$
- $N=\operatorname{rad}(R)$, so N both-sided ideal and $R / N \cong \mathbb{F}$.

Characterization of finite fields

A finite field is a finite ring R with exactly 2 left ideals. Of course: These ideals are $\{0\}$ and R.

Generalization:

Definition

A finite ring R with exactly 3 left ideals is called finite chain ring of composition length 2 (CR2).

Example

$\mathbb{Z}_{4}=\mathbb{Z} / 4 \mathbb{Z}$, left-ideals are $\{0\},\{0,2\}$ and $\{0,1,2,3\}$.

Properties of CR2-rings

- Left-ideals: $\{0\} \lesseqgtr N \lesseqgtr R$
- $N=\operatorname{rad}(R)$, so N both-sided ideal and $R / N \cong \mathbb{F}_{q}$.

Theorem

Let R be a CR2-ring, $N=\operatorname{rad}(R)$ with $R / N \cong \mathbb{F}_{q}$ and $q=p^{r}, p$ prime. Then $\# R=q^{2}$ and either

- $\operatorname{char}(R)=p^{2}$ and $R \cong \operatorname{GR}\left(q^{2}, p^{2}\right)$
(Galois ring of order q^{2} and characteristic p^{2})
or
- $\operatorname{char}(R)=p$ and there is a unique $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ s.t.
$R \cong \mathbb{F}_{q}[X, \sigma] /\left(X^{2}\right)$
(σ-duals over \mathbb{F}_{q})

Smallest CR2-rings

q	R	
	Galois ring	σ-duals over \mathbb{F}_{q}
2	\mathbb{Z}_{4}	$\mathbb{F}_{2}[X] /\left(X^{2}\right)$
3	\mathbb{Z}_{9}	$\mathbb{F}_{3}[X] /\left(X^{2}\right)$
4	$\operatorname{GR}(16,4)$	$\mathbb{F}_{4}[X] /\left(X^{2}\right) \quad \mathbb{F}_{4}\left[X, a \mapsto a^{2}\right] /\left(X^{2}\right)$
5	\mathbb{Z}_{25}	$\mathbb{F}_{5}[X] /\left(X^{2}\right)$

Abbreviations

- $\mathbb{G}_{4}:=\operatorname{GR}(16,4)$
- $\mathbb{S}_{q}:=\mathbb{F}_{q}[X] /\left(X^{2}\right)$
- $\mathbb{T}_{4}:=\mathbb{F}_{4}\left[X, a \mapsto a^{2}\right] /\left(X^{2}\right)$ (non-commutative!)

Definition

Let R be a CR2-ring. Projective Hjelmslev plane $\operatorname{PHG}(2, R)$ over R:

- Points: Free submodules of R_{R}^{3} of rank 1 .
- Lines: Free submodules of R_{R}^{3} of rank 2.
- Incidence given by subset relation.

Two different lines may meet in more than one point!
Goal
Find $n_{2}(R):=n_{2}(P H G(2, R))$ for CR2-rings R.

Definition

Let R be a CR2-ring. Projective Hjelmslev plane $\operatorname{PHG}(2, R)$ over R:

- Points: Free submodules of R_{R}^{3} of rank 1 .
- Lines: Free submodules of R_{R}^{3} of rank 2.
- Incidence given by subset relation.

Two different lines may meet in more than one point!
Goal
Find $n_{2}(R):=n_{2}(P H G(2, R))$ for CR2-rings R.

Definition

Let R be a CR2-ring. Projective Hjelmslev plane $\operatorname{PHG}(2, R)$ over R:

- Points: Free submodules of R_{R}^{3} of rank 1 .
- Lines: Free submodules of R_{R}^{3} of rank 2.
- Incidence given by subset relation.

Two different lines may meet in more than one point!

Goal

Find $n_{2}(R):=n_{2}(P H G(2, R))$ for CR2-rings R.

Previous results (Thomas Honold, Ivan Landjev, M.K.)

$n_{2}(R)$		R	
	Galois ring	σ-duals	
q	even	$q^{2}+q+1$	
	$\cdot \leq q^{2}$	$q^{2}+2 \leq \cdot \leq q^{2}+q$	
		q^{2}	

Previous results for small q

Aim
Computationally attack smallest open case $R=\mathbb{Z}_{25}$!

Previous results (Thomas Honold, Ivan Landjev, M.K.)

$n_{2}(R)$		R	
	Galois ring	σ-duals	
q	even	$q^{2}+q+1$	$q^{2}+2 \leq \cdot \leq q^{2}+q$
	odd	$\cdot \leq q^{2}$	q^{2}

Previous results for small q

q	2		3		4			5	
R	\mathbb{Z}_{4}	\mathbb{S}_{2}	\mathbb{Z}_{9}	\mathbb{S}_{3}	\mathbb{G}_{4}	\mathbb{S}_{4}	\mathbb{T}_{4}	\mathbb{Z}_{25}	\mathbb{S}_{5}
$n_{2}(R)$	7	6	$\mathbf{9}$	9	21	$\mathbf{1 8}$	$\mathbf{1 8}$	$\mathbf{2 1}-\mathbf{2 5}$	$\mathbf{2 5}$

Aim

Computationally attack smallest open case $R=\mathbb{Z}_{25}$!

Previous results (Thomas Honold, Ivan Landjev, M.K.)

$n_{2}(R)$		R	
	Galois ring	σ-duals	
q	even	$q^{2}+q+1$	$q^{2}+2 \leq \cdot \leq q^{2}+q$
	odd	$\cdot \leq q^{2}$	q^{2}

Previous results for small q

q	2		3		4			5	
R	\mathbb{Z}_{4}	\mathbb{S}_{2}	\mathbb{Z}_{9}	\mathbb{S}_{3}	\mathbb{G}_{4}	\mathbb{S}_{4}	\mathbb{T}_{4}	\mathbb{Z}_{25}	\mathbb{S}_{5}
$n_{2}(R)$	7	6	$\mathbf{9}$	9	21	$\mathbf{1 8}$	$\mathbf{1 8}$	$\mathbf{2 1 - 2 5}$	$\mathbf{2 5}$

Aim

Computationally attack smallest open case $R=\mathbb{Z}_{25}$!

Size of problem

- Number of points in $\mathrm{PHG}\left(2, \mathbb{Z}_{25}\right)$ is 775 .

$$
\binom{775}{22}=
$$

2416624464693478600738862105303774646658800.

Huge search space!

- Collineation group PGL $\left(3, \mathbb{Z}_{25}\right)$ has size 145312500000 .

Conclusion
Advanced search methods are needed.

Size of problem

- Number of points in $\mathrm{PHG}\left(2, \mathbb{Z}_{25}\right)$ is 775 .

$$
\binom{775}{22}=
$$

2416624464693478600738862105303774646658800.

Huge search space!

- Collineation group PGL $\left(3, \mathbb{Z}_{25}\right)$ has size 145312500000 .

Conclusion
Advanced search methods are needed.

Size of problem

- Number of points in $\mathrm{PHG}\left(2, \mathbb{Z}_{25}\right)$ is 775 .

$$
\binom{775}{22}=
$$

2416624464693478600738862105303774646658800.

Huge search space!

- Collineation group PGL $\left(3, \mathbb{Z}_{25}\right)$ has size 145312500000 .

Conclusion

Advanced search methods are needed.

Homomorphisms

- Ring homomorphism

$$
\phi: \mathbb{Z}_{25} \rightarrow \mathbb{F}_{5}, \quad a \mapsto a \quad(\bmod 5)
$$

extends to
$\phi: \operatorname{PHG}\left(2, \mathbb{Z}_{25}\right) \rightarrow \mathrm{PG}\left(2, \mathbb{F}_{5}\right)$ (collineation) and $\phi: \operatorname{PGL}\left(3, \mathbb{Z}_{25}\right) \rightarrow \operatorname{PGL}\left(3, \mathbb{F}_{5}\right)$ (group homomorphism).

Idea

First do computations in $\operatorname{PG}\left(2, \mathbb{F}_{5}\right)$, then compute preimages under ϕ.

Homomorphisms

- Ring homomorphism

$$
\phi: \mathbb{Z}_{25} \rightarrow \mathbb{F}_{5}, \quad a \mapsto a \quad(\bmod 5)
$$

extends to
$\phi: \operatorname{PHG}\left(2, \mathbb{Z}_{25}\right) \rightarrow \mathrm{PG}\left(2, \mathbb{F}_{5}\right)$ (collineation) and
$\phi: \operatorname{PGL}\left(3, \mathbb{Z}_{25}\right) \rightarrow \operatorname{PGL}\left(3, \mathbb{F}_{5}\right)$ (group homomorphism).

- Together: ϕ is homomorphism of group actions!

ldea

First do computations in $\mathrm{PG}\left(2, \mathbb{F}_{5}\right)$, then compute preimages under ϕ.

Homomorphisms

- Ring homomorphism

$$
\phi: \mathbb{Z}_{25} \rightarrow \mathbb{F}_{5}, \quad a \mapsto a \quad(\bmod 5)
$$

extends to
$\phi: \operatorname{PHG}\left(2, \mathbb{Z}_{25}\right) \rightarrow \mathrm{PG}\left(2, \mathbb{F}_{5}\right)$ (collineation) and
$\phi: \operatorname{PGL}\left(3, \mathbb{Z}_{25}\right) \rightarrow \operatorname{PGL}\left(3, \mathbb{F}_{5}\right)$ (group homomorphism).

- Together: ϕ is homomorphism of group actions!

Idea

First do computations in $\mathrm{PG}\left(2, \mathbb{F}_{5}\right)$, then compute preimages under ϕ.

Homomorphism Principle

To compute PGL(2, $\left.\mathbb{Z}_{25}\right)$-representatives of a $(n, 2)$-arcs in $\operatorname{PHG}\left(2, \mathbb{Z}_{25}\right)$:

- Step 1:

Compute set X of $\mathrm{PG}\left(2, \mathbb{F}_{5}\right)$-representatives of possible ϕ-images.

- Step 2:

For each $x \in X$:
Compute representatives of $\phi^{-1}(x)$ with respect to action of $\phi^{-1}\left(\mathrm{PG}\left(2, \mathbb{F}_{5}\right)_{x}\right)$ on $\operatorname{PHG}\left(2, \mathbb{Z}_{25}\right)$.

Remarks

- Step 2 much harder than Step 1.
- Small X will reduce running time of Step 2

Find as many restrictions on the ϕ-images as possible!

Homomorphism Principle

To compute PGL(2, $\left.\mathbb{Z}_{25}\right)$-representatives of a $(n, 2)$-arcs in PHG(2, $\left.\mathbb{Z}_{25}\right)$:

- Step 1:

Compute set X of $\mathrm{PG}\left(2, \mathbb{F}_{5}\right)$-representatives of possible ϕ-images.

- Step 2:

For each $x \in X$:
Compute representatives of $\phi^{-1}(x)$ with respect to action of $\phi^{-1}\left(\mathrm{PG}\left(2, \mathbb{F}_{5}\right)_{x}\right)$ on $\operatorname{PHG}\left(2, \mathbb{Z}_{25}\right)$.

Remarks

- Step 2 much harder than Step 1.
- Small X will reduce running time of Step 2.

Find as many restrictions on the ϕ-images as possible!

Restrictions

- ϕ-image is exactly the distribution of points to the point classes.
- Geometric considerations give very hard restrictions.
- For $(22,2)$-arcs we get $|X|=4$, can be done by hand by combinatorial and geometric reasoning.

Implementation

- In C++
- Further methods: Backtrack search, Ladder game, forbidden substructurs.

Results

- In 8.5 hours: There is no $(22,2)$-arc.
- In 13.5 hours: The already known $(21,1)$-arc is unique.

Restrictions

- ϕ-image is exactly the distribution of points to the point classes.
- Geometric considerations give very hard restrictions.
- For $(22,2)$-arcs we get $|X|=4$, can be done by hand by combinatorial and geometric reasoning.

Implementation

- In C++.
- Further methods: Backtrack search, Ladder game, forbidden substructurs.

Restrictions

- ϕ-image is exactly the distribution of points to the point classes.
- Geometric considerations give very hard restrictions.
- For $(22,2)$-arcs we get $|X|=4$, can be done by hand by combinatorial and geometric reasoning.

Implementation

- In C++.
- Further methods: Backtrack search, Ladder game, forbidden substructurs.

Results

- In 8.5 hours: There is no $(22,2)$-arc.
- In 13.5 hours: The already known $(21,1)$-arc is unique.

Second approach
 Computational nonexistence/uniqueness proof:

Delicate matter.
Double-check result by completely independent approach.

Lemma

Let \mathfrak{K} be a 2 -arc in $\operatorname{PHG}\left(2, \mathbb{Z}_{25}\right)$ intersecting each point class in at most 2 points.
Then there is a line class containing at most 2 points of \mathfrak{K}.

- Large 2-arcs fulfill requirement of the Lemma.
- So: Removing the line class of the Lemma:
($n, 2$)-arc yields $(\geq n-2,2)$-arc in the affine Hjelmslev
plane $\mathrm{AHG}\left(2, \mathbb{Z}_{25}\right)$.
- Classify all $(20,2)$ and $(19,2)$-arcs in $\operatorname{AHG}\left(2, \mathbb{Z}_{25}\right)$

Problem size is reduced, because:

- $\operatorname{AHG}\left(2, \mathbb{Z}_{25}\right)$ has 150 points less then $\operatorname{PHG}\left(2, \mathbb{Z}_{25}\right)$,
- Arc size is reduced by 2.
- Easy: Check results for extendibility in PHG(2, $\left.\mathbb{Z}_{25}\right)$.

Lemma

Let \mathfrak{K} be a 2-arc in $\mathrm{PHG}\left(2, \mathbb{Z}_{25}\right)$ intersecting each point class in at most 2 points.
Then there is a line class containing at most 2 points of \mathfrak{K}.

Idea

- Large 2-arcs fulfill requirement of the Lemma.
- So: Removing the line class of the Lemma: $(n, 2)$-arc yields $(\geq n-2,2)$-arc in the affine Hjelmslev plane $\mathrm{AHG}\left(2, \mathbb{Z}_{25}\right)$.
- Classify all $(20,2)$ and $(19,2)$-arcs in $\operatorname{AHG}\left(2, \mathbb{Z}_{25}\right)$. Problem size is reduced, because:
- $\operatorname{AHG}\left(2, \mathbb{Z}_{25}\right)$ has 150 points less then $\operatorname{PHG}\left(2, \mathbb{Z}_{25}\right)$,
- Arc size is reduced by 2.
- Easy: Check results for extendibility in $\operatorname{PHG}\left(2, \mathbb{Z}_{25}\right)$.

Implementation

- Fast canonizer.
- Backtrack search combined with orderly generation on the first few levels.
- On leaf nodes of backtrack search: Formulate problem as linear program, get solutions from CPLEX.

Results

- Exactly the same results as with the first approach.
- Number and isomorphism type of extendible 2-arcs in $\mathrm{AHG}\left(2, \mathbb{Z}_{25}\right)$
perfectly match the affine reductions of the known (21, 2)-arc.

Implementation

- Fast canonizer.
- Backtrack search combined with orderly generation on the first few levels.
- On leaf nodes of backtrack search: Formulate problem as linear program, get solutions from CPLEX.

Results

- Exactly the same results as with the first approach.
- Number and isomorphism type of extendible 2-arcs in $\mathrm{AHG}\left(2, \mathbb{Z}_{25}\right)$
perfectly match the affine reductions of the known (21,2)-arc.

Updated table

q	2		3		4			5	
R	\mathbb{Z}_{4}	\mathbb{S}_{2}	\mathbb{Z}_{9}	\mathbb{S}_{3}	\mathbb{G}_{4}	\mathbb{S}_{4}	\mathbb{T}_{4}	\mathbb{Z}_{25}	\mathbb{S}_{5}
$n_{2}(R)$	7	6	9	9	21	18	18	$\mathbf{2 1}$	25

Surprise

"Exotic" ring \mathbb{S}_{5} admits much larger 2-arc than its brother \mathbb{Z}_{25} !

Updated table

q	2		3		4			5	
R	\mathbb{Z}_{4}	\mathbb{S}_{2}	\mathbb{Z}_{9}	\mathbb{S}_{3}	\mathbb{G}_{4}	\mathbb{S}_{4}	\mathbb{T}_{4}	\mathbb{Z}_{25}	
\mathbb{S}_{5}									
$n_{2}(R)$	7	6	9	9	21	18	18	21	

Surprise

"Exotic" ring \mathbb{S}_{5} admits much larger 2-arc than its brother \mathbb{Z}_{25} !

Open questions

- Understand $n_{2}\left(\mathbb{Z}_{25}\right)<25$ without use of computer.
- Construct the unique $(21,2)$-arc by hand.
- New smallest open case: $n_{2}\left(\mathbb{Z}_{49}\right)$.
- Find reasonable lower bound on $n_{2}(R)$ for q odd, R Galois ring.
- Holds $n_{2}\left(\mathbb{Z}_{q^{2}}\right)<q^{2}$ for all odd $q \geq 5$?

