2-arcs of maximal size in projective and affine Hjelmslev planes over \mathbb{Z}_{25}

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

ALCOMA 2010, Thurnau

joint work with Matthias Koch, Sascha Kurz supported by DFG grant WA 1666/4-1

2 Computations

- Approach 1: Via factor plane
- Approach 2: Via affine subplane

★ E → < E →</p>

э

Definition of a 2-arc

Given

- Some geometry & (consisting of points, lines, incidence relation).
- £ a set of points in 𝔅.

Definition

- ŧ is a <mark>2-arc</mark>, if
 - $\#(L \cap \mathfrak{k}) \leq 2$ for each line *L* in \mathfrak{G} .
- Maximum possible size of a 2-arc: $n_2(\mathfrak{G})$.

Goal

For interesting finite geometries \mathfrak{G} , determine $n_2(\mathfrak{G})$.

イロト イポト イヨト イヨト

Definition of a 2-arc

Given

- Some geometry & (consisting of points, lines, incidence relation).
- £ a set of points in 𝔅.

Definition

- ŧ is a <mark>2-arc</mark>, if
 - $\#(L \cap \mathfrak{k}) \leq 2$ for each line *L* in \mathfrak{G}.
- Maximum possible size of a 2-arc: $n_2(\mathfrak{G})$.

Goal

For interesting finite geometries \mathfrak{G} , determine $n_2(\mathfrak{G})$.

イロト イポト イヨト イヨト

Recall

Projective plane $PG(2, \mathbb{F}_q)$ over the finite field \mathbb{F}_q :

- Points: one-dimensional linear subspaces of F³_q.
- Lines: two-dimensional linear subspaces of \mathbb{F}_q^3 .
- Incidence given by subset relation.

Ovals and hyperovals

- If q odd: $n_2(PG(2, \mathbb{F}_q)) = q + 1$, such arcs are called ovals.
- If *q* even: n₂(PG(2, 𝔽_{*q*})) = *q* + 2, such arcs are called hyperovals.

Connection to coding theory

Ovals and hyperovals give MDS-codes.

Recall

Projective plane $PG(2, \mathbb{F}_q)$ over the finite field \mathbb{F}_q :

- Points: one-dimensional linear subspaces of F³_q.
- Lines: two-dimensional linear subspaces of \mathbb{F}_q^3 .
- Incidence given by subset relation.

Ovals and hyperovals

- If q odd: $n_2(PG(2, \mathbb{F}_q)) = q + 1$, such arcs are called ovals.
- If *q* even: n₂(PG(2, 𝔽_q)) = *q* + 2, such arcs are called hyperovals.

Connection to coding theory

Ovals and hyperovals give MDS-codes.

Example (The Fano plane $PG(2, \mathbb{F}_2)$)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Example (The Fano plane $PG(2, \mathbb{F}_2)$)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Example (The Fano plane $PG(2, \mathbb{F}_2)$)

Characterization of finite fields

A finite field is a finite ring *R* with exactly 2 left ideals. Of course: These ideals are $\{0\}$ and *R*.

Generalization:

Definition

A finite ring *R* with exactly 3 left ideals is called finite chain ring of composition length 2 (CR2).

Example

 $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z}$, left-ideals are $\{0\}, \{0, 2\}$ and $\{0, 1, 2, 3\}$.

Properties of CR2-rings

- Left-ideals: {0} *⊆ N ⊆ R*
- $N = \operatorname{rad}(R)$, so N both-sided ideal and $R/N \cong \mathbb{F}_q$.

Characterization of finite fields

A finite field is a finite ring *R* with exactly 2 left ideals. Of course: These ideals are $\{0\}$ and *R*.

Generalization:

Definition

A finite ring *R* with exactly 3 left ideals is called finite chain ring of composition length 2 (CR2).

Example

 $\mathbb{Z}_4=\mathbb{Z}/4\mathbb{Z},$ left-ideals are $\{0\},\,\{0,2\}$ and $\{0,1,2,3\}.$

Properties of CR2-rings

- Left-ideals: $\{0\} \leq N \leq R$
- $N = \operatorname{rad}(R)$, so N both-sided ideal and $R/N \cong \mathbb{F}_q$.

Characterization of finite fields

A finite field is a finite ring *R* with exactly 2 left ideals. Of course: These ideals are $\{0\}$ and *R*.

Generalization:

Definition

A finite ring R with exactly 3 left ideals is called finite chain ring of composition length 2 (CR2).

Example

 $\mathbb{Z}_4=\mathbb{Z}/4\mathbb{Z},$ left-ideals are $\{0\},\,\{0,2\}$ and $\{0,1,2,3\}.$

Properties of CR2-rings

- Left-ideals: $\{0\} \leq N \leq R$
- $N = \operatorname{rad}(R)$, so N both-sided ideal and $R/N \cong \mathbb{F}_q$.

Theorem

Let R be a CR2-ring, N = rad(R) with $R/N \cong \mathbb{F}_q$ and $q = p^r$, p prime. Then $\#R = q^2$ and either

- char(R) = p² and R ≅ GR(q², p²) (Galois ring of order q² and characteristic p²) or
- char(R) = p and there is a unique $\sigma \in Aut(\mathbb{F}_q)$ s.t. $R \cong \mathbb{F}_q[X, \sigma]/(X^2)$ (σ -duals over \mathbb{F}_q)

ヘロン 人間 とくほ とくほ とう

Smallest CR2-rings

Abbreviations

•
$$\mathbb{G}_4 := GR(16, 4)$$

•
$$\mathbb{S}_q := \mathbb{F}_q[X]/(X^2)$$

•
$$\mathbb{T}_4 := \mathbb{F}_4[X, a \mapsto a^2]/(X^2)$$
 (non-commutative!)

ヘロン ヘアン ヘビン ヘビン

Definition

Let *R* be a CR2-ring. Projective Hjelmslev plane PHG(2, R) over *R*:

- Points: Free submodules of R_B^3 of rank 1.
- Lines: Free submodules of R_B^3 of rank 2.
- Incidence given by subset relation.

Two different lines may meet in more than one point!

Goal

Find $n_2(R) := n_2(PHG(2, R))$ for CR2-rings *R*.

ヘロト ヘアト ヘビト ヘビト

Definition

Let *R* be a CR2-ring. Projective Hjelmslev plane PHG(2, R) over *R*:

- Points: Free submodules of R_B^3 of rank 1.
- Lines: Free submodules of R_B^3 of rank 2.
- Incidence given by subset relation.

Two different lines may meet in more than one point!

Goal

Find $n_2(R) := n_2(PHG(2, R))$ for CR2-rings *R*.

ヘロン 人間 とくほ とくほ とう

Definition

Let *R* be a CR2-ring. Projective Hjelmslev plane PHG(2, R) over *R*:

- Points: Free submodules of R_B^3 of rank 1.
- Lines: Free submodules of R_B^3 of rank 2.
- Incidence given by subset relation.

Two different lines may meet in more than one point!

Goal

Find $n_2(R) := n_2(PHG(2, R))$ for CR2-rings *R*.

ヘロト ヘアト ヘビト ヘビト

æ

Previous results (Thomas Honold, Ivan Landjev, M.K.)

Previous results for small q

Aim

Computationally attack smallest open case $R = \mathbb{Z}_{25}$

Previous results (Thomas Honold, Ivan Landjev, M.K.)

Previous results for small q

q	2		3		4			5		
R	\mathbb{Z}_4	\mathbb{S}_2	\mathbb{Z}_9	\mathbb{S}_3	\mathbb{G}_4	\mathbb{S}_4	\mathbb{T}_4	\mathbb{Z}_{25}	\mathbb{S}_5	
$n_2(R)$	7	6	9	9	21	18	18	21 – 25	25	

Aim

Computationally attack smallest open case $R = \mathbb{Z}_{25}$

Previous results (Thomas Honold, Ivan Landjev, M.K.)

Previous results for small q

q	2		3		4			5		
R	\mathbb{Z}_4	\mathbb{S}_2	\mathbb{Z}_9	\mathbb{S}_3	\mathbb{G}_4	\mathbb{S}_4	\mathbb{T}_4	\mathbb{Z}_{25}	\mathbb{S}_5	
$n_2(R)$	7	6	9	9	21	18	18	21 – 25	25	

Aim

Computationally attack smallest open case $R = \mathbb{Z}_{25}!$

Size of problem

• Number of points in $PHG(2, \mathbb{Z}_{25})$ is 775.

$$\binom{775}{22} =$$

2416624464693478600738862105303774646658800.

Huge search space!

• Collineation group $PGL(3, \mathbb{Z}_{25})$ has size 145312500000.

Conclusion

Advanced search methods are needed.

ヘロン 人間 とくほ とくほ とう

Size of problem

• Number of points in $PHG(2, \mathbb{Z}_{25})$ is 775.

$$\binom{775}{22} =$$

2416624464693478600738862105303774646658800.

Huge search space!

• Collineation group $PGL(3, \mathbb{Z}_{25})$ has size 145312500000.

Conclusion

Advanced search methods are needed.

ヘロン 人間 とくほ とくほ とう

Size of problem

• Number of points in $PHG(2, \mathbb{Z}_{25})$ is 775.

$$\binom{775}{22} =$$

2416624464693478600738862105303774646658800.

Huge search space!

• Collineation group $PGL(3, \mathbb{Z}_{25})$ has size 145312500000.

Conclusion

Advanced search methods are needed.

ヘロト ヘアト ヘビト ヘビト

ъ

Approach 1: Via factor plane Approach 2: Via affine subplane

Homomorphisms

Ring homomorphism

$$\phi: \mathbb{Z}_{25} \to \mathbb{F}_5, \quad a \mapsto a \pmod{5}$$

extends to $\phi : PHG(2, \mathbb{Z}_{25}) \rightarrow PG(2, \mathbb{F}_5)$ (collineation) and $\phi : PGL(3, \mathbb{Z}_{25}) \rightarrow PGL(3, \mathbb{F}_5)$ (group homomorphism).

Together: φ is homomorphism of group actions!

Idea

First do computations in PG(2, \mathbb{F}_5), then compute preimages under ϕ .

イロト イポト イヨト イヨト

Approach 1: Via factor plane Approach 2: Via affine subplane

Homomorphisms

Ring homomorphism

$$\phi: \mathbb{Z}_{25} \to \mathbb{F}_5, \quad a \mapsto a \pmod{5}$$

extends to $\phi : PHG(2, \mathbb{Z}_{25}) \rightarrow PG(2, \mathbb{F}_5)$ (collineation) and $\phi : PGL(3, \mathbb{Z}_{25}) \rightarrow PGL(3, \mathbb{F}_5)$ (group homomorphism).

Together: \(\phi\) is homomorphism of group actions!

ldea

First do computations in PG(2, \mathbb{F}_5), then compute preimages under ϕ .

ヘロン 人間 とくほ とくほ とう

Approach 1: Via factor plane Approach 2: Via affine subplane

Homomorphisms

Ring homomorphism

$$\phi: \mathbb{Z}_{25} \to \mathbb{F}_5, \quad a \mapsto a \pmod{5}$$

extends to $\phi : \mathsf{PHG}(2, \mathbb{Z}_{25}) \to \mathsf{PG}(2, \mathbb{F}_5)$ (collineation) and $\phi : \mathsf{PGL}(3, \mathbb{Z}_{25}) \to \mathsf{PGL}(3, \mathbb{F}_5)$ (group homomorphism).

Together: φ is homomorphism of group actions!

Idea

First do computations in PG(2, \mathbb{F}_5), then compute preimages under ϕ .

ヘロン 人間 とくほ とくほ とう

ъ

Approach 1: Via factor plane Approach 2: Via affine subplane

Homomorphism Principle

To compute PGL(2, \mathbb{Z}_{25})-representatives of a (*n*, 2)-arcs in PHG(2, \mathbb{Z}_{25}):

• Step 1:

Compute set X of PG(2, \mathbb{F}_5)-representatives of possible ϕ -images.

• Step 2:

For each $x \in X$:

Compute representatives of $\phi^{-1}(x)$ with respect to action of $\phi^{-1}(PG(2, \mathbb{F}_5)_x)$ on PHG(2, $\mathbb{Z}_{25})$.

Remarks

• Step 2 much harder than Step 1.

Small X will reduce running time of Step 2.
 Find as many restrictions on the φ-images as possible!

Approach 1: Via factor plane Approach 2: Via affine subplane

Homomorphism Principle

To compute PGL(2, \mathbb{Z}_{25})-representatives of a (*n*, 2)-arcs in PHG(2, \mathbb{Z}_{25}):

• Step 1:

Compute set X of PG(2, \mathbb{F}_5)-representatives of possible ϕ -images.

• Step 2:

For each $x \in X$:

Compute representatives of $\phi^{-1}(x)$ with respect to action of $\phi^{-1}(PG(2, \mathbb{F}_5)_x)$ on PHG(2, $\mathbb{Z}_{25})$.

Remarks

- Step 2 much harder than Step 1.
- Small X will reduce running time of Step 2.
 Find as many restrictions on the φ-images as possible!

Approach 1: Via factor plane Approach 2: Via affine subplane

Restrictions

- φ-image is exactly the distribution of points to the point classes.
- Geometric considerations give very hard restrictions.
- For (22,2)-arcs we get |X| = 4, can be done by hand by combinatorial and geometric reasoning.

Implementation

- In C++.
- Further methods: Backtrack search, Ladder game, forbidden substructurs.

Results

- In 8.5 hours: There is no (22, 2)-arc.
- In 13.5 hours: The already known (21, 1)-arc is unique.

Approach 1: Via factor plane Approach 2: Via affine subplane

Restrictions

- φ-image is exactly the distribution of points to the point classes.
- Geometric considerations give very hard restrictions.
- For (22,2)-arcs we get |X| = 4, can be done by hand by combinatorial and geometric reasoning.

Implementation

In C++.

• Further methods: Backtrack search, Ladder game, forbidden substructurs.

Results

- In 8.5 hours: There is no (22, 2)-arc.
- In 13.5 hours: The already known (21, 1)-arc is unique.

Approach 1: Via factor plane Approach 2: Via affine subplane

Restrictions

- φ-image is exactly the distribution of points to the point classes.
- Geometric considerations give very hard restrictions.
- For (22,2)-arcs we get |X| = 4, can be done by hand by combinatorial and geometric reasoning.

Implementation

- In C++.
- Further methods: Backtrack search, Ladder game, forbidden substructurs.

Results

- In 8.5 hours: There is no (22, 2)-arc.
- In 13.5 hours: The already known (21, 1)-arc is unique.

Approach 1: Via factor plane Approach 2: Via affine subplane

Second approach

Computational nonexistence/uniqueness proof:

Delicate matter.

Double-check result by completely independent approach.

・ロト ・ 理 ト ・ ヨ ト ・

Approach 1: Via factor plane Approach 2: Via affine subplane

Lemma

Let \Re be a 2-arc in PHG(2, \mathbb{Z}_{25}) intersecting each point class in at most 2 points.

Then there is a line class containing at most 2 points of \Re .

ldea

- Large 2-arcs fulfill requirement of the Lemma.
- So: Removing the line class of the Lemma: (n, 2)-arc yields (≥ n − 2, 2)-arc in the affine Hjelmslev plane AHG(2, Z₂₅).
- Classify all (20, 2) and (19, 2)-arcs in AHG(2, \mathbb{Z}_{25}). Problem size is reduced, because:
 - AHG $(2, \mathbb{Z}_{25})$ has 150 points less then PHG $(2, \mathbb{Z}_{25})$,
 - Arc size is reduced by 2.
- Easy: Check results for extendibility in PHG(2, Z₂₅).

Approach 1: Via factor plane Approach 2: Via affine subplane

Lemma

Let \mathfrak{K} be a 2-arc in PHG(2, \mathbb{Z}_{25}) intersecting each point class in at most 2 points.

Then there is a line class containing at most 2 points of R.

Idea

- Large 2-arcs fulfill requirement of the Lemma.
- So: Removing the line class of the Lemma: (n,2)-arc yields (≥ n − 2, 2)-arc in the affine Hjelmslev plane AHG(2, Z₂₅).
- Classify all (20,2) and (19,2)-arcs in $AHG(2, \mathbb{Z}_{25})$. Problem size is reduced, because:
 - AHG(2, Z₂₅) has 150 points less then PHG(2, Z₂₅),
 - Arc size is reduced by 2.
- Easy: Check results for extendibility in PHG(2, Z₂₅).

Approach 1: Via factor plane Approach 2: Via affine subplane

Implementation

- Fast canonizer.
- Backtrack search combined with orderly generation on the first few levels.
- On leaf nodes of backtrack search: Formulate problem as linear program, get solutions from CPLEX.

Results

- Exactly the same results as with the first approach.
- Number and isomorphism type of extendible 2-arcs in $AHG(2, \mathbb{Z}_{25})$ perfectly match the affine reductions of the known (21,2)-arc.

・ロット 御マ キョット キョン

э

Approach 1: Via factor plane Approach 2: Via affine subplane

Implementation

- Fast canonizer.
- Backtrack search combined with orderly generation on the first few levels.
- On leaf nodes of backtrack search: Formulate problem as linear program, get solutions from CPLEX.

Results

- Exactly the same results as with the first approach.
- Number and isomorphism type of extendible 2-arcs in $AHG(2, \mathbb{Z}_{25})$ perfectly match the affine reductions of the known (21, 2)-arc.

ヘロト 人間 とく ヨ とく ヨン

Updated table

q	2		3			4	5		
R	\mathbb{Z}_4	\mathbb{S}_2	\mathbb{Z}_9	\mathbb{S}_3	\mathbb{G}_4	\mathbb{S}_4	\mathbb{T}_4	\mathbb{Z}_{25}	\mathbb{S}_5
$n_2(R)$	7	6	9	9	21	18	18	21	25

Surprise

"Exotic" ring \mathbb{S}_5 admits much larger 2-arc than its brother \mathbb{Z}_{25} !

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Updated table

q	2		3			4	5		
R	\mathbb{Z}_4	\mathbb{S}_2	\mathbb{Z}_9	\mathbb{S}_3	\mathbb{G}_4	\mathbb{S}_4	\mathbb{T}_4	\mathbb{Z}_{25}	\mathbb{S}_5
$n_2(R)$	7	6	9	9	21	18	18	21	25

Surprise

"Exotic" ring \mathbb{S}_5 admits much larger 2-arc than its brother $\mathbb{Z}_{25}!$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Open questions

- Understand $n_2(\mathbb{Z}_{25}) < 25$ without use of computer.
- Construct the unique (21,2)-arc by hand.
- New smallest open case: $n_2(\mathbb{Z}_{49})$.
- Find reasonable lower bound on *n*₂(*R*) for *q* odd, *R* Galois ring.
- Holds $n_2(\mathbb{Z}_{q^2}) < q^2$ for all odd $q \ge 5$?

ヘロン 人間 とくほ とくほ とう