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Definition of a 2-arc

Given
Some geometry G

(consisting of points, lines, incidence relation).
k a set of points in G.

Definition
k is a 2-arc, if
#(L ∩ k) ≤ 2 for each line L in G.
Maximum possible size of a 2-arc: n2(G).

Goal
For interesting finite geometries G, determine n2(G).
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Recall
Projective plane PG(2,Fq) over the finite field Fq:

Points: one-dimensional linear subspaces of F3
q.

Lines: two-dimensional linear subspaces of F3
q.

Incidence given by subset relation.

Ovals and hyperovals

If q odd: n2(PG(2,Fq)) = q + 1,
such arcs are called ovals.
If q even: n2(PG(2,Fq)) = q + 2,
such arcs are called hyperovals.

Connection to coding theory

Ovals and hyperovals give MDS-codes.
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Example (The Fano plane PG(2,F2))
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Example (The Fano plane PG(2,F2))

n2(PG(2,F2)) = 4
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Characterization of finite fields
A finite field is a finite ring R with exactly 2 left ideals.
Of course: These ideals are {0} and R.

Generalization:

Definition
A finite ring R with exactly 3 left ideals is called
finite chain ring of composition length 2 (CR2).

Example

Z4 = Z/4Z, left-ideals are {0}, {0,2} and {0,1,2,3}.

Properties of CR2-rings

Left-ideals: {0} � N � R
N = rad(R), so N both-sided ideal and R/N ∼= Fq.
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Theorem
Let R be a CR2-ring, N = rad(R) with R/N ∼= Fq and q = pr , p
prime. Then #R = q2 and either

char(R) = p2 and R ∼= GR(q2,p2)
(Galois ring of order q2 and characteristic p2)
or
char(R) = p and there is a unique σ ∈ Aut(Fq) s.t.
R ∼= Fq[X , σ]/(X 2)
(σ-duals over Fq)
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Smallest CR2-rings

q R
Galois ring σ-duals over Fq

2 Z4 F2[X ]/(X 2)
3 Z9 F3[X ]/(X 2)
4 GR(16,4) F4[X ]/(X 2) F4[X ,a 7→ a2]/(X 2)
5 Z25 F5[X ]/(X 2)

Abbreviations
G4 := GR(16,4)

Sq := Fq[X ]/(X 2)

T4 := F4[X ,a 7→ a2]/(X 2) (non-commutative!)
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Definition
Let R be a CR2-ring. Projective Hjelmslev plane PHG(2,R)
over R:

Points: Free submodules of R3
R of rank 1.

Lines: Free submodules of R3
R of rank 2.

Incidence given by subset relation.

Two different lines may meet in more than one point!

Goal
Find n2(R) := n2(PHG(2,R)) for CR2-rings R.
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Previous results (Thomas Honold, Ivan Landjev, M.K.)

n2(R)
R

Galois ring σ-duals

q
even q2 + q + 1 q2 + 2 ≤ · ≤ q2 + q
odd · ≤ q2 q2

Previous results for small q

q 2 3 4 5
R Z4 S2 Z9 S3 G4 S4 T4 Z25 S5

n2(R) 7 6 9 9 21 18 18 21− 25 25

Aim
Computationally attack smallest open case R = Z25!
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Size of problem

Number of points in PHG(2,Z25) is 775.

(
775
22

)
=

2416624464693478600738862105303774646658800.

Huge search space!
Collineation group PGL(3,Z25) has size 145312500000.

Conclusion
Advanced search methods are needed.
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Approach 1: Via factor plane
Approach 2: Via affine subplane

Homomorphisms
Ring homomorphism

φ : Z25 → F5, a 7→ a (mod 5)

extends to
φ : PHG(2,Z25)→ PG(2,F5) (collineation) and
φ : PGL(3,Z25)→ PGL(3,F5) (group homomorphism).
Together: φ is homomorphism of group actions!

Idea
First do computations in PG(2,F5),
then compute preimages under φ.
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Approach 1: Via factor plane
Approach 2: Via affine subplane

Homomorphism Principle

To compute PGL(2,Z25)-representatives of a (n,2)-arcs in
PHG(2,Z25):

Step 1:
Compute set X of PG(2,F5)-representatives of possible
φ-images.
Step 2:
For each x ∈ X :
Compute representatives of φ−1(x) with respect to action
of φ−1(PG(2,F5)x) on PHG(2,Z25).

Remarks
Step 2 much harder than Step 1.
Small X will reduce running time of Step 2.
Find as many restrictions on the φ-images as possible!
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Approach 1: Via factor plane
Approach 2: Via affine subplane

Restrictions
φ-image is exactly the distribution of points to the point
classes.
Geometric considerations give very hard restrictions.
For (22,2)-arcs we get |X | = 4, can be done by hand
by combinatorial and geometric reasoning.

Implementation
In C++.
Further methods: Backtrack search, Ladder game,
forbidden substructurs.

Results
In 8.5 hours: There is no (22,2)-arc.
In 13.5 hours: The already known (21,1)-arc is unique.
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Approach 1: Via factor plane
Approach 2: Via affine subplane

Second approach
Computational nonexistence/uniqueness proof:

Delicate matter.

Double-check result by completely independent approach.
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Approach 1: Via factor plane
Approach 2: Via affine subplane

Lemma
Let K be a 2-arc in PHG(2,Z25) intersecting each point class in
at most 2 points.
Then there is a line class containing at most 2 points of K.

Idea
Large 2-arcs fulfill requirement of the Lemma.
So: Removing the line class of the Lemma:
(n,2)-arc yields (≥ n − 2,2)-arc in the affine Hjelmslev
plane AHG(2,Z25).
Classify all (20,2) and (19,2)-arcs in AHG(2,Z25).
Problem size is reduced, because:

AHG(2,Z25) has 150 points less then PHG(2,Z25),
Arc size is reduced by 2.

Easy: Check results for extendibility in PHG(2,Z25).
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Approach 1: Via factor plane
Approach 2: Via affine subplane

Implementation
Fast canonizer.
Backtrack search combined with orderly generation
on the first few levels.
On leaf nodes of backtrack search:
Formulate problem as linear program,
get solutions from CPLEX.

Results
Exactly the same results as with the first approach.
Number and isomorphism type of extendible 2-arcs in
AHG(2,Z25)
perfectly match the affine reductions of the known
(21,2)-arc.
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Updated table

q 2 3 4 5
R Z4 S2 Z9 S3 G4 S4 T4 Z25 S5

n2(R) 7 6 9 9 21 18 18 21 25

Surprise
”Exotic” ring S5 admits much larger 2-arc than its brother Z25!
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Open questions

Understand n2(Z25) < 25 without use of computer.
Construct the unique (21,2)-arc by hand.
New smallest open case: n2(Z49).
Find reasonable lower bound on n2(R) for q odd, R Galois
ring.
Holds n2(Zq2) < q2 for all odd q ≥ 5?
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